Writing R Extensions

Version 4.3.2 (2023-10-31)

R Core Team

This manual is for R, version 4.3.2 (2023-10-31).
Copyright (© 1999-2023 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.

Table of Contents

Acknowledgements......................., 1
1 Creating R packages 2
1.1 Package structure......... ... 3
1.1.1 The DESCRIPTION file.......ovvrreieiiiiiiiiiiiiieeeenn 4
1.1.2 LACenSingcovnnn i e 9
1.1.3 Package Dependenciesoooiiiiiiiiiiiiiia. 11
1.1.3.1 Suggested packagesc.ccoiiiiiiiiiiiiiiii 13

1.1.4 The INDEX file. .. .ooueiii e 14
1.1.5 Package subdirectories........... ..., 15
1.1.6 Data in packages ... 20
1.1.7 Non-R scripts in packages. ..., 21
1.1.8 Specifying URLS. ... 22
1.2 Configure and cleanup............c.ooiiiiiiiiiiiiiiii.. 23
1.2.1 Using Makevarsoouuetmiiie e, 28
1.2.1.1 OpenMP support ... 32
1.2.1.2 Using pthreads ... 34
1.2.1.3 Compiling in sub-directories.......................... 35

1.2.2 Configure example. 36
1.2.3 Using FOx code.o 37
1.2.4 Using CH4 code ..o 38
1.25 Cstandardsooiiiii e 41
1.2.6 Using cmakeuuiiiiiiiii i 42
1.3 Checking and building packages............. ..o, 44
1.3.1 Checking packages.........oouuiiiiiiiiiiiiiiiia.. 45
1.3.2 Building package tarballsl 48
1.3.3 Building binary packages i 50
1.4 Writing package vignettes it 51
1.4.1 Encodings and vignettes............ ... 53
1.4.2 Non-Sweave vignettes.ccooiiiiiiiiiiiiiiiinn. 54
1.5 Package namespaces...........o.iiiiiiiiii i 55
1.5.1 Specifying imports and exportscoooieinn... 55
1.5.2 Registering S3 methods.............. ... L. 56
1.5.3 Load hooks. 57
1.5.4 useDynLib.o 58
1.5.5 Anexample ... 60
1.5.6 Namespaces with S4 classes and methods 61
1.6 Writing portable packages i 62
1.6.1 PDF sizet 73
1.6.2 Check timingo e 74
1.6.3 Encoding iSSUes...........c.oiiiiiiiiiiiiiiiiiiii ., 74
1.6.4 Portable C and C++4 code..........coooiiiiiiiiiiii... 75

1.6.4.1 Common symbols......... ... 82

1.6.4.2 CH4 1T ISSUES . « ot vt et et 83

1.6.5 Portable Fortrancode L. 84
1.6.6 Binary distribution 85
1.7 Diagnostic MeSSAZES vvvvtett ettt 85
1.8 Internationalization............o i i 87
1.8.1 C-level MeSSages oottt 87
1.8.2 R meSSages . ..ottt 87
1.8.3 Preparing translations it 88
1.9 CITATION files ..o ovei i e 88
1.10 Package types . ..o 89
1.10.1 Fromtendo e 89
I R T T T 90
Writing R documentation files................ 91
2.1 Rdformat..... ..o 91
2.1.1 Documenting functions i i 92
2.1.2 Documenting data sets.......... .o 97
2.1.3 Documenting S4 classes and methods 98
2.1.4 Documenting packages........ ..., 99
2.2 SeCtioningoouuiii 99
2.3 Marking textt 100
24 Listsand tables ... 102
2.5 Cross-referenceso 103
2.6 Mathematicscoooiiiiiiiii 103
2.7 FIgUIES. ..ot 104
2.8 INSErtionSttt e 105
2.9 Indiceso 105
2.10 Platform-specific documentation............................. 106
2.11 Conditional text.o 106
2.12 DynamiC PagesS. ...t e 107
2.13 User-defined macros...........o.uiiiiiiiiiiiiienniiennnn.. 108
214 Encodingoouuiiiii e 109
2.15 Processing documentation files 110
216 Editing Rd files ... 110
Tidying and profiling R code 111
3.1 Tidying Rcode.......cooiii 111
3.2 Profiling R code for speed 111
3.3 Profiling R code for memory use...............o 113
3.3.1 Memory statistics from Rprof 114
3.3.2 Tracking memory allocations...................... 114
3.3.3 Tracing copies of an objectol 114
3.4 Profiling compiled code......... ... 115
341 LINUX . oot e 115
3.4.1.1 oprofileand operf.........l 115
3.4.1.2 Sprof ... 117

3.4.2 macOS .. 117

3.4.3 WINAOWS . oot 117

ii

4 Debugging............... ..., 118
4.1 BrowSIng . .o oot 118
4.2 Debugging Rcode........coooiiii i 119
4.3 Checking memory acCesscouuutiienieeineeennnne.. 123

4.3.1 Using getorture.covuuiiiiii i 123
4.3.2 Using valgrind....... ... i 124
4.3.3 Using the Address Sanitizer.....................coi.... 126
4.3.3.1 Using the Leak Sanitizer............................ 128

4.3.4 Using the Undefined Behaviour Sanitizer................. 128
4.3.5 Other analyses with ‘clang’............. 130
4.3.6 Other analyses with ‘gec’ ... oL 130
4.3.7 Using ‘Dr. Memory’c.oiiiiiiii i 130
4.3.8 Fortran array bounds checking....................... ..., 130
4.4 Debugging compiled code............ ... i 131
4.4.1 Finding entry points in dynamically loaded code 132
4.4.2 Inspecting R objects when debugging 133
4.4.3 Debugging on macOS......... ... i 135
4.5 Using Link-time Optimization 135
System and foreign language interfaces..... 138
5.1 Operating SyStem acCeSS. ...« vuvtttt et 138
5.2 Interface functions .C and .Fortran.......................... 138
5.3 dyn.load and dyn.unloadiiiiiiiiiii 140
5.4 Registering native routines i i, 142
5.4.1 Speed considerations., 145
5.4.2 Example: converting a package to use registration........ 147
5.4.3 Linking to native routines in other packages.............. 150
5.5 Creating shared objectso i 151
5.6 Interfacing C+4 codeo 152
5.6.1 External CH++code ... 154
5.7 Fortran I/O ... 155
5.8 Linking to other packages il 155
5.8.1 Unix-alikes..........o 155
5.82 WINdOwWSt e 156
5.9 Handling R objects in C...........oiiiii i 157
5.9.1 Handling the effects of garbage collection 159
5.9.2 Allocating StOragecovreiitini i 161
5.9.3 Detailsof R typeso 161
5.9.4 Attributes. 162
D.9.0 ClasSeS .ot vttt 164
5.9.6 Handling lists ... i 165
5.9.7 Handling character data............., 165
5.9.8 Finding and setting variables 166
5.9.9 Some convenience functions............ o ol 166
5.9.9.1 Semi-internal convenience functions................. 168
5.9.10 Named objects and copying............ccoviiiiiiia... 168
5.10 Interface functions .Call and .External 169

5.10.1 Calling .Calloiutiiiii i 169

iii

5.10.2 Calling .Externaloouiiiininiienninenenannnnnns 170
5.10.3 Missing and special values................. ..., 172
5.11 Evaluating R expressions from C............................ 172
5.11.1 Zero-finding 174
5.11.2 Calculating numerical derivatives....................... 176
5.12 Parsing R code from C........ 178
5.12.1 Accessing source referencesc.ooiiiiiiia... 180
5.13 External pointers and weak references....................... 180
513.1 Anexample.t 182
5.14 Vector accessor functions............o il 182
5.15 Character encoding iSSUESoviriiiiii i, 183
The R API: entry points for C code........ 184
6.1 Memory allocation i 184
6.1.1 Transient storage allocation...................... 185
6.1.2 User-controlled memory, 185
6.2 Error signaling.......... ..o 186
6.2.1 Error signaling from Fortran............................. 186
6.3 Random number generation oL 186
6.3.1 Random-number generation from Fortran................ 187
6.4 Missing and IEEE special values 188
6.5 Printing....... ... 188
6.5.1 Printing from Fortran 189
6.6 Calling C from Fortran and vice versa 189
6.6.1 Fortran character strings i L. 190
6.6.2 Fortran LOGICAL 193
6.6.3 Passing functions............. . . i 193
6.7 Numerical analysis subroutines 194
6.7.1 Distribution functions il 194
6.7.2 Mathematical functions.............. i L, 196
6.7.3 Numerical Utilities ...t 197
6.7.4 Mathematical constantsol 199
6.8 Optimizationttt e 200
6.9 Integration...........cooiiiiiiiiii 201
6.10 Utility functions.o 202
6.11 Re-encoding........ ... 204
6.12 Condition handling and cleanup code........................ 204
6.13 Allowing interrupts.ot 205
6.14 Platform and version information............................ 206
6.15 Inlining C functions 207
6.16 Controlling visibility o i i 207
6.17 Using these functions in your own C code.................... 208
6.18 Organization of header files............... 209
Generic functions and methods.............. 211

7.1 Adding new genericsoviuiiiiiiiii i 212

iv

8 Linking GUIs and other front-ends to R.... 213

8.1 Embedding R under Unix-alikes 213
8.1.1 Compiling against the R library.......................... 215
8.1.2 Setting R callbacks.........o o i 216
8.1.3 Registering symbols i 219
8.1.4 Meshing event loops......... ... o i 219
8.1.5 Threading iSSUES.ooiutiiiii e 220

8.2 Embedding R under Windows it 221
8.2.1 Using (D)COM. 221
8.2.2 Calling R.dll directly 221
8.2.3 Finding RHOME..... i, 224

Function and variable index 226

Concept index, 231

Acknowledgements

The contributions to early versions of this manual by Saikat DebRoy (who wrote the first
draft of a guide to using .Call and .External) and Adrian Trapletti (who provided infor-
mation on the C++ interface) are gratefully acknowledged.

1 Creating R packages

Packages provide a mechanism for loading optional code, data and documentation as needed.
The R distribution itself includes about 30 packages.

In the following, we assume that you know the library() command, including its
1ib.loc argument, and we also assume basic knowledge of the R CMD INSTALL utility. Oth-
erwise, please look at R’s help pages on

?library
?INSTALL

before reading on.

For packages which contain code to be compiled, a computing environment including
a number of tools is assumed; the “R Installation and Administration” manual describes
what is needed for each OS.

Once a source package is created, it must be installed by the command R CMD INSTALL.
See Section “Add-on-packages” in R Installation and Administration.

Other types of extensions are supported (but rare): See Section 1.10 [Package types],
page 89.

Some notes on terminology complete this introduction. These will help with the reading
of this manual, and also in describing concepts accurately when asking for help.

A package is a directory of files which extend R, a source package (the master files of a
package), or a tarball containing the files of a source package, or an installed package, the
result of running R CMD INSTALL on a source package. On some platforms (notably macOS
and Windows) there are also binary packages, a zip file or tarball containing the files of an
installed package which can be unpacked rather than installing from sources.

A package is not! a library. The latter is used in two senses in R documentation.

e A directory into which packages are installed, e.g. /usr/1ib/R/1library: in that sense
it is sometimes referred to as a library directory or library tree (since the library is a
directory which contains packages as directories, which themselves contain directories).

e That used by the operating system, as a shared, dynamic or static library or (especially
on Windows) a DLL, where the second L stands for ‘library’. Installed packages may
contain compiled code in what is known on Unix-alikes as a shared object and on
Windows as a DLL. The concept of a shared library (dynamic library on macOS) as
a collection of compiled code to which a package might link is also used, especially
for R itself on some platforms. On most platforms these concepts are interchangeable
(shared objects and DLLs can both be loaded into the R process and be linked against),
but macOS distinguishes between shared objects (extension .so) and dynamic libraries
(extension .dylib).

There are a number of well-defined operations on source packages.

e The most common is installation which takes a source package and installs it in a
library using R CMD INSTALL or install.packages.

1 although this is a persistent mis-usage. It seems to stem from S, whose analogues of R’s packages were
officially known as library sections and later as chapters, but almost always referred to as libraries.

Chapter 1: Creating R packages 3

e Source packages can be built. This involves taking a source directory and creating
a tarball ready for distribution, including cleaning it up and creating PDF/HTML
documentation from any vignettes it may contain. Source packages (and most often
tarballs) can be checked, when a test installation is done and tested (including running
its examples); also, the contents of the package are tested in various ways for consistency
and portability.

e Compilation is not a correct term for a package. Installing a source package which
contains C, C++ or Fortran code will involve compiling that code. There is also the
possibility of ‘byte’ compiling the R code in a package (using the facilities of package
compiler): nowadays this is enabled by default for all packages. So compiling a package
may come to mean byte-compiling its R code.

e It used to be unambiguous to talk about loading an installed package using 1ibrary(),
but since the advent of package namespaces this has been less clear: people now of-
ten talk about loading the package’s namespace and then attaching the package so
it becomes visible on the search path. Function library performs both steps, but a
package’s namespace can be loaded without the package being attached (for example
by calls like splines: :ns).

The concept of lazy loading of code or data is mentioned at several points. This is part
of the installation, always selected for R code but optional for data. When used the R
objects of the package are created at installation time and stored in a database in the R
directory of the installed package, being loaded into the session at first use. This makes the
R session start up faster and use less (virtual) memory. (For technical details, see Section
“Lazy loading” in R Internals.)

CRAN is a network of WWW sites holding the R distributions and contributed code,
especially R packages. Users of R are encouraged to join in the collaborative project and to
submit their own packages to CRAN: current instructions are linked from https://CRAN.
R-project.org/banner.shtml#submitting.

1.1 Package structure

The sources of an R package consist of a subdirectory containing the files DESCRIPTION
and NAMESPACE, and the subdirectories R, data, demo, exec, inst, man, po, src, tests,
tools and vignettes (some of which can be missing, but which should not be empty).
The package subdirectory may also contain files INDEX, configure, cleanup, LICENSE,
LICENCE and NEWS. Other files such as INSTALL (for non-standard installation instructions),
README/README .md?, or ChangeLog will be ignored by R, but may be useful to end users.
The utility R CMD build may add files in a build directory (but this should not be used for
other purposes).

Except where specifically mentioned,® packages should not contain Unix-style ‘hidden’
files/directories (that is, those whose name starts with a dot).

2 This seems to be commonly used for a file in ‘markdown’ format. Be aware that most users of R will
not know that, nor know how to view such a file: platforms such as macOS and Windows do not have
a default viewer set in their file associations. The CRAN package web pages render such files in HTML:

the converter used expects the file to be encoded in UTF-8.

3 currently, top-level files .Rbuildignore and .Rinstignore, and vignettes/.install_extras.

https://CRAN.R-project.org/banner.shtml#submitting
https://CRAN.R-project.org/banner.shtml#submitting

Chapter 1: Creating R packages 4

The DESCRIPTION and INDEX files are described in the subsections below. The NAMESPACE
file is described in the section on Section 1.5 [Package namespaces|, page 55.

The optional files configure and cleanup are (Bourne) shell scripts which are, re-
spectively, executed before and (if option --clean was given) after installation on Unix-
alikes, see Section 1.2 [Configure and cleanup], page 23. The analogues on Windows
are configure.win and cleanup.win. Since R 4.2.0 on Windows, configure.ucrt and
cleanup.ucrt are supported and take precedence over configure.win and cleanup.win.
They can hence be used to provide content specific to UCRT or Rtools42 and newer, if
needed, but the support for .ucrt files may be removed in future when building packages
from source on the older versions of R will no longer be needed, and hence the files may be
renamed back to .win.

For the conventions for files NEWS and ChangeLog in the GNU project see https://www.
gnu.org/prep/standards/standards.html#Documentation.

The package subdirectory should be given the same name as the package. Because
some file systems (e.g., those on Windows and by default on macOS) are not case-sensitive,
to maintain portability it is strongly recommended that case distinctions not be used to
distinguish different packages. For example, if you have a package named foo, do not also
create a package named Foo.

To ensure that file names are valid across file systems and supported operating systems,
the ASCII control characters as well as the characters "7, ‘¥’ “:’ ¢/’ ‘<’ 7 27 ¢\’
and ‘|’ are not allowed in file names. In addition, files with names ‘con’, ‘prn’, ‘aux’,
‘clock$’, ‘nul’, ‘coml’ to ‘com9’, and ‘lptl’ to ‘lpt9’ after conversion to lower case and
stripping possible “extensions” (e.g., ‘lpt5.foo.bar’), are disallowed. Also, file names in
the same directory must not differ only by case (see the previous paragraph). In addition,
the basenames of ‘.Rd’ files may be used in URLs and so must be ASCII and not contain %.
For maximal portability filenames should only contain only ASCII characters not excluded
already (that is A-Za-z0-9._!#$%&+,;=0"(){}’[1 — we exclude space as many utilities
do not accept spaces in file paths): non-English alphabetic characters cannot be guaranteed
to be supported in all locales. It would be good practice to avoid the shell metacharacters
O{}’[0%": ~ is also used as part of ‘8.3” filenames on Windows. In addition, packages
are normally distributed as tarballs, and these have a limit on path lengths: for maximal
portability 100 bytes.

A source package if possible should not contain binary executable files: they are not
portable, and a security risk if they are of the appropriate architecture. R CMD check will
warn about them* unless they are listed (one filepath per line) in a file BinaryFiles at the
top level of the package. Note that CRAN will not accept submissions containing binary
files even if they are listed.

The R function package.skeleton can help to create the structure for a new package:
see its help page for details.

1.1.1 The DESCRIPTION file
The DESCRIPTION file contains basic information about the package in the following format:

4 false positives are possible, but only a handful have been seen so far.

https://www.gnu.org/prep/standards/standards.html#Documentation
https://www.gnu.org/prep/standards/standards.html#Documentation

Chapter 1: Creating R packages 5

()
Package: pkgname

Version: 0.5-1

Date: 2015-01-01

Title: My First Collection of Functions

Authors@R: c(person("Joe", "Developer", role = c("aut", "cre"),
email = "Joe.Developer@some.domain.net"),
person("Pat", "Developer", role = "aut"),
person("A.", "User", role = "ctb",
email = "A.User@whereever.net"))

Author: Joe Developer [aut, cre],
Pat Developer [aut],
A. User [ctb]
Maintainer: Joe Developer <Joe.Developer@some.domain.net>
Depends: R (>= 3.1.0), nlme
Suggests: MASS
Description: A (one paragraph) description of what
the package does and why it may be useful.
License: GPL (>= 2)
URL: https://www.r-project.org, http://www.another.url
BugReports: https://pkgname.bugtracker.url
- J

The format is that of a version of a ‘Debian Control File’ (see the help for ‘read.dcf’ and
https://www.debian.org/doc/debian-policy/ch-controlfields.html: R does not
require encoding in UTF-8 and does not support comments starting with ‘#’). Fields start
with an ASCII name immediately followed by a colon: the value starts after the colon and
a space. Continuation lines (for example, for descriptions longer than one line) start with
a space or tab. Field names are case-sensitive: all those used by R are capitalized.

For maximal portability, the DESCRIPTION file should be written entirely in ASCIT — if
this is not possible it must contain an ‘Encoding’ field (see below).

Several optional fields take logical values: these can be specified as ‘yes’, ‘true’, ‘no’ or
‘false’: capitalized values are also accepted.

The ‘Package’, ‘Version’, ‘License’, ‘Description’, ‘Title’, ‘Author’, and
‘Maintainer’ fields are mandatory, all other fields are optional. Fields ‘Author’ and
‘Maintainer’ can be auto-generated from ‘Authors@R’, and may be omitted if the latter is
provided: however if they are not ASCII we recommend that they are provided.

The mandatory ‘Package’ field gives the name of the package. This should contain only
(ASCII) letters, numbers and dot, have at least two characters and start with a letter and
not end in a dot. If it needs explaining, this should be done in the ‘Description’ field (and
not the ‘Title’ field).

The mandatory ‘Version’ field gives the version of the package. This is a sequence of at
least two (and usually three) non-negative integers separated by single ‘.’ or ‘=’ characters.
The canonical form is as shown in the example, and a version such as ‘0.01’ or ‘0.01.0’
will be handled as if it were ‘0.1-0". It is not a decimal number, so for example 0.9 < 0.75
since 9 < 75.

The mandatory ‘License’ field is discussed in the next subsection.

The mandatory ‘Title’ field should give a short description of the package. Some
package listings may truncate the title to 65 characters. It should use title case (that is, use
capitals for the principal words: tools: :toTitleCase can help you with this), not use any
markup, not have any continuation lines, and not end in a period (unless part of ...). Do

https://www.debian.org/doc/debian-policy/ch-controlfields.html

Chapter 1: Creating R packages 6

not repeat the package name: it is often used prefixed by the name. Refer to other packages
and external software in single quotes, and to book titles (and similar) in double quotes.

The mandatory ‘Description’ field should give a comprehensive description of what the
package does. One can use several (complete) sentences, but only one paragraph. It should
be intelligible to all the intended readership (e.g. for a CRAN package to all CRAN users).
It is good practice not to start with the package name, ‘This package’ or similar. As with
the ‘Title’ field, double quotes should be used for quotations (including titles of books and
articles), and single quotes for non-English usage, including names of other packages and
external software. This field should also be used for explaining the package name if nec-
essary. URLs should be enclosed in angle brackets, e.g. ‘<https://www.r-project.org>’
see also Section 1.1.8 [Specifying URLs], page 22.

The mandatory ‘Author’ field describes who wrote the package. It is a plain text field
intended for human readers, but not for automatic processing (such as extracting the email
addresses of all listed contributors: for that use ‘Authors@R’). Note that all significant
contributors must be included: if you wrote an R wrapper for the work of others included
in the src directory, you are not the sole (and maybe not even the main) author.

The mandatory ‘Maintainer’ field should give a single name followed by a wvalid (RFC
2822) email address in angle brackets. It should not end in a period or comma. This field
is what is reported by the maintainer function and used by bug.report. For a CRAN
package it should be a person, not a mailing list and not a corporate entity: do ensure that
it is valid and will remain valid for the lifetime of the package.

Note that the display name (the part before the address in angle brackets) should be
enclosed in double quotes if it contains non-alphanumeric characters such as comma or
period. (The current standard, RFC 5322, allows periods but RFC 2822 did not.)

Both ‘Author’ and ‘Maintainer’ fields can be omitted if a suitable ‘Authors@R’ field
is given. This field can be used to provide a refined and machine-readable description of
the package “authors” (in particular specifying their precise roles), via suitable R code. It
should create an object of class "person", by either a call to person or a series of calls (one
per “author”) concatenated by c(): see the example DESCRIPTION file above. The roles
can include ‘"aut"’ (author) for full authors, ‘"cre"’ (creator) for the package maintainer,
and ‘"ctb"’ (contributor) for other contributors, ‘"cph"’ (copyright holder, which should be
the legal name for an institution or corporate body), among others. See ?person for more
information. Note that no role is assumed by default. Auto-generated package citation
information takes advantage of this specification. The ‘Author’ and ‘Maintainer’ fields are
auto-generated from it if needed when building® or installing.

An optional ‘Copyright’ field can be used where the copyright holder(s) are not the
authors. If necessary, this can refer to an installed file: the convention is to use file
inst/COPYRIGHTS.

The optional ‘Date’ field gives the release date of the current version of the package.
It is strongly recommended® to use the ‘yyyy-mm-dd’ format conforming to the ISO 8601
standard.

The ‘Depends’, ‘Imports’, ‘Suggests’, ‘Enhances’, ‘LinkingTo’ and
‘Additional_repositories’ fields are discussed in a later subsection.

5 at least if this is done in a locale which matches the package encoding.
6 and required by CRAN, so checked by R CMD check --as-cran.

Chapter 1: Creating R packages 7

Dependencies external to the R system should be listed in the ‘SystemRequirements’
field, possibly amplified in a separate README file. This includes specifying a non-default
C++ standard and the need for GNU make.

The ‘URL’ field may give a list of URLs separated by commas or whitespace, for example
the homepage of the author or a page where additional material describing the software can
be found. These URLs are converted to active hyperlinks in CRAN package listings. See
Section 1.1.8 [Specifying URLs]|, page 22.

The ‘BugReports’ field may contain a single URL to which bug reports about the package
should be submitted. This URL will be used by bug.report instead of sending an email
to the maintainer. A browser is opened for a ‘http://’ or ‘https://’ URL. To specify
another email address for bug reports, use ‘Contact’ instead: however bug.report will try
to extract an email address (preferably from a ‘mailto:’ URL or enclosed in angle brackets)
from ‘BugReports’.

Base and recommended packages (i.e., packages contained in the R source distribution
or available from CRAN and recommended to be included in every binary distribution of R)
have a ‘Priority’ field with value ‘base’ or ‘recommended’, respectively. These priorities
must not be used by other packages.

A ‘Collate’ field can be used for controlling the collation order for the R code files
in a package when these are processed for package installation. The default is to collate
according to the ‘C’ locale. If present, the collate specification must list all R code files
in the package (taking possible OS-specific subdirectories into account, see Section 1.1.5
[Package subdirectories], page 15) as a whitespace separated list of file paths relative to
the R subdirectory. Paths containing white space or quotes need to be quoted. An OS-
specific collation field (‘Collate.unix’ or ‘Collate.windows’) will be used in preference to
‘Collate’.

The ‘LazyData’ logical field controls whether the R datasets use lazy-loading. A
‘LazyLoad’ field was used in versions prior to 2.14.0, but now is ignored.

The ‘KeepSource’ logical field controls if the package code is sourced using keep . source
= TRUE or FALSE: it might be needed exceptionally for a package designed to always be used
with keep.source = TRUE.

The ‘ByteCompile’ logical field controls if the package R code is to be byte-compiled on
installation: the default is to byte-compile. This can be overridden by installing with flag
--no-byte-compile.

The ‘UseLT0’ logical field is used to indicate if source code in the package” is to be
compiled with Link-Time Optimization (see Section 4.5 [Using Link-time Optimization],
page 135) if R was installed with --enable-1to (default true) or --enable-1to=R (default
false) (or on Windows if LTO_OPT is set in MkRules). This can be overridden by the flags
--use-LTO0 and --no-use-LT0. LTO is said to give most size and performance improvements
for large and complex (heavily templated) C++ projects.

The ‘StagedInstall’ logical field controls if package installation is ‘staged’, that is done
to a temporary location and moved to the final location when successfully completed. This
field was introduced in R 3.6.0 and it true by default: it is considered to be a temporary
measure which may be withdrawn in future.

7 without a src/Makefilex file.

Chapter 1: Creating R packages 8

The ‘ZipData’ logical field has been ignored since R 2.13.0.

The ‘Biarch’ logical field is used on Windows to select the INSTALL option --force-
biarch for this package.

The ‘BuildVignettes’ logical field can be set to a false value to stop R CMD build from
attempting to build the vignettes, as well as preventing® R CMD check from testing this.
This should only be used exceptionally, for example if the PDF's include large figures which
are not part of the package sources (and hence only in packages which do not have an Open
Source license).

The ‘VignetteBuilder’ field names (in a comma-separated list) packages that provide
an engine for building vignettes. These may include the current package, or ones listed
in ‘Depends’, ‘Suggests’ or ‘Imports’. The utils package is always implicitly appended.
See Section 1.4.2 [Non-Sweave vignettes], page 54, for details. Note that if, for exam-
ple, a vignette has engine ‘knitr::rmarkdown’, then knitr (https://CRAN.R-project.
org/package=knitr) provides the engine but both knitr and rmarkdown (https://CRAN.
R-project.org/package=rmarkdown) are needed for using it, so both these packages need
to be in the ‘VignetteBuilder’ field and at least suggested (as rmarkdown is only sug-
gested by knitr, and hence not available automatically along with it). Many packages using
knitr (https://CRAN.R-project.org/package=knitr) also need the package formatR
(https://CRAN.R-project . org/package=formatR) which it suggests and so the user
package needs to do so too and include this in ‘VignetteBuilder’.

If the DESCRIPTION file is not entirely in ASCII it should contain an ‘Encoding’ field
specifying an encoding. This is used as the encoding of the DESCRIPTION file itself and
of the R and NAMESPACE files, and as the default encoding of .Rd files. The examples are
assumed to be in this encoding when running R CMD check, and it is used for the encoding
of the CITATION file. Only encoding names latinl, latin2 and UTF-8 are known to be
portable. (Do not specify an encoding unless one is actually needed: doing so makes the
package less portable. If a package has a specified encoding, you should run R CMD build
etc in a locale using that encoding.)

The ‘NeedsCompilation’ field should be set to "yes" if the package contains native code
which needs to be compiled, otherwise "no" (when the package could be installed from
source on any platform without additional tools). This is used by install.packages (type
= "both") in R >= 2.15.2 on platforms where binary packages are the norm: it is normally
set by R CMD build or the repository assuming compilation is required if and only if the
package has a src directory.

The ‘0S_type’ field specifies the OS(es) for which the package is intended. If present, it
should be one of unix or windows, and indicates that the package can only be installed on
a platform with ‘.Platform$0S.type’ having that value.

The ‘Type’ field specifies the type of the package: see Section 1.10 [Package types],
page 89.

One can add subject classifications for the content of the package using the fields
‘Classification/ACM’ or ‘Classification/ACM-2012’ (using the Computing Classifi-
cation System of the Association for Computing Machinery, https://www . acm. org/
publications/class-2012; the former refers to the 1998 version), ‘Classification/JEL’

8 But it is checked for Open Source packages by R CMD check --as-cran.

https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=formatR
https://CRAN.R-project.org/package=formatR
https://www.acm.org/publications/class-2012
https://www.acm.org/publications/class-2012

Chapter 1: Creating R packages 9

(the Journal of Economic Literature Classification System, https://www . aeaweb.org/
econlit/jelCodes.php, or ‘Classification/MSC’ or ‘Classification/MSC-2010" (the
Mathematics Subject Classification of the American Mathematical Society, https: //
mathscinet . ams.org/msc/msc2010 . html; the former refers to the 2000 version). The
subject classifications should be comma-separated lists of the respective classification
codes, e.g., ‘Classification/ACM: G.4, H.2.8, I.5.1".

A ‘Language’ field can be used to indicate if the package documentation is not in En-
glish: this should be a comma-separated list of standard (not private use or grandfathered)
IETF language tags as currently defined by RFC 5646 (https://www.rfc-editor.org/
rfc/rfcb5646, see also https://en.wikipedia.org/wiki/IETF_language_tag), i.e., use
language subtags which in essence are 2-letter ISO 639-1 (https://en.wikipedia.org/
wiki/IS0_639-1) or 3-letter ISO 639-3 (https://en.wikipedia.org/wiki/IS0_639-3)
language codes.

An ‘RdMacros’ field can be used to hold a comma-separated list of packages from which
the current package will import Rd macro definitions. These package should also be listed in
‘Imports’ (or ‘Depends’). The macros in these packages will be imported after the system
macros, in the order listed in the ‘RdMacros’ field, before any macro definitions in the
current package are loaded. Macro definitions in individual .Rd4 files in the man directory
are loaded last, and are local to later parts of that file. In case of duplicates, the last
loaded definition will be used.® Both R CMD Rd2pdf and R CMD Rdconv have an optional flag
--RdMacros=pkglist. The option is also a comma-separated list of package names, and
has priority over the value given in DESCRIPTION. Packages using Rd macros should depend
on R 3.2.0 or later.

Note: There should be no ‘Built’ or ‘Packaged’ fields, as these are added by
the package management tools.

There is no restriction on the use of other fields not mentioned here (but using other
capitalizations of these field names would cause confusion). Fields Note, Contact (for con-
tacting the authors/developers'®) and MailingList are in common use. Some repositories
(including CRAN and R-forge) add their own fields.

1.1.2 Licensing

Licensing for a package which might be distributed is an important but potentially complex
subject.

It is very important that you include license information! Otherwise, it may not even be
legally correct for others to distribute copies of the package, let alone use it.

The package management tools use the concept of ‘free or open source software’ (FOSS,
e.g., https://en.wikipedia.org/wiki/FO0SS) licenses: the idea being that some users
of R and its packages want to restrict themselves to such software. Others need to ensure
that there are no restrictions stopping them using a package, e.g. forbidding commercial or
military use. It is a central tenet of FOSS software that there are no restrictions on users
nor usage.

Do not use the ‘License’ field for information on copyright holders: if needed, use a
‘Copyright’ field.

9 Duplicate definitions may trigger a warning: see Section 2.13 [User-defined macros], page 108.
10 bug.report will try to extract an email address from a Contact field if there is no BugReports field.

https://www.aeaweb.org/econlit/jelCodes.php
https://www.aeaweb.org/econlit/jelCodes.php
https://mathscinet.ams.org/msc/msc2010.html
https://mathscinet.ams.org/msc/msc2010.html
https://www.rfc-editor.org/rfc/rfc5646
https://www.rfc-editor.org/rfc/rfc5646
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_639-3
https://en.wikipedia.org/wiki/FOSS

Chapter 1: Creating R packages 10

The mandatory ‘License’ field in the DESCRIPTION file should specify the license of the
package in a standardized form. Alternatives are indicated wvia vertical bars. Individual
specifications must be one of

e One of the “standard” short specifications

GPL-2 GPL-3 LGPL-2 LGPL-2.1 LGPL-3 AGPL-3 Artistic-2.0
BSD_2_clause BSD_3_clause MIT

as made available via https://www.R-project.org/Licenses/ and contained in
subdirectory share/licenses of the R source or home directory.

e The names or abbreviations of other licenses contained in the license data base in file
share/licenses/license.db in the R source or home directory, possibly (for ver-
sioned licenses) followed by a version restriction of the form ‘(op v)’ with ‘op’ one
of the comparison operators ‘<’, ‘<=", >’ ‘>=’ ‘==’ or ‘!=" and ‘v’ a numeric version
specification (strings of non-negative integers separated by .’), possibly combined via
[

,” (see below for an example). For versioned licenses, one can also specify the name
followed by the version, or combine an existing abbreviation and the version with a ‘-’.

Abbreviations GPL and LGPL are ambiguous and usually!! taken to mean any version
of the license: but it is better not to use them.

e One of the strings ‘file LICENSE’ or ‘file LICENCE’ referring to a file named LICENSE
or LICENCE in the package (source and installation) top-level directory.

e The string ‘Unlimited’, meaning that there are no restrictions on distribution or use
other than those imposed by relevant laws (including copyright laws).

Multiple licences can be specified separated by ‘|’ (surrounded by spaces) in which case the
user can choose any of the alternatives.

If a package license restricts a base license (where permitted, e.g., using GPL-3 or AGPL-
3 with an attribution clause), the additional terms should be placed in file LICENSE (or
LICENCE), and the string ‘+ file LICENSE’ (or ‘+ file LICENCE’, respectively) should be
appended to the corresponding individual license specification (preferably with the ‘+’ sur-
rounded by spaces). Note that several commonly used licenses do not permit restrictions:
this includes GPL-2 and hence any specification which includes it.

Examples of standardized specifications include

License: GPL-2

License: LGPL (>= 2.0, < 3) | Mozilla Public License
License: GPL-2 | file LICENCE

License: GPL (>= 2) | BSD_3_clause + file LICENSE
License: Artistic-2.0 | AGPL-3 + file LICENSE

Please note in particular that “Public domain” is not a valid license, since it is not recognized
in some jurisdictions.

Please ensure that the license you choose also covers any dependencies (including system
dependencies) of your package: it is particularly important that any restrictions on the use
of such dependencies are evident to people reading your DESCRIPTION file.

Fields ‘License_is_F0SS’ and ‘License_restricts_use’ may be added by repositories
where information cannot be computed from the name of the license. ‘License_is_F0SS:

11 CRAN expands them to e.g. GPL-2 | GPL-3.

https://www.R-project.org/Licenses/

Chapter 1: Creating R packages 11

yes’ is used for licenses which are known to be FOSS, and ‘License_restricts_use’ can
have values ‘yes’ or ‘no’ if the LICENSE file is known to restrict users or usage, or known
not to. These are used by, e.g., the available.packages filters.

The optional file LICENSE/LICENCE contains a copy of the license of the package. To
avoid any confusion only include such a file if it is referred to in the ‘License’ field of the
DESCRIPTION file.

Whereas you should feel free to include a license file in your source distribution, please
do not arrange to install yet another copy of the GNU COPYING or COPYING.LIB files but
refer to the copies on https://www.R-project.org/Licenses/ and included in the R
distribution (in directory share/licenses). Since files named LICENSE or LICENCE will be
installed, do not use these names for standard license files. To include comments about the
licensing rather than the body of a license, use a file named something like LICENSE.note.

A few “standard” licenses are rather license templates which need additional information
to be completed via ‘+ file LICENSE’ (with the ‘+’ surrounded by spaces)

1.1.3 Package Dependencies

The ‘Depends’ field gives a comma-separated list of package names which this package
depends on. Those packages will be attached before the current package when library
or require is called. Each package name may be optionally followed by a comment in
parentheses specifying a version requirement. The comment should contain a comparison
operator, whitespace and a valid version number, e.g. ‘MASS (>= 3.1-20)".

The ‘Depends’ field can also specify a dependence on a certain version of R — e.g., if the
package works only with R version 4.0.0 or later, include ‘R (>= 4.0)’ in the ‘Depends’ field.
(As here, trailing zeroes can be dropped and it is recommended that they are.) You can
also require a certain SVN revision for R-devel or R-patched, e.g. ‘R (>=2.14.0), R (>=
r56550)’ requires a version later than R-devel of late July 2011 (including released versions
of 2.14.0).

It makes no sense to declare a dependence on R without a version specification, nor on
the package base: this is an R package and package base is always available.

A package or ‘R’ can appear more than once in the ‘Depends’ field, for example to give
upper and lower bounds on acceptable versions.

It is inadvisable to use a dependence on R with patchlevel (the third digit) other than
zero. Doing so with packages which others depend on will cause the other packages to
become unusable under earlier versions in the series, and e.g. versions 4.x.1 are widely used
throughout the Northern Hemisphere academic year.

Both library and the R package checking facilities use this field: hence it is an error
to use improper syntax or misuse the ‘Depends’ field for comments on other software that
might be needed. The R INSTALL facilities check if the version of R used is recent enough
for the package being installed, and the list of packages which is specified will be attached
(after checking version requirements) before the current package.

The ‘Imports’ field lists packages whose namespaces are imported from (as specified in
the NAMESPACE file) but which do not need to be attached. Namespaces accessed by the ‘::’
and ‘:::’ operators must be listed here, or in ‘Suggests’ or ‘Enhances’ (see below). Ideally
this field will include all the standard packages that are used, and it is important to include
S4-using packages (as their class definitions can change and the DESCRIPTION file is used to

https://www.R-project.org/Licenses/

Chapter 1: Creating R packages 12

decide which packages to re-install when this happens). Packages declared in the ‘Depends’
field should not also be in the ‘Imports’ field. Version requirements can be specified and
are checked when the namespace is loaded.

The ‘Suggests’ field uses the same syntax as ‘Depends’ and lists packages that are
not necessarily needed. This includes packages used only in examples, tests or vignettes
(see Section 1.4 [Writing package vignettes|, page 51), and packages loaded in the body
of functions. E.g., suppose an example!'? from package foo uses a dataset from package
bar. Then it is not necessary to have bar use foo unless one wants to execute all the
examples/tests/vignettes: it is useful to have bar, but not necessary. Version requirements
can be specified but should be checked by the code which uses the package.

Finally, the ‘Enhances’ field lists packages “enhanced” by the package at hand, e.g., by
providing methods for classes from these packages, or ways to handle objects from these
packages (so several packages have ‘Enhances: chron’ because they can handle datetime
objects from chron (https://CRAN.R-project.org/package=chron) even though they
prefer R’s native datetime functions). Version requirements can be specified, but are cur-
rently not used. Such packages cannot be required to check the package: any tests which use
them must be conditional on the presence of the package. (If your tests use e.g. a dataset
from another package it should be in ‘Suggests’ and not ‘Enhances’.)

The general rules are

A package should be listed in only one of these fields.

e Packages whose namespace only is needed to load the package using library(pkgname)
should be listed in the ‘Imports’ field and not in the ‘Depends’ field. Packages listed
in import or importFrom directives in the NAMESPACE file should almost always be in
‘Imports’ and not ‘Depends’.

e Packages that need to be attached to successfully load the package using
library(pkgname) must be listed in the ‘Depends’ field.

e All packages that are needed!® to successfully run R CMD check on the package must be
listed in one of ‘Depends’ or ‘Suggests’ or ‘Imports’. Packages used to run examples or
tests conditionally (e.g. via if (require(pkgname))) should be listed in ‘Suggests’ or
‘Enhances’. (This allows checkers to ensure that all the packages needed for a complete
check are installed.)

e Packages needed to use datasets from the package should be in ‘Imports’: this includes
those needed to define S4 classes used.

In particular, packages providing “only” data for examples or vignettes should be listed in
‘Suggests’ rather than ‘Depends’ in order to make lean installations possible.

Version dependencies in the ‘Depends’ and ‘Imports’ fields are used by library when
it loads the package, and install.packages checks versions for the ‘Depends’, ‘Imports’
and (for dependencies = TRUE) ‘Suggests’ fields.

12 even one wrapped in \donttest.

13 This includes all packages directly called by library and require calls, as well as data obtained via
data(theirdata, package = "somepkg") calls: R CMD check will warn about all of these. But there are
subtler uses which it may not detect: e.g. if package A uses package B and makes use of functionality in
package B which uses package C which package B suggests or enhances, then package C needs to be in the
‘Suggests’ list for package A. Nor will undeclared uses in included files be reported, nor unconditional
uses of packages listed under ‘Enhances’. R CMD check --as-cran will detect more of the subtler uses.

https://CRAN.R-project.org/package=chron

Chapter 1: Creating R packages 13

It is important that the information in these fields is complete and accurate: it is for
example used to compute which packages depend on an updated package and which packages
can safely be installed in parallel.

This scheme was developed before all packages had namespaces (R 2.14.0 in October
2011), and good practice changed once that was in place.

Field ‘Depends’ should nowadays be used rarely, only for packages which are intended to
be put on the search path to make their facilities available to the end user (and not to the
package itself): for example it makes sense that a user of package latticeExtra (https://
CRAN.R-project.org/package=latticeExtra) would want the functions of package lattice
(https://CRAN.R-project.org/package=lattice) made available.

Almost always packages mentioned in ‘Depends’ should also be imported from in the
NAMESPACE file: this ensures that any needed parts of those packages are available when
some other package imports the current package.

The ‘Imports’ field should not contain packages which are not imported from (via the
NAMESPACE file or :: or ::: operators), as all the packages listed in that field need to be
installed for the current package to be installed. (This is checked by R CMD check.)

R code in the package should call library or require only exceptionally. Such calls are
never needed for packages listed in ‘Depends’ as they will already be on the search path. It
used to be common practice to use require calls for packages listed in ‘Suggests’ in func-
tions which used their functionality, but nowadays it is better to access such functionality
via :: calls.

A package that wishes to make use of header files in other packages to compile its
C/C++ code needs to declare them as a comma-separated list in the field ‘LinkingTo’ in
the DESCRIPTION file. For example

LinkingTo: linkl, 1link2
The ‘LinkingTo’ field can have a version requirement which is checked at installation.

Specifying a package in ‘LinkingTo’ suffices if these are C/C++ headers containing source
code or static linking is done at installation: the packages do not need to be (and usually
should not be) listed in the ‘Depends’ or ‘Imports’ fields. This includes CRAN package
BH (https://CRAN.R-project.org/package=BH) and almost all users of RcppArmadillo
(https://CRAN.R-project . org/package=RcppArmadillo) and RcppEigen (https://
CRAN.R-project.org/package=RcppEigen). Note that ‘LinkingTo’ applies only to instal-
lation: if a packages wishes to use headers to compile code in tests or vignettes the package
providing them needs to be listed in ‘Suggests’ or perhaps ‘Depends’.

For another use of ‘LinkingTo’ see Section 5.4.3 [Linking to native routines in other
packages|, page 150.

The ‘Additional_repositories’ field is a comma-separated list of repository URLs
where the packages named in the other fields may be found. It is currently used by R CMD
check to check that the packages can be found, at least as source packages (which can be
installed on any platform).

1.1.3.1 Suggested packages

Note that someone wanting to run the examples/tests/vignettes may not have a suggested
package available (and it may not even be possible to install it for that platform). The

https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=BH
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppEigen
https://CRAN.R-project.org/package=RcppEigen

Chapter 1: Creating R packages 14

recommendation used to be to make their use conditional via if (require("pkgname")):
this is OK if that conditioning is done in examples/tests/vignettes, although using
if (requireNamespace ("pkgname")) is preferred, if possible.

However, using require for conditioning in package code is not good practice as it alters
the search path for the rest of the session and relies on functions in that package not being
masked by other require or library calls. It is better practice to use code like

if (requireNamespace("rgl", quietly = TRUE)) {
rgl::plot3d(...)

} else {
do something else not involving rgl.

}

Note the use of rgl: : as that object would not necessarily be visible (and if it is, it need not
be the one from that namespace: plot3d occurs in several other packages). If the intention
is to give an error if the suggested package is not available, simply use e.g. rgl: :plot3d.

If the conditional code produces print output, function withAutoprint can be useful.

Note that the recommendation to use suggested packages conditionally in tests does also
apply to packages used to manage test suites: a notorious example was testthat (https://
CRAN . R-project . org/package=testthat) which in version 1.0.0 contained illegal C++
code and hence could not be installed on standards-compliant platforms.

Some people have assumed that a ‘recommended’ package in ‘Suggests’ can safely be
used unconditionally, but this is not so. (R can be installed without recommended packages,
and which packages are ‘recommended’ may change.)

As noted above, packages in ‘Enhances’ must be used conditionally and hence objects
within them should always be accessed via : :.

On most systems, R CMD check can be run with only those packages declared in ‘Depends’
and ‘Imports’ by setting environment variable _R_CHECK_DEPENDS_ONLY_=true, whereas
setting _R_CHECK_SUGGESTS_ONLY_=true also allows suggested packages, but not those in
‘Enhances’ nor those not mentioned in the DESCRIPTION file. It is recommended that a
package is checked with each of these set, as well as with neither.

WARNING: Be extremely careful if you do things which would be run at installation
time depending on whether suggested packages are available or not—this includes top-level
code in R code files, .onLoad functions and the definitions of S4 classes and methods. The
problem is that once a namespace of a suggested package is loaded, references to it may
be captured in the installed package (most commonly in S4 methods), but the suggested
package may not be available when the installed package is used (which especially for binary
packages might be on a different machine). Even worse, the problems might not be confined
to your package, for the namespaces of your suggested packages will also be loaded whenever
any package which imports yours is installed and so may be captured there.

1.1.4 The INDEX file

The optional file INDEX contains a line for each sufficiently interesting object in the package,
giving its name and a description (functions such as print methods not usually called explic-
itly might not be included). Normally this file is missing and the corresponding informa-
tion is automatically generated from the documentation sources (using tools: :Rdindex())
when installing from source.

https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=testthat

Chapter 1: Creating R packages 15

The file is part of the information given by library(help = pkgname).

Rather than editing this file, it is preferable to put customized information about the
package into an overview help page (see Section 2.1.4 [Documenting packages|, page 99)
and/or a vignette (see Section 1.4 [Writing package vignettes|, page 51).

1.1.5 Package subdirectories

The R subdirectory contains R code files, only. The code files to be installed must start
with an ASCII (lower or upper case) letter or digit and have one of the extensions'* .R, .S,
.q, .r, or .s. We recommend using .R, as this extension seems to be not used by any other
software. It should be possible to read in the files using source(), so R objects must be
created by assignments. Note that there need be no connection between the name of the
file and the R objects created by it. Ideally, the R code files should only directly assign
R objects and definitely should not call functions with side effects such as require and
options. If computations are required to create objects these can use code ‘earlier’ in the
package (see the ‘Collate’ field) plus functions in the ‘Depends’ packages provided that the
objects created do not depend on those packages except via namespace imports.

Extreme care is needed if top-level computations are made to depend on availability or
not of other packages. In particular this applies to setMethods and setClass calls. Nor
should they depend on the availability of external resources such as downloads.

Two exceptions are allowed: if the R subdirectory contains a file sysdata.rda (a
saved image of one or more R objects: please use suitable compression as suggested by
tools::resaveRdaFiles, and see also the ‘SysDataCompression’ DESCRIPTION field.)
this will be lazy-loaded into the namespace environment — this is intended for system
datasets that are not intended to be user-accessible via data. Also, files ending in ‘.in’
will be allowed in the R directory to allow a configure script to generate suitable files.

Only ASCII characters (and the control characters tab, formfeed, LF and CR) should be
used in code files. Other characters are accepted in comments'®, but then the comments
may not be readable in e.g. a UTF-8 locale. Non-ASCII characters in object names will
normally!® fail when the package is installed. Any byte will be allowed in a quoted character
string but ‘\uxxxx’ escapes should be used for non-ASCII characters. However, non-ASCII
character strings may not be usable in some locales and may display incorrectly in others.

Various R functions in a package can be used to initialize and clean up. See Section 1.5.3
[Load hooks], page 57.

The man subdirectory should contain (only) documentation files for the objects in the
package in R documentation (Rd) format. The documentation filenames must start with
an ASCII (lower or upper case) letter or digit and have the extension .Rd (the default) or
.rd. Further, the names must be valid in ‘file://’ URLs, which means'” they must be
entirely ASCII and not contain ‘%’. See Chapter 2 [Writing R documentation files|, page 91,

14 Extensions .S and .s arise from code originally written for S(-PLUS), but are commonly used for

assembler code. Extension .q was used for S, which at one time was tentatively called QPE.

15 but they should be in the encoding declared in the DESCRIPTION file.

16 This is true for OSes which implement the ‘C’ locale: Windows’ idea of the ‘C’ locale uses the WinAnsi

charset.

1T More precisely, they can contain the English alphanumeric characters and the symbols ‘¢ - _ . + 1 ? (

), =&

Chapter 1: Creating R packages 16

for more information. Note that all user-level objects in a package should be documented;
if a package pkg contains user-level objects which are for “internal” use only, it should
provide a file pkg-internal .Rd which documents all such objects, and clearly states that
these are not meant to be called by the user. See e.g. the sources for package grid in
the R distribution. Note that packages which use internal objects extensively should not
export those objects from their namespace, when they do not need to be documented (see
Section 1.5 [Package namespaces|, page 55).

Having a man directory containing no documentation files may give an installation error.

The man subdirectory may contain a subdirectory named macros; this will contain source
for user-defined Rd macros. (See Section 2.13 [User-defined macros|, page 108.) These
use the Rd format, but may not contain anything but macro definitions, comments and
whitespace.

The R and man subdirectories may contain OS-specific subdirectories named unix or
windows.

The sources and headers for the compiled code are in src, plus optionally a file Makevars
or Makefile (or for use on Windows, with extension .win or .ucrt). When a package is
installed using R CMD INSTALL, make is used to control compilation and linking into a shared
object for loading into R. There are default make variables and rules for this (determined
when R is configured and recorded in R_HOME/etcR_ARCH/Makeconf), providing support
for C, C++, fixed- or free-form Fortran, Objective C and Objective C++'® with associated
extensions .c, .cc or .cpp, .f, .£90 or .£95,'% .m, and .mm, respectively. We recommend
using .h for headers, also for C++*° or Fortran 9x include files. (Use of extension .C for
C++ is no longer supported.) Files in the src directory should not be hidden (start with a
dot), and hidden files will under some versions of R be ignored.

It is not portable (and may not be possible at all) to mix all these languages in a single
package. Because R itself uses it, we know that C and fixed-form Fortran can be used
together, and mixing C, C++ and Fortran usually work for the platform’s native compilers.

If your code needs to depend on the platform there are certain defines which can used
in C or C++. On all Windows builds (even 64-bit ones) ‘_WIN32’ will be defined: on 64-bit
Windows builds also ‘_WIN64’. On macOS ‘__APPLE__’ is defined?!; for an ‘Apple Silicon’
platform, test for both ‘__APPLE__’ and ‘__arm64__’.

The default rules can be tweaked by setting macros*® in a file src/Makevars (see
Section 1.2.1 [Using Makevars|, page 28). Note that this mechanism should be general
enough to eliminate the need for a package-specific src/Makefile. If such a file is to
be distributed, considerable care is needed to make it general enough to work on all R
platforms. If it has any targets at all, it should have an appropriate first target named
‘all’ and a (possibly empty) target ‘clean’ which removes all files generated by running

18 either or both of which may not be supported on particular platforms. Their main use is on macOS,

but unfortunately recent versions of the macOS SDK have removed much of the support for Objective
C v1.0 and Objective C++.

19 This is not accepted by the Intel Fortran compiler.

20
21

Using .hpp is not guaranteed to be portable.

There is also ‘__APPLE_CC__’, but that indicates a compiler with Apple-specific features not the OS,
although for historical reasons is is defined by LLVM clang. It is used in Rinlinedfuns.h.

22 the POSIX terminology, called ‘make variables’ by GNU make.

Chapter 1: Creating R packages 17

make (to be used by ‘R CMD INSTALL --clean’ and ‘R CMD INSTALL --preclean’). There
are platform-specific file names on Windows: src/Makevars.win takes precedence over
src/Makevars and src/Makefile.win must be used. Since R 4.2.0, src/Makevars.ucrt
takes precedence over src/Makevars.win and src/Makefile.ucrt takes precedence over
src/Makefile.win. src/Makevars.ucrt and src/Makefile.ucrt will be ignored by ear-
lier versions of R, and hence can be used to provide content specific to UCRT or Rtools42
and newer, but the support for .ucrt files may be removed in the future when building
packages from source on the older versions of R will no longer be needed, and hence the files
may be renamed back to .win. Some make programs require makefiles to have a complete
final line, including a newline.

A few packages use the src directory for purposes other than making a shared
object (e.g. to create executables). Such packages should have files src/Makefile and
src/Makefile.win or src/Makefile.ucrt (unless intended for only Unix-alikes or
only Windows). Note that on Unix such makefiles are included after R_HOME/etc/R_
ARCH/Makeconf so all the usual R macros and make rules are available — for example C
compilation will by default use the C compiler and flags with which R was configured.
This also applies on Windows as from R 4.3.0: packages intended to be used with earlier
versions should include that file themselves.

The order of inclusion of makefiles for a package which does not have a src/Makefile
file is

Unix-alike

src/Makevars
R_HOME/etc/R_ARCH/Makeconf
R_MAKEVARS_SITE, R_HOME/etc/R_
ARCH/Makevars.site
R_HOME/share/make/shlib.mk
R_MAKEVARS_USER,
~/.R/Makevars-platform, ~/.R/Makevars

For those which do, it is

R_HOME/etc/R_ARCH/Makeconf
R_MAKEVARS_SITE, R_HOME/etc/R_
ARCH/Makevars.site

src/Makefile

R_MAKEVARS_USER,
~/.R/Makevars-platform, ~/.R/Makevars

Windows

src/Makevars.ucrt, src/Makevars.win
R_HOME/etc/R_ARCH/Makeconf
R_MAKEVARS_SITE, R_HOME/etc/R_
ARCH/Makevars.site
R_HOME/share/make/winshlib.mk
R_MAKEVARS_USER, ~/.R/Makevars.ucrt,
~/.R/Makevars.win64,
~/.R/Makevars.win

R_HOME/etc/R_ARCH/Makeconf
R_MAKEVARS_SITE, R_HOME/etc/R_
ARCH/Makevars.site
src/Makefile.ucrt, src/Makefile.win
R_MAKEVARS_USER, ~/.R/Makevars.ucrt,
~/.R/Makevars.win64,
~/.R/Makevars.win

Ttems in capitals are environment variables: those separated by commas are alternatives
looked for in the order shown.

In very special cases packages may create binary files other than the shared objects/DLLs
in the src directory. Such files will not be installed in a multi-architecture setting since R
CMD INSTALL --libs-only is used to merge multiple sub-architectures and it only copies
shared objects/DLLs. If a package wants to install other binaries (for example executable
programs), it should provide an R script src/install.libs.R which will be run as part of

Chapter 1: Creating R packages 18

the installation in the src build directory instead of copying the shared objects/DLLs. The
script is run in a separate R environment containing the following variables: R_PACKAGE_
NAME (the name of the package), R_LPACKAGE_SOURCE (the path to the source directory of
the package), R_PACKAGE_DIR (the path of the target installation directory of the package),
R_ARCH (the arch-dependent part of the path, often empty), SHLIB_EXT (the extension of
shared objects) and WINDOWS (TRUE on Windows, FALSE elsewhere). Something close to the
default behavior could be replicated with the following src/install.libs.R file:

files <- Sys.glob(pasteO("*", SHLIB_EXT))
dest <- file.path(R_PACKAGE_DIR, pasteO(’libs’, R_ARCH))
dir.create(dest, recursive = TRUE, showWarnings = FALSE)
file.copy(files, dest, overwrite = TRUE)
if(file.exists("symbols.rds"))

file.copy("symbols.rds", dest, overwrite = TRUE)

On the other hand, executable programs could be installed along the lines of

execs <- c("one", "two", "three")

if (WINDOWS) execs <- pasteO(execs, ".exe")

if (any(file.exists(execs))) {
dest <- file.path(R_PACKAGE_DIR, pasteO(’bin’, R_ARCH))
dir.create(dest, recursive = TRUE, showWarnings = FALSE)
file.copy(execs, dest, overwrite = TRUE)

}

Note the use of architecture-specific subdirectories of bin where needed. (Executables
should installed under a bin directory and not under 1libs. It is good practice to check
that they can be executed as part of the installation script, so a broken package is not
installed.)

The data subdirectory is for data files: See Section 1.1.6 [Data in packages], page 20.

The demo subdirectory is for R scripts (for running via demo()) that demonstrate some
of the functionality of the package. Demos may be interactive and are not checked automat-
ically, so if testing is desired use code in the tests directory to achieve this. The script files
must start with a (lower or upper case) letter and have one of the extensions .R or .r. If
present, the demo subdirectory should also have a 00Index file with one line for each demo,
giving its name and a description separated by a tab or at least three spaces. (This index
file is not generated automatically.) Note that a demo does not have a specified encoding
and so should be an ASCII file (see Section 1.6.3 [Encoding issues|, page 74). Function
demo () will use the package encoding if there is one, but this is mainly useful for non-ASCII
comments.

The contents of the inst subdirectory will be copied recursively to the installation
directory. Subdirectories of inst should not interfere with those used by R (currently, R,
data, demo, exec, 1libs, man, help, html and Meta, and earlier versions used latex, R-ex).
The copying of the inst happens after src is built so its Makefile can create files to be
installed. To exclude files from being installed, one can specify a list of exclude patterns
in file .Rinstignore in the top-level source directory. These patterns should be Perl-like
regular expressions (see the help for regexp in R for the precise details), one per line, to
be matched case-insensitively against the file and directory paths, e.g. doc/.*[.]png$ will
exclude all PNG files in inst/doc based on the extension.

Chapter 1: Creating R packages 19

Note that with the exceptions of INDEX, LICENSE/LICENCE and NEWS, information files
at the top level of the package will not be installed and so not be known to users of
Windows and macOS compiled packages (and not seen by those who use R CMD INSTALL
or install.packages() on the tarball). So any information files you wish an end user to
see should be included in inst. Note that if the named exceptions also occur in inst, the
version in inst will be that seen in the installed package.

Things you might like to add to inst are a CITATION file for use by the citation
function, and a NEWS.RA file for use by the news function. See its help page for the specific
format restrictions of the NEWS.RA file.

Another file sometimes needed in inst is AUTHORS or COPYRIGHTS to specify the authors
or copyright holders when this is too complex to put in the DESCRIPTION file.

Subdirectory tests is for additional package-specific test code, similar to the specific
tests that come with the R distribution. Test code can either be provided directly in a
.R (or .r as from R 3.4.0) file, or via a .Rin file containing code which in turn creates
the corresponding .R file (e.g., by collecting all function objects in the package and then
calling them with the strangest arguments). The results of running a .R file are written
to a .Rout file. If there is a corresponding®® .Rout.save file, these two are compared,
with differences being reported but not causing an error. The directory tests is copied
to the check area, and the tests are run with the copy as the working directory and with
R_LIBS set to ensure that the copy of the package installed during testing will be found
by library(pkg_name). Note that the package-specific tests are run in a vanilla R session
without setting the random-number seed, so tests which use random numbers will need to
set the seed to obtain reproducible results (and it can be helpful to do so in all cases, to
avoid occasional failures when tests are run).

If directory tests has a subdirectory Examples containing a file pkg-Ex.Rout.save,
this is compared to the output file for running the examples when the latter are checked.
Reference output should be produced without having the --timings option set (and note
that --as-cran sets it).

If reference output is included for examples, tests or vignettes do make sure that it is fully
reproducible, as it will be compared verbatim to that produced in a check run, unless the
‘IGNORE_RDIFF’ markup is used. Things which trip up maintainers include displayed version
numbers from loading other packages, printing numerical results to an unreproducibly high
precision and printing timings. Another trap is small values which are in fact rounding
error from zero: consider using zapsmall.

Subdirectory exec could contain additional executable scripts the package needs, typi-
cally scripts for interpreters such as the shell, Perl, or Tcl. NB: only files (and not directo-
ries) under exec are installed (and those with names starting with a dot are ignored), and
they are all marked as executable (mode 755, moderated by ‘umask’) on POSIX platforms.
Note too that this is not suitable for executable programs since some platforms (including
Windows) support multiple architectures using the same installed package directory.

Subdirectory po is used for files related to localization: see Section 1.8 [Internationaliza-
tion], page 87.

23 The best way to generate such a file is to copy the .Rout from a successful run of R CMD check. If you want
to generate it separately, do run R with options --vanilla --no-echo and with environment variable
LANGUAGE=en set to get messages in English. Be careful not to use output with the option --timings
(and note that --as-cran sets it).

Chapter 1: Creating R packages 20

Subdirectory tools is the preferred place for auxiliary files needed during configuration,
and also for sources need to re-create scripts (e.g. M4 files for autoconf: some prefer to put
those in a subdirectory m4 of tools).

1.1.6 Data in packages

The data subdirectory is for data files, either to be made available via lazy-loading or for
loading using data(). (The choice is made by the ‘LazyData’ field in the DESCRIPTION file:
the default is not to do so.) It should not be used for other data files needed by the package,
and the convention has grown up to use directory inst/extdata for such files.

Data files can have one of three types as indicated by their extension: plain R code
(.Ror .r), tables (.tab, .txt, or .csv, see ?data for the file formats, and note that .csv
is not the standard®* CSV format), or save() images (.RData or .rda). The files should
not be hidden (have names starting with a dot). Note that R code should be if possible
“self-sufficient” and not make use of extra functionality provided by the package, so that
the data file can also be used without having to load the package or its namespace: it should
run as silently as possible and not change the search() path by attaching packages or other
environments.

Images (extensions .RData® or .rda) can contain references to the namespaces of pack-
ages that were used to create them. Preferably there should be no such references in data
files, and in any case they should only be to packages listed in the Depends and Imports
fields, as otherwise it may be impossible to install the package. To check for such references,
load all the images into a vanilla R session, run str() on all the datasets, and look at the
output of loadedNamespaces().

Particular care is needed where a dataset or one of its components is of an S4 class,
especially if the class is defined in a different package. First, the package containing the
class definition has to be available to do useful things with the dataset, so that package
must be listed in Imports or Depends (even if this gives a check warning about unused
imports). Second, the definition of an S4 class can change, and often is unnoticed when in
a package with a different author. So it may be wiser to use the .R form and use that to
create the dataset object when needed (loading package namespaces but not attaching them
by using requireNamespace (pkg, quietly = TRUE) and using pkg:: to refer to objects in
the namespace).

If you are not using ‘LazyData’ and either your data files are large or e.g., you use
data/foo.R scripts to produce your data, loading your namespace, you can speed up in-
stallation by providing a file datalist in the data subdirectory. This should have one
line per topic that data() will find, in the format ‘foo’ if data(foo) provides ‘foo’, or
‘foo: bar bah’ if data(foo) provides ‘bar’ and ‘bah’. R CMD build will automatically add
a datalist file to data directories of over 1Mb, using the function tools: :add_datalist.

Tables (.tab, .txt, or .csv files) can be compressed by gzip, bzip2 or xz, optionally
with additional extension .gz, .bz2 or .xz.

If your package is to be distributed, do consider the resource implications of large datasets
for your users: they can make packages very slow to download and use up unwelcome

24 e.g. https://www.rfc-editor.org/rfc/rfc4180.

25 People who have trouble with case are advised to use .rda as a common error is to refer to abc.RData
as abc.Rdatal

https://www.rfc-editor.org/rfc/rfc4180

Chapter 1: Creating R packages 21

amounts of storage space, as well as taking many seconds to load. It is normally best
to distribute large datasets as .rda images prepared by save(, compress = TRUE) (the
default). Using bzip2 or xz compression will usually reduce the size of both the package
tarball and the installed package, in some cases by a factor of two or more.

Package tools has a couple of functions to help with data images: checkRdaFiles reports
on the way the image was saved, and resaveRdaFiles will re-save with a different type of
compression, including choosing the best type for that particular image.

Many packages using ‘LazyData’ will benefit from using a form of compression other
than gzip in the installed lazy-loading database. This can be selected by the --data-
compress option to R CMD INSTALL or by using the ‘LazyDataCompression’ field in the
DESCRIPTION file. Useful values are bzip2, xz and the default, gzip: value none is also
accepted. The only way to discover which is best is to try them all and look at the size of
the pkgname/data/Rdata.rdb file. A function to do that (quoting sizes in KB) is

CheckLazyDataCompression <- function(pkg)
{
pkg_name <- sub("_.*", "" pkg)
lib <- tempfile(); dir.create(lib)
zs <_ C(Ilgzip" s ||bzip2|| s "XZ")
res <- integer(3); names(res) <- zs
for (z in zs) {
opts <- c(pasteO("--data-compress=", z),

"--no-libs", "--no-help", "--no-demo", "--no-exec", "--no-test-load"
install.packages(pkg, lib, INSTALL_opts = opts, repos = NULL, quiet = TRUE)
res[z] <- file.size(file.path(lib, pkg_name, "data", "Rdata.rdb"))

}
ceiling(res/1024)
}
(applied to a source package without any ‘LazyDataCompression’ field). R CMD check
will warn if it finds a pkgname/data/Rdata.rdb file of more than 5MB without
‘LazyDataCompression’ being set. If you see that, run CheckLazyDataCompression()
and set the field — to gzip in the unlikely event?® that is the best choice.

The analogue for sysdata.rda is field ‘SysDataCompression’: the default is xz for files
bigger than 1MB otherwise gzip.

Lazy-loading is not supported for very large datasets (those which when serialized exceed
2GB, the limit for the format on 32-bit platforms).

1.1.7 Non-R scripts in packages

Code which needs to be compiled (C, C++, Fortran . . .) is included in the src subdirectory
and discussed elsewhere in this document.

Subdirectory exec could be used for scripts for interpreters such as the
shell, BUGS, JavaScript, Matlab, Perl, php (amap (https: // CRAN . R-project .
org / package=amap)), Python or Tecl (Simile (https: / / CRAN . R-project . org /
package=Simile)), or even R. However, it seems more common to use the inst

26 For all the CRAN packages tested, either gz or bzip2 provided a very substantial reduction in installed
size.

https://CRAN.R-project.org/package=amap
https://CRAN.R-project.org/package=amap
https://CRAN.R-project.org/package=Simile
https://CRAN.R-project.org/package=Simile

Chapter 1: Creating R packages 22

directory, for example WriteXLS/inst/Perl, NMF/inst/m-files, RnavGraph/inst/tcl,
RProtoBuf/inst/python and emdbook/inst/BUGS and gridSVG/inst/js.

Java code is a special case: except for very small programs, .java files should be byte-
compiled (to a .class file) and distributed as part of a . jar file: the conventional location
for the . jar file(s) is inst/java. It is desirable (and required under an Open Source license)
to make the Java source files available: this is best done in a top-level java directory in the
package—the source files should not be installed.

If your package requires one of these interpreters or an extension then this should be
declared in the ‘SystemRequirements’ field of its DESCRIPTION file. (Users of Java most
often do so via rJava (https://CRAN.R-project.org/package=rJava), when depending
on/importing that suffices unless there is a version requirement on Java code in the package.)

Windows and Mac users should be aware that the Tcl extensions ‘BWidget’ and ‘Tktable’
(which have sometimes been included in the Windows?” and macOS R installers) are exten-
sions and do need to be declared (and that ‘Tktable’ is less widely available than it used to
be, including not in the main repositories for major Linux distributions). ‘BWidget’ needs
to be installed by the user on other OSes. This is fairly easy to do: first find the Tcl search
path:

library(tcltk)
strsplit(tclvalue(’auto_path’), " ")[[1]]

then download the sources from https://sourceforge.net/projects/tcllib/files/
BWidget/ and in a terminal run something like

tar xf bwidget-1.9.14.tar.gz
sudo mv bwidget-1.9.14 /usr/local/lib

substituting a location on the Tcl search path for /usr/local/1ib if needed. (If no location
on that search path is writeable, you will need to add one each time BWidget is to be used
with tcltk::addTclPath().)

To (silently) test for the presence of ‘Tktable’ one can use

library(tcltk)
have_tktable <- !isFALSE(suppressWarnings(tclRequire(’Tktable’)))

Installing ‘Tktable’ needs a C compiler and the Tk headers (not necessarily installed with
Tcl/Tk). At the time of writing the latest sources (from 2008) were available from https://
sourceforge .net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz/
download, but needed patching for current Tk (8.6.11, but not 8.6.10) — a patch can be
found at https://www.stats.ox.ac.uk/pub/bdr/Tktable/. For a system installation
of Tk you may need to install Tktable as ‘root’ as on e.g. Fedora all the locations on
auto_path are owned by ‘root’.

1.1.8 Specifying URLs

URLs in many places in the package documentation will be converted to clickable hyperlinks
in at least some of their renderings. So care is needed that their forms are correct and
portable.

The full URL should be given, including the scheme (often ‘http://’ or ‘https://’) and
a final ‘/’ for references to directories.

2 ‘BWidget’ still is on Windows but ‘Tktable’ was not in R 4.0.0.

https://CRAN.R-project.org/package=rJava
https://sourceforge.net/projects/tcllib/files/BWidget/
https://sourceforge.net/projects/tcllib/files/BWidget/
https://sourceforge.net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz/download
https://sourceforge.net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz/download
https://sourceforge.net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz/download
https://www.stats.ox.ac.uk/pub/bdr/Tktable/

Chapter 1: Creating R packages 23

Spaces in URLs are not portable and how they are handled does vary by HT'TP server
and by client. There should be no space in the host part of an ‘http://’ URL, and spaces
in the remainder should be encoded, with each space replaced by ‘%20’.

Other characters may benefit from being encoded: see the help on URLencode ().
The canonical URL for a CRAN package is
https://cran.r-project.org/package=pkgname

and not a version starting ‘https://cran.r-project.org/web/packages/pkgname’.

1.2 Configure and cleanup

Note that most of this section is specific to Unix-alikes: see the comments later on about
the Windows port of R.

If your package needs some system-dependent configuration before installation you can
include an executable (Bourne?® shell script configure in your package which (if present)
is executed by R CMD INSTALL before any other action is performed. This can be a script
created by the Autoconf mechanism, but may also be a script written by yourself. Use
this to detect if any nonstandard libraries are present such that corresponding code in the
package can be disabled at install time rather than giving error messages when the package is
compiled or used. To summarize, the full power of Autoconf is available for your extension
package (including variable substitution, searching for libraries, etc.). Background and
useful tips on Autoconf and related tools (including pkg-config described below) can be
found at https://autotools.info/.

A configure script is run in an environment which has all the environment variables
set for an R session (see R_HOME/etc/Renviron) plus R_PACKAGE_NAME (the name of the
package), R_PACKAGE_DIR (the path of the target installation directory of the package, a
temporary location for staged installs) and R_ARCH (the arch-dependent part of the path,
often empty).

Under a Unix-alike only, an executable (Bourne shell) script cleanup is executed as
the last thing by R CMD INSTALL if option --clean was given, and by R CMD build when
preparing the package for building from its source.

As an example consider we want to use functionality provided by a (C or Fortran)
library foo. Using Autoconf, we can create a configure script which checks for the library,
sets variable HAVE_F0O0 to TRUE if it was found and to FALSE otherwise, and then substitutes
this value into output files (by replacing instances of ‘@HAVE_F00@’ in input files with the

28 The script should only assume a POSIX-compliant /bin/sh — see https://pubs . opengroup . org/
onlinepubs/9699919799/utilities/V3_chap02.html. In particular bash extensions must not be used,
and not all R platforms have a bash command, let alone one at /bin/bash. All known shells used with
R support the use of backticks, but not all support ‘$(cmd)’. However, real-world shells are not fully
POSIX-compliant and omissions and idiosyncrasies need to be worked around—which Autoconf will do
for you. Arithmetic expansion is a known issue: see https://www.gnu.org/software/autoconf/manual/
autoconf . html#Portable-Shell for this and others. Some checks can be done by the checkbashisms
Perl script at https://sourceforge.net/projects/checkbaskisms/files, also available in most Linux
distributions in a package named either ‘devscripts’ or ‘devscripts-checkbashisms’: a later version
can be extracted from Debian sources such as the most recent tar.xz in https://deb.debian.org/
debian/pool/main/d/devscripts/ and has been needed for recent versions of Perl.

https://autotools.info/
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Shell
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Shell
https://sourceforge.net/projects/checkbaskisms/files
https://deb.debian.org/debian/pool/main/d/devscripts/
https://deb.debian.org/debian/pool/main/d/devscripts/

Chapter 1: Creating R packages 24

value of HAVE_F00). For example, if a function named bar is to be made available by linking
against library foo (i.e., using -1fo00), one could use

AC_CHECK_LIB(foo, fun, [HAVE_FOO=TRUE], [HAVE_FOO=FALSE])
AC_SUBST (HAVE_F00)

AC_CONFIG_FILES([foo0.R])

AC_QUTPUT

in configure.ac (assuming Autoconf 2.50 or later).
The definition of the respective R function in foo.R.in could be

foo <- function(x) {
if (! @HAVE_F00@)
stop("Sorry, library ’foo’ is not available")

From this file configure creates the actual R source file foo.R looking like

foo <- function(x) {
if ('FALSE)
stop("Sorry, library ’foo’ is not available")

if library foo was not found (with the desired functionality). In this case, the above R code
effectively disables the function.

One could also use different file fragments for available and missing functionality, respec-
tively.

You will very likely need to ensure that the same C compiler and compiler flags are used
in the configure tests as when compiling R or your package. Under a Unix-alike, you
can achieve this by including the following fragment early in configure.ac (before calling
AC_PROG_CC or anything which calls it)

: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1
fi
CC=‘"${R_HOME}/bin/R" CMD config CC*
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS®
CPPFLAGS=°"${R_HOME}/bin/R" CMD config CPPFLAGS‘

(Using ‘${R_HOME}/bin/R’ rather than just ‘R’ is necessary in order to use the correct version
of R when running the script as part of R CMD INSTALL, and the quotes since ‘${R_HOME}’
might contain spaces.)

If your code does load checks (for example, to check for an entry point in a library or to
run code) then you will also need

LDFLAGS=‘"${R_HOME}/bin/R" CMD config LDFLAGS®

Packages written with C++ need to pick up the details for the C++ compiler and switch
the current language to C++ by something like

CXX=‘"${R_HOME}/bin/R" CMD config CXX‘

Chapter 1: Creating R packages 25

if test -z "$CXX"; then

AC_MSG_ERROR([No C++ compiler is available])
fi
CXXFLAGS=¢"${R_HOME}/bin/R" CMD config CXXFLAGS®
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS®
AC_LANG(C++)

The latter is important, as for example C headers may not be available to C++ programs or
may not be written to avoid C++ name-mangling. Note that an R installation is not required
to have a C++ compiler so ‘CXX’ may be empty. If the package specifies a non-default C++
standard, use the config variable names (such as CXX17) appropriate to the standard, but
still set CXX and CXXFLAGS.

You can use R CMD config to get the value of the basic configuration variables, and also
the header and library flags necessary for linking a front-end executable program against
R, see R CMD config --help for details. If you do, it is essential that you use both the
command and the appropriate flags, so that for example ‘CC’ must always be used with
‘CFLAGS’ and (for code to be linked into a shared library) ‘CPICFLAGS’. For Fortran, be
careful to use ‘FC FFLAGS FPICFLAGS’ for fixed-form Fortran and ‘FC FCFLAGS FPICFLAGS’
for free-form Fortran.

As from R 4.3.0, variables
CC CFLAGS CXX CXXFLAGS CPPFLAGS LDFLAGS FC FCFLAGS

are set in the environment (if not already set) when configure is called from R CMD INSTALL,
in case the script forgets to set them as described above. This includes making use of the
selected C standard (but not the C++ standard as that is selected at a later stage by R CMD
SHLIB).

To check for an external BLAS library using the AX_BLAS macro from the official Auto-
conf Macro Archive??, one can use

FC=‘"${R_HOME}/bin/R" CMD config FC°¢

FCLAGS=‘"${R_HOME}/bin/R" CMD config FFLAGS®

AC_PROG_FC

FLIBS=‘"${R_HOME}/bin/R" CMD config FLIBS®

AX_BLAS([], AC_MSG_ERROR([could not find your BLAS library], 1))

Note that FLIBS as determined by R must be used to ensure that Fortran code works on
all R platforms.

N.B.: If the configure script creates files, e.g. src/Makevars, you do need a cleanup
script to remove them. Otherwise R CMD build may ship the files that are created. For
example, package RODBC (https://CRAN.R-project.org/package=R0ODBC) has

#!/bin/sh

rm -f config.* src/Makevars src/config.h

As this example shows, configure often creates working files such as config.log. If you
use a hand-crafted script rather than one created by autoconf, it is highly recommended
that you log its actions to file config.log.

29 nttps://www.gnu.org/software/autoconf-archive/ax_blas.html. If you include macros from that
archive you need to arrange for them to be included in the package sources for use by autoreconf.

https://CRAN.R-project.org/package=RODBC
https://www.gnu.org/software/autoconf-archive/ax_blas.html

Chapter 1: Creating R packages 26

If your configure script needs auxiliary files, it is recommended that you ship them in a
tools directory (as R itself does).

You should bear in mind that the configure script will not be used on Windows systems.
If your package is to be made publicly available, please give enough information for a
user on a non-Unix-alike platform to configure it manually, or provide a configure.win
script (or configure.ucrt) to be used on that platform. (Optionally, there can be a
cleanup.win script (or cleanup.ucrt). Both should be shell scripts to be executed by
ash, which is a minimal version of Bourne-style sh. As from R 4.2.0, bash is used. When
configure.win (or configure.ucrt) is run the environment variables R_HOME (which uses
‘/’ as the file separator), R_ARCH and R_ARCH_BIN will be set. Use R_ARCH to decide if
this is a 64-bit build (its value there is ‘/x64’) and to install DLLs to the correct place
(${R_HOME}/1ibs${R_ARCH}). Use R_ARCH_BIN to find the correct place under the bin
directory, e.g. ${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe. If a configure.win script
does compilation (including calling R CMD SHLIB), most of the considerations above apply.

As the scripts on Windows are executed as sh ./configure.win and similar, any ’she-
bang’ first line (such as #! /bin/bash) is treated as a comment.

In some rare circumstances, the configuration and cleanup scripts need to know the
location into which the package is being installed. An example of this is a package that
uses C code and creates two shared object/DLLs. Usually, the object that is dynamically
loaded by R is linked against the second, dependent, object. On some systems, we can
add the location of this dependent object to the object that is dynamically loaded by R.
This means that each user does not have to set the value of the LD_LIBRARY_PATH (or
equivalent) environment variable, but that the secondary object is automatically resolved.
Another example is when a package installs support files that are required at run time, and
their location is substituted into an R data structure at installation time. The names of the
top-level library directory (i.e., specifiable via the ‘-1’ argument) and the directory of the
package itself are made available to the installation scripts via the two shell /environment
variables R_LIBRARY_DIR and R_PACKAGE_DIR. Additionally, the name of the package (e.g.
‘survival’ or ‘MASS’) being installed is available from the environment variable R_PACKAGE_
NAME. (Currently the value of R_PACKAGE_DIR is always ${R_LIBRARY_DIR}/${R_PACKAGE_
NAME}, but this used not to be the case when versioned installs were allowed. Its main
use is in configure.win (or configure.ucrt) scripts for the installation path of external
software’s DLLs.) Note that the value of R_PACKAGE_DIR may contain spaces and other
shell-unfriendly characters, and so should be quoted in makefiles and configure scripts.

One of the more tricky tasks can be to find the headers and libraries of external software.
One tool which is increasingly available on Unix-alikes (but not by default®*® on macOS) to do
this is pkg-config. The configure script will need to test for the presence of the command
itself3! (see for example package tiff (https://CRAN.R-project .org/package=tiff)),
and if present it can be asked if the software is installed, of a suitable version and for
compilation/linking flags by e.g.

30 but it is available on the machines used to produce the CRAN binary packages: however as Apple does
not ship .pc files for its system libraries such as expat, libcurl, 1libxml2, sqlite3 and ‘zlib’, it may
well not find information on these. Some substitutes are available from https://github.com/R-macos/

recipes/tree/master/stubs/pkgconfig-darwin and are installed on the CRAN package builders.

31 1t is not wise to check the version of pkg-config as it is sometimes a link to pkgconf, a separate project

with a different version series.

https://CRAN.R-project.org/package=tiff
https://github.com/R-macos/recipes/tree/master/stubs/pkgconfig-darwin
https://github.com/R-macos/recipes/tree/master/stubs/pkgconfig-darwin

Chapter 1: Creating R packages 27

$ pkg-config --exists ’1libtiff-4 >= 4.1.0’ --print-errors # check the status
$ pkg-config --modversion 1libtiff-4

4.3.0
$ pkg-config --cflags libtiff-4
-I/usr/local/include

$ pkg-config --libs libtiff-4

-L/usr/local/lib -1tiff

$ pkg-config --static --libs libtiff-4
-L/usr/local/lib -1tiff -lwebp -llzma -ljpeg -1z

Note that pkg-config --1ibs gives the information required to link against the default
version? of that library (usually the dynamic one), and pkg-config --static --libs may
be needed if the static library is to be used.

Static libraries are commonly used on macOS (and Windows) to facilitate bundling exter-
nal software with binary distributions of packages. This means that portable (source) pack-
ages need to allow for this. It is not safe to just use pkg-config --static --1libs, as that
will often include further libraries that are not necessarily installed on the user’s system (or
maybe only the versioned library such as 1ibjbig.so.2.1 is installed and not 1ibjbig.so
which would be needed to use -1jbig sometimes included in pkg-config --static --1ibs
libtiff-4).

Another issue is that pkg-config --exists may not be reliable. It checks not only that
the ‘module’ is available but all of the dependencies, including those in principle needed for
static linking. (XQuartz 2.8.x only distributed dynamic libraries and not some of the .pc
files needed for --exists.)

Sometimes the name by which the software is known to pkg-config is not what one
might expect (e.g. ‘1ibxml-2.0’ even for 2.9.x). To get a complete list use

pkg-config --list-all | sort

Some external software provides a ~config command to do a similar job to pkg-config,
including

curl-config freetype-config gdal-config geos—config
gsl-config iodbc-config libpng-config mnc-config
pcre-config pcre2-config xml2-config xslt-config

(curl-config is for libcurl not curl. nc-config is for netcdf.) Most have an option to
use static libraries.

N.B. These commands indicate what header paths and libraries are needed, but they do
not obviate the need to check that the recipes they give actually work. (This is especially
necessary for platforms which use static linking.)

If using Autoconf it is good practice to include all the Autoconf sources in the package
(and required for an Open Source package and tested by R CMD check --as-cran). This
will include the file configure.ac® in the top-level directory of the package. If extensions

32 but not all projects get this right when only a static library is installed, so it is often necessary to try in
turn pkg-config --1ibs and pkg-config --static --1ibs.
33 a decade ago Autoconf used configure.in: this is still accepted but should be renamed and autoreconf

as used by R CMD check --as-cran will report as such.

Chapter 1: Creating R packages 28

written in m4 are needed, these should be included under the directory tools and included
from configure.ac via e.g.,

m4_include([tools/ax_pthread.m4])

Alternatively, Autoconf can be asked to search all .m4 files in a directory by including
something like®*

AC_CONFIG_MACRO_DIR([tools/m4])

One source of such extensions is the ‘Autoconf Archive’ (https://www.gnu.org/software/
autoconf-archive/. It is not safe to assume this is installed on users’ machines, so the
extension should be shipped with the package (taking care to comply with its licence).

1.2.1 Using Makevars

Sometimes writing your own configure script can be avoided by supplying a file Makevars:
also one of the most common uses of a configure script is to make Makevars from
Makevars.in.

A Makevars file is a makefile and is used as one of several makefiles by R CMD SHLIB
(which is called by R CMD INSTALL to compile code in the src directory). It should be
written if at all possible in a portable style, in particular (except for Makevars.win and
Makevars.ucrt) without the use of GNU extensions.

The most common use of a Makevars file is to set additional preprocessor options (for
example include paths and definitions) for C/C++ files via PKG_CPPFLAGS, and additional
compiler flags by setting PKG_CFLAGS, PKG_CXXFLAGS or PKG_FFLAGS, for C, C++ or Fortran
respectively (see Section 5.5 [Creating shared objects], page 151).

N.B.: Include paths are preprocessor options, not compiler options, and must be set in
PKG_CPPFLAGS as otherwise platform-specific paths (e.g. ‘-I/usr/local/include’) will take
precedence. PKG_CPPFLAGS should contain ‘-I’, ‘-D’, ‘~U’ and (where supported) ‘-include’
and ‘-pthread’ options: everything else should be a compiler flag. The order of flags
matters, and using ‘~I’ in PKG_CFLAGS or PKG_CXXFLAGS has led to hard-to-debug platform-
specific errors.

Makevars can also be used to set flags for the linker, for example ‘-1’ and ‘-1’ options,
via PKG_LIBS.

When writing a Makevars file for a package you intend to distribute, take care to ensure
that it is not specific to your compiler: flags such as -02 -Wall -pedantic (and all other
-W flags: for the Oracle compilers these were used to pass arguments to compiler phases)
are all specific to GCC (and compilers such as clang which aim to be options-compatible
with it).

Also, do not set variables such as CPPFLAGS, CFLAGS etc.: these should be settable by
users (sites) through appropriate personal (site-wide) Makevars files. See Section “Cus-
tomizing package compilation” in R Installation and Administration,

There are some macros®® which are set whilst configuring the building of R itself and
are stored in R_HOME/etcR_ARCH/Makeconf. That makefile is included as a Makefile after

34 For those using autoconf 2.70 or later there is also AC_CONFIG_MACRO_DIRS which allows multiple direc-
tories to be specified.

35 in POSIX parlance: GNU make calls these ‘make variables’.

https://www.gnu.org/software/autoconf-archive/
https://www.gnu.org/software/autoconf-archive/

Chapter 1: Creating R packages 29

Makevars[.win], and the macros it defines can be used in macro assignments and make
command lines in the latter. These include

FLIBS A macro containing the set of libraries need to link Fortran code. This may
need to be included in PKG_LIBS: it will normally be included automatically if
the package contains Fortran source files in the src directory.

BLAS_LIBS

A macro containing the BLAS libraries used when building R. This may need
to be included in PKG_LIBS. Beware that if it is empty then the R executable
will contain all the double-precision and double-complex BLAS routines, but
no single-precision nor complex routines. If BLAS_LIBS is included, then FLIBS
also needs to be3¢ included following it, as most BLAS libraries are written at
least partially in Fortran. However, it can be omitted if the package contains
Fortran source code as that will add FLIBS to the link line.

LAPACK_LIBS
A macro containing the LAPACK libraries (and paths where appropriate) used
when building R. This may need to be included in PKG_LIBS. It may point
to a dynamic library libRlapack which contains the main double-precision
LAPACK routines as well as those double-complex LAPACK routines needed
to build R, or it may point to an external LAPACK library, or may be empty
if an external BLAS library also contains LAPACK.

[libRlapack includes all the double-precision LAPACK routines which were
current in 2003 and a few more recent ones: a list of which routines are included
is in file src/modules/lapack/README. Note that an external LAPACK/BLAS
library need not do so, as some were ‘deprecated’ (and not compiled by default)
in LAPACK 3.6.0 in late 2015.]

For portability, the macros BLAS_LIBS and FLIBS should always be included
after LAPACK_LIBS (and in that order).

SAFE_FFLAGS
A macro containing flags which are needed to circumvent over-optimization of
FORTRAN code: it is might be ‘-g -02 -ffloat-store’ or ‘-g -02 -msse2
-mfpmath=sse’ on ‘ix86’ platforms using gfortran. Note that this is not an
additional flag to be used as part of PKG_FFLAGS, but a replacement for FFLAGS.
See the example later in this section.

Setting certain macros in Makevars will prevent R CMD SHLIB setting them: in particular
if Makevars sets ‘OBJECTS’ it will not be set on the make command line. This can be useful
in conjunction with implicit rules to allow other types of source code to be compiled and
included in the shared object. It can also be used to control the set of files which are
compiled, either by excluding some files in src or including some files in subdirectories. For
example

OBJECTS = 4dfp/endianio.o 4dfp/Getifh.o R4dfp-object.o

Note that Makevars should not normally contain targets, as it is included before the
default makefile and make will call the first target, intended to be all in the default makefile.

36 at least on Unix-alikes: the Windows build currently resolves such dependencies to a static Fortran

library when Rblas.dl1l is built.

Chapter 1: Creating R packages 30

If you really need to circumvent that, use a suitable (phony) target all before any actual
targets in Makevars. [win]: for example package fastICA (https://CRAN.R-project.org/
package=fastICA) used to have

PKG_LIBS = ©@BLAS_LIBS@
SLAMC_FFLAGS=$(R_XTRA_FFLAGS) $(FPICFLAGS) $(SHLIB_FFLAGS) $(SAFE_FFLAGS)
all: $(SHLIB)

slamc.o: slamc.f
$(FC) $(SLAMC_FFLAGS) -c -o slamc.o slamc.f

needed to ensure that the LAPACK routines find some constants without infinite looping.
The Windows equivalent was

all: $(SHLIB)

slamc.o: slamc.f
$(FC) $(SAFE_FFLAGS) -c -o slamc.o slamc.f

(since the other macros are all empty on that platform, and R’s internal BLAS was not
used). Note that the first target in Makevars will be called, but for back-compatibility it is
best named all.

If you want to create and then link to a library, say using code in a subdirectory, use
something like

.PHONY: all mylibs

all: $(SHLIB)
$ (SHLIB): mylibs

mylibs:
(cd subdir; $(MAKE))
Be careful to create all the necessary dependencies, as there is no guarantee that the de-
pendencies of all will be run in a particular order (and some of the CRAN build machines
use multiple CPUs and parallel makes). In particular,

all: mylibs

does not suffice. GNU make does allow the construct
.NOTPARALLEL: all
all: mylibs $(SHLIB)

but that is not portable. dmake and pmake allow the similar .NO_PARALLEL, also not
portable: some variants of pmake accept .NOTPARALLEL as an alias for .NO_PARALLEL.

Note that on Windows it is required that Makevars[.win, .ucrt] does create a DLL:
this is needed as it is the only reliable way to ensure that building a DLL succeeded. If
you want to use the src directory for some purpose other than building a DLL, use a
Makefile.win or Makefile.ucrt file.

It is sometimes useful to have a target ‘clean’ in Makevars, Makevars.win or
Makevars.ucrt: this will be used by R CMD build to clean up (a copy of) the package

https://CRAN.R-project.org/package=fastICA
https://CRAN.R-project.org/package=fastICA

Chapter 1: Creating R packages 31

sources. When it is run by build it will have fewer macros set, in particular not $ (SHLIB),
nor $(0BJECTS) unless set in the file itself. It would also be possible to add tasks to
the target ‘shlib-clean’ which is run by R CMD INSTALL and R CMD SHLIB with options
--clean and --preclean.

An unfortunately common error is to have
all: $(SHLIB) clean

which asks make to clean in parallel with compiling the code. Not only does this lead to
hard-to-debug installation errors, it wipes out all the evidence of any error (from a parallel
make or not). It is much better to leave cleaning to the end user using the facilities in the
previous paragraph.

If you want to run R code in Makevars, e.g. to find configuration information, please do
ensure that you use the correct copy of R or Rscript: there might not be one in the path
at all, or it might be the wrong version or architecture. The correct way to do this is via

"$ (R_HOME) /bin$ (R_ARCH_BIN) /Rscript" filename
"$(R_HOME) /bin$ (R_ARCH_BIN) /Rscript" -e ’R expression’

where $ (R_ARCH_BIN) is only needed currently on Windows.

Environment or make variables can be used to select different macros for 32- and 64-bit
code, for example (GNU make syntax, allowed on Windows)

ifeq "$(WIN)" "64"

PKG_LIBS = value for 64-bit Windows
else

PKG_LIBS = value for 32-bit Windows
endif

On Windows there is normally a choice between linking to an import library or directly
to a DLL. Where possible, the latter is much more reliable: import libraries are tied to a
specific toolchain, and in particular on 64-bit Windows two different conventions have been
commonly used. So for example instead of

PKG_LIBS = -L$(XML_DIR)/1lib -1xml2
one can use
PKG_LIBS = -L$(XML_DIR)/bin -1xml2

since on Windows -1xxx will look in turn for

libxxx.dll.a
xxx.dll.a
libxxx.a
xxx.1lib
libxxx.dll
xxx.dll

where the first and second are conventionally import libraries, the third and fourth often
static libraries (with .1ib intended for Visual C++), but might be import libraries. See for
example https://sourceware.org/binutils/docs-2.20/1d/WIN32.htm1#WIN32.

The fly in the ointment is that the DLL might not be named 1libxxx.dll, and in fact
on 32-bit Windows there is a 1ibxml2.d11l whereas on one build for 64-bit Windows the
DLL is called 1ibxm12-2.d11. Using import libraries can cover over these differences but
can cause equal difficulties.

https://sourceware.org/binutils/docs-2.20/ld/WIN32.html#WIN32

Chapter 1: Creating R packages 32

If static libraries are available they can save a lot of problems with run-time finding of
DLLs, especially when binary packages are to be distributed and even more when these
support both architectures. Where using DLLs is unavoidable we normally arrange (via

configure.win or configure.ucrt) to ship them in the same directory as the package
DLL.

1.2.1.1 OpenMP support

There is some support for packages which wish to use OpenMP?7. The make macros

SHLIB_OPENMP_CFLAGS
SHLIB_OPENMP_CXXFLAGS
SHLIB_OPENMP_FFLAGS

are available for use in src/Makevars, src/Makevars.win or Makevars.ucrt. Include the
appropriate macro in PKG_CFLAGS, PKG_CXXFLAGS and so on, and also in PKG_LIBS (but see
below for Fortran). C/C++ code that needs to be conditioned on the use of OpenMP can be
used inside #ifdef _OPENMP: note that some toolchains used for R (including Apple’s for
macOS*® and some others using clang®’) have no OpenMP support at all, not even omp.h.

For example, a package with C code written for OpenMP should have in src/Makevars
the lines

PKG_CFLAGS = $(SHLIB_OPENMP_CFLAGS)
PKG_LIBS = $(SHLIB_QPENMP_CFLAGS)

Note that the macro SHLIB_OPENMP_CXXFLAGS applies to the default C++ compiler and
not necessarily to the C++17/20/23 compiler: users of the latter should do their own
configure checks. If you do use your own checks, make sure that OpenMP support is
complete by compiling and linking an OpenMP-using program: on some platforms the
runtime library is optional and on others that library depends on other optional libraries.

Some care is needed when compilers are from different families which may use different
OpenMP runtimes (e.g. clang vs GCC including gfortran, although it is often possible
to use the clang runtime with GCC but not wice versa: however gfortran >= 9 may
generate calls not in the clang runtime). For a package with Fortran code using OpenMP
the appropriate lines are

PKG_FFLAGS = $(SHLIB_OPENMP_FFLAGS)
PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)

as the C compiler will be used to link the package code. There are platforms on which this
does not work for some OpenMP-using code and installation will fail. Since R >= 3.6.2 the
best alternative for a package with only Fortran sources using OpenMP is to use

USE_FC_TO_LINK =

PKG_FFLAGS = $(SHLIB_OPENMP_FFLAGS)
PKG_LIBS = $(SHLIB_OPENMP_FFLAGS)

37 https://www.openmp.org/, https://en.wikipedia.org/wiki/OpenMP, https://hpc-tutorials.1llnl.
gov/openmp/
38 There are somewhat fragile workarounds: see https://mac.r-project.org/openmp/.

39 Default builds of LLVM clang 3.8.0 and later have support for OpenMP, but the 1ibomp run-time library
may not be installed.

https://www.openmp.org/
https://en.wikipedia.org/wiki/OpenMP
https://hpc-tutorials.llnl.gov/openmp/
https://hpc-tutorials.llnl.gov/openmp/
https://mac.r-project.org/openmp/

Chapter 1: Creating R packages 33

in src/Makevars, src/Makevars.win or Makevars.ucrt. Note however, that when this
is used $ (FLIBS) should not be included in PKG_LIBS since it is for linking Fortran-compiled
code by the C compiler.

Common platforms may inline all OpenMP calls and so tolerate the omission of the
OpenMP flag from PKG_LIBS, but this usually results in an installation failure with a
different compiler or compilation flags. So cross-check that e.g. -fopenmp appears in the
linking line in the installation logs.

It is not portable to use OpenMP with more than one of C, C++ and Fortran in a single
package since it is not uncommon that the compilers are of different families.

For portability, any C/C++ code using the omp_#* functions should include the omp.h
header: some compilers (but not all) include it when OpenMP mode is switched on (e.g.
via flag ~fopenmp).

There is nothing*® to say what version of OpenMP is supported: version 4.0 (and much of
4.5 or 5.0) is supported by recent versions of the Linux and Windows platforms, but portable
packages cannot assume that end users have recent versions. Apple clang on macOS has
no OpenMP support. https://www.openmp.org/resources/openmp-compilers-tools/
gives some idea of what compilers support what versions.

Rarely, using OpenMP with clang on Linux generates calls in libatomic, resulting in
loading messages like

undefined symbol: __atomic_compare_exchange
undefined symbol: __atomic_load

The workaround is to link with -latomic (having checked it exists).

The performance of OpenMP varies substantially between platforms. The Windows
implementation has substantial overheads, so is only beneficial if quite substantial tasks are
run in parallel. Also, on Windows new threads are started with the default** FPU control
word, so computations done on OpenMP threads will not make use of extended-precision
arithmetic which is the default for the main process.

Do not include these macros unless your code does make use of OpenMP (possibly for
C++ via included external headers): this can result in the OpenMP runtime being linked
in, threads being started,

Calling any of the R API from threaded code is ‘for experts only’ and strongly discour-
aged. Many functions in the R API modify internal R data structures and might corrupt
these data structures if called simultaneously from multiple threads. Most R API functions
can signal errors, which must only happen on the R main thread. Also, external libraries
(e.g. LAPACK) may not be thread-safe.

Packages are not standard-alone programs, and an R process could contain more than
one OpenMP-enabled package as well as other components (for example, an optimized
BLAS) making use of OpenMP. So careful consideration needs to be given to resource
usage. OpenMP works with parallel regions, and for most implementations the default is to
use as many threads as ‘CPUs’ for such regions. Parallel regions can be nested, although it

40 In most implementations the _OPENMP macro has value a date which can be mapped to an OpenMP
version: for example, value 201307 is the date of version 4.0 (July 2013). However this may be used to
denote the latest version which is partially supported, not that which is fully implemented.

41 Windows default, not MinGW-w64 default.

https://www.openmp.org/resources/openmp-compilers-tools/

Chapter 1: Creating R packages 34

is common to use only a single thread below the first level. The correctness of the detected
number of ‘CPUs’ and the assumption that the R process is entitled to use them all are
both dubious assumptions. One way to limit resources is to limit the overall number of
threads available to OpenMP in the R process: this can be done via environment variable
OMP_THREAD_LIMIT, where implemented.*? Alternatively, the number of threads per region
can be limited by the environment variable OMP_NUM_THREADS or API call omp_set_num_
threads, or, better, for the regions in your code as part of their specification. E.g. R
uses??

#pragma omp parallel for num_threads(nthreads)
That way you only control your own code and not that of other OpenMP users.

Note that setting environment variables to control OpenMP is implementation-
dependent and may need to be done outside the R process or before any use of OpenMP
(which might be by another process or R itself). Also, implementation-specific variables
such as KMP_THREAD_LIMIT might take precedence.

1.2.1.2 Using pthreads

There is no direct support for the POSIX threads (more commonly known as pthreads):
by the time we considered adding it several packages were using it unconditionally so it
seems that nowadays it is universally available on POSIX operating systems (hence not
Windows).

For reasonably recent versions of gcc and clang the correct specification is

PKG_CPPFLAGS = -pthread
PKG_LIBS = -pthread

(and the plural version is also accepted on some systems/versions). For other platforms the
specification is

PKG_CPPFLAGS = -D_REENTRANT

PKG_LIBS = -lpthread

(and note that the library name is singular). This is what -pthread does on all known
current platforms (although earlier versions of OpenBSD used a different library name).

For a tutorial see https://hpc-tutorials.llnl.gov/posix/.

POSIX threads are not normally used on Windows, which has its own native concepts
of threads. However, there are two projects implementing pthreads on top of Windows,
pthreads-w32 and winpthreads (part of the MinGW-w64 project).

Whether Windows toolchains implement pthreads is up to the toolchain provider.
A make variable SHLIB_PTHREAD_FLAGS is available for use in src/Makevars.win or
Makevars.ucrt: this should be included in both PKG_CPPFLAGS (or the Fortran compiler
flags) and PKG_LIBS.

The presence of a working pthreads implementation cannot be unambiguously deter-
mined without testing for yourself: however, that ‘_REENTRANT’ is defined** in C/C++ code
is a good indication.

42 Which it was at the time of writing with GCC, Intel and Clang compilers. The count may include the
thread running the main process.

43 Be careful not to declare nthreads as const int: the Oracle compiler required it to be ‘an lvalue’.
44 some Windows toolchains had the typo ‘_REENTRANCE’ instead.

https://hpc-tutorials.llnl.gov/posix/

Chapter 1: Creating R packages 35

Note that not all pthreads implementations are equivalent as parts are optional (see
https://pubs.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html): for
example, macOS lacks the ‘Barriers’ option.

See also the comments on thread-safety and performance under OpenMP: on all known
R platforms OpenMP is implemented via pthreads and the known performance issues are
in the latter.

1.2.1.3 Compiling in sub-directories
Package authors fairly often want to organize code in sub-directories of src, for example if

they are including a separate piece of external software to which this is an R interface.

One simple way is simply to set OBJECTS to be all the objects that need to be com-
piled, including in sub-directories. For example, CRAN package RSiena (https://CRAN.
R-project.org/package=RSiena) has

SOURCES

$(wildcard data/*.cpp network/*.cpp utils/*.cpp model/*.cpp model/*/*.cpp model/*/*/*.cpp)

OBJECTS = sienaO7utilities.o sienaO7internals.o sienaO7setup.o sienaO7models.o $(SOURCES:.cpp=.0)

One problem with that approach is that unless GNU make extensions are used, the source
files need to be listed and kept up-to-date. As in the following from CRAN package lossDev
(https://CRAN.R-project.org/package=1lossDev):
OBJECTS.samplers = samplers/ExpandableArray.o samplers/Knots.o \
samplers/RJumpSpline.o samplers/RJumpSplineFactory.o \
samplers/RealSlicerOV.o samplers/SliceFactoryOV.o samplers/MNorm.o
OBJECTS.distributions = distributions/DSpline.o \
distributions/DChisqrOV.o distributions/DTOV.o \

distributions/DNormOV.o distributions/DUnifOV.o distributions/RScalarDist.o
0BJECTS.root = RJump.o

OBJECTS = $(OBJECTS.samplers) $(0BJECTS.distributions) $(0BJECTS.root)

Where the subdirectory is self-contained code with a suitable makefile, the best approach
is something like

PKG_LIBS = -LCsdp/lib -lsdp $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)
$(SHLIB): Csdp/lib/libsdp.a

Csdp/1lib/libsdp.a:
@(cd Csdp/lib && $(MAKE) libsdp.a \
CC="$(CC)" CFLAGS="$(CFLAGS) $(CPICFLAGS)" AR="$(AR)" RANLIB="$(RANLIB)")

Note the quotes: the macros can contain spaces, e.g. CC = "gcc -m64 -std=gnu99". Several
authors have forgotten about parallel makes: the static library in the subdirectory must be
made before the shared object ($(SHLIB)) and so the latter must depend on the former.
Others forget the need*® for position-independent code.

We really do not recommend using src/Makefile instead of src/Makevars, and as the
example above shows, it is not necessary.

45 A few OSes (AIX, Windows) do not need special flags for such code, but most do—although compilers
will often generate PIC code when not asked to do so.

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html
https://CRAN.R-project.org/package=RSiena
https://CRAN.R-project.org/package=RSiena
https://CRAN.R-project.org/package=lossDev
https://CRAN.R-project.org/package=lossDev

Chapter 1: Creating R packages 36

1.2.2 Configure example

It may be helpful to give an extended example of using a configure script to create a
src/Makevars file: this is based on that in the RODBC (https://CRAN.R-project.org/
package=R0ODBC) package.

The configure.ac file follows: configure is created from this by running autoconf in
the top-level package directory (containing configure.ac).

AC_INIT([RODBC], 1.1.8) dnl package name, version

dnl A user-specifiable option
odbc_mgr=""
AC_ARG_WITH([odbc-manager],
AC_HELP_STRING([--with-odbc-manager=MGR],
[specify the ODBC manager, e.g. odbc or iodbcl),
[odbc_mgr=$withvall)

if test "$odbc_mgr" = "odbc" ; then
AC_PATH_PROGS (ODBC_CONFIG, odbc_config)
fi

dnl Select an optional include path, from a configure option
dnl or from an environment variable.
AC_ARG_WITH([odbc-include],
AC_HELP_STRING([--with-odbc-include=INCLUDE_PATH],
[the location of ODBC header files]),
[odbc_include_path=$withvall)
RODBC_CPPFLAGS="-I."
if test [-n "$odbc_include_path"] ; then
RODBC_CPPFLAGS="-I. -I${odbc_include_path}"
else
if test [-n "${ODBC_INCLUDE}"] ; then
RODBC_CPPFLAGS="-I. -I${0DBC_INCLUDE}"
fi
fi

dnl ditto for a library path
AC_ARG_WITH([odbc-1ib],
AC_HELP_STRING([--with-odbc-1ib=LIB_PATH],
[the location of ODBC libraries]),
[odbc_lib_path=$withvall)
if test [-n "$odbc_lib_path"] ; then
LIBS="-L$odbc_lib_path ${LIBS}"
else
if test [-n "${ODBC_LIBS}"] ; then
LIBS="-L${0DBC_LIBS} ${LIBS}"
else
if test -n "${0DBC_CONFIG}"; then
odbc_lib_path=‘odbc_config --1libs | sed s/-lodbc//¢
LIBS="${odbc_lib_path} ${LIBS}"
fi
fi
fi

dnl Now find the compiler and compiler flags to use
: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

https://CRAN.R-project.org/package=RODBC
https://CRAN.R-project.org/package=RODBC

Chapter 1: Creating R packages 37

exit 1
fi
CC=‘"${R_HOME}/bin/R" CMD config CC°
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS®
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS®

if test -n "${0DBC_CONFIG}"; then
RODBC_CPPFLAGS=‘odbc_config --cflags®

fi

CPPFLAGS="${CPPFLAGS} ${RODBC_CPPFLAGS}"

dnl Check the headers can be found
AC_CHECK_HEADERS(sql.h sqlext.h)
if test "${ac_cv_header_sql_h}" = no ||
test "${ac_cv_header_sqlext_h}" = no; then
AC_MSG_ERROR("0DBC headers sql.h and sqlext.h not found")
fi

dnl search for a library containing an ODBC function
if test [-n "${odbc_mgr}"] ; then
AC_SEARCH_LIBS(SQLTables, ${odbc_mgr}, ,
AC_MSG_ERROR("ODBC driver manager ${odbc_mgr} not found"))
else
AC_SEARCH_LIBS(SQLTables, odbc odbc32 iodbc, ,
AC_MSG_ERROR("no ODBC driver manager found"))
fi

dnl for 64-bit ODBC need SQL[U]JLEN, and it is unclear where they are defined.
AC_CHECK_TYPES ([SQLLEN, SQLULEN], , , [# include <sql.h>])

dnl for unixODBC header

AC_CHECK_SIZEOF (long, 4)

dnl substitute RODBC_CPPFLAGS and LIBS

AC_SUBST (RODBC_CPPFLAGS)

AC_SUBST(LIBS)

AC_CONFIG_HEADERS([src/config.hl)

dnl and do substitution in the src/Makevars.in and src/config.h
AC_CONFIG_FILES([src/Makevars])

AC_OUTPUT

where src/Makevars.in would be simply
PKG_CPPFLAGS = QRODBC_CPPFLAGS@
PKG_LIBS = @LIBS@
A user can then be advised to specify the location of the ODBC driver manager files by
options like (lines broken for easier reading)

R CMD INSTALL \
--configure-args=’--with-odbc-include=/opt/local/include \
--with-odbc-1lib=/opt/local/lib --with-odbc-manager=iodbc’ \

RODBC
or by setting the environment variables ODBC_INCLUDE and ODBC_LIBS.

1.2.3 Using F9x code

R assumes that source files with extension .f are fixed-form Fortran 90 (which includes
Fortran 77), and passes them to the compiler specified by macro ‘FC’. The Fortran compiler
will also accept free-form Fortran 90/95 code with extension .£90 or .£95.

Chapter 1: Creating R packages 38

The same compiler is used for both fixed-form and free-form Fortran code (with different
file extensions and possibly different flags). Macro PKG_FFLAGS can be used for package-
specific flags: for the un-encountered case that both are included in a single package and
that different flags are needed for the two forms, macro PKG_FCFLAGS is also available for
free-form Fortran.

The code used to build R allows a ‘Fortran 90’ compiler to be selected as ‘FC’, so platforms
might be encountered which only support Fortran 90. However, Fortran 95 is supported on
all known platforms.

Most compilers specified by ‘FC’ will accept Fortran 2003, 2008 or 2018 code: such code
should still use file extension .£90 or .£95. Almost all current platforms use gfortran where
you may need to include -std=£2003, -std=£2008 or (from version 8) -std=£2018 in PKG_
FFLAGS or PKG_FCFLAGS: the default is ‘GNU Fortran’, currently Fortran 2018 (but Fortran
95 prior to gfortran 8) with non-standard extensions. Intel Fortran had full Fortran 2008
support from version 17.0, and some 2018 support in version 16.0 and more in version 19.0.

It is good practice to describe the requirement in DESCRIPTION’s ‘SystemRequirements’
field.

Modern versions of Fortran support modules, whereby compiling one source file creates a
module file which is then included in others. (Module files typically have a .mod extension:
they do depend on the compiler used and so should never be included in a package.) This
creates a dependence which make will not know about and often causes installation with a
parallel make to fail. Thus it is necessary to add explicit dependencies to src/Makevars to
tell make the constraints on the order of compilation. For example, if file iface.f90 creates
a module ‘iface’ used by files cmi.f90 and dmi.f90 then src/Makevars needs to contain
something like

cmi.o dmi.o: iface.o

Note that it is not portable (although some platforms do accept it) to define a module of
the same name in multiple source files.

1.2.4 Using C++ code

R can be built without a C++ compiler although one is available (but not necessarily in-
stalled) on all known R platforms. As from R 4.0.0 a C++ compiler will be selected only
if it conforms to the 2011 standard (‘C++11’). A minor update!® (‘C++14’) was published
in December 2014 and was used by default as from R 4.1.0 if supported. Further revisions
‘C++17’ (in December 2017) and ‘C++20’ (with many new features in December 2020) have
been published since. The next revision, ‘C++23’, is expected in 2023 and several compilers
already have extensive partial support for the current drafts.

The default standard for compiling R packages was changed to C++17 in R 4.3.0 if
supported (and for rather old compilers, C++14 or even C++11 would be used as the default).
What standard a C++ compiler aims to support can be hard to determine: the value”
of __cplusplus may help but some compilers use it to denote a standard which is partially

46 Some changes are linked from https: / / isocpp . org / std / standing-documents /
sd-6-sglO-feature-test-recommendations: there were also additional deprecations.

47 Values 201103L, 201402L, 201703L and 202002L are most commonly used for C++11, C++14, C++17 and
C++20 respectively, but some compilers set 1L. For C++23 all that can currently be assumed is a value
greater than that for C++20: for example g++ 12 uses 202100L and clang++ (LLVM 15, Apple 14) uses
202101L.

https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations

Chapter 1: Creating R packages 39

supported and some the latest standard which is (almost) fully supported. On a Unix-alike
configure will try to identify a compiler and flags for each of the standards: this relies
heavily on the reported values of __cplusplus.

The webpage https://en. cppreference.com/w/cpp/compiler_support gives some
information on which compilers are known to support recent C++ features.

C++ standards have deprecated and later removed features. Be aware that some current
compilers still accept removed features in C++17 mode, such as std::unary_function
(deprecated in C++11, removed in C++17).

Different versions of R have used different default C++ standards, so for maximal porta-
bility a package should specify the standard it requires. In order to specify C++14 code in
a package with a Makevars file (or Makevars.win or Makevars.ucrt on Windows) should
include the line

CXX_STD = CXX14

Compilation and linking will then be done with the C++14 compiler (if any). Analogously
for other standards (details below). On the other hand, specifying C++11*® when the code
is valid under C++14 or C++17 reduces future portability.

Packages without a src/Makevars or src/Makefile file may specify a C++ standard for
code in the src directory by including something like ‘C++14’ in the ‘SystemRequirements’
field of the DESCRIPTION file, e.g.

SystemRequirements: C++14

If a package does have a src/Makevars[.win] file then also setting the make variable
‘CXX_STD’ there is recommended, as it allows R CMD SHLIB to work correctly in the package’s
src directory.

A requirement of C++17 or later should always be declared in the ‘SystemRequirements’
field (as well as in src/Makevars or src/Makefile) so this is shown on the package’s
summary pages on CRAN or similar. This is also good practice for a requirement of C++14.
Note that support of C++14 or C++17 is only available from R 3.4.0, so if the package has
an R version requirement it needs to take that into account.

Essentially complete C++14 support is available from GCC 5, LLVM clang 3.4 and
currently-used versions of Apple clang (10.0.0 for High Sierra).

Code needing C++14 features can check for their presence via ‘SD-6 feature tests’. Such
a check could be

#include <memory> // header where this is defined

#if defined(__cpp_lib_make_unique) && (__cpp_lib_make_unique >= 201304)
using std::make_unique;

#else

// your emulation

#endif

48 Often historically used to mean ‘not C++98’

49 See https://isocpp.org/std/standing-documents/sd-6-sglO-feature-test-recommendations or
https://en.cppreference.com/w/cpp/experimental/feature_test. It seems a reasonable assumption
that any compiler promising some C++14 conformance will provide these—e.g. g++ 4.9.x did but 4.8.5
did not.

https://en.cppreference.com/w/cpp/compiler_support
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
https://en.cppreference.com/w/cpp/experimental/feature_test

Chapter 1: Creating R packages 40

C++17 (as from R 3.4.0), C++20 (as from R 4.0.0) and C++23 (as from R 4.3.0) can be
specified in an analogous way (replacing 14 by 17, 20 or 23) but compiler/OS support is
platform-dependent. Some C++17 and C++20 support is available with the default builds
of R on macOS and Windows as from R 4.0.0. Much of g++’s support for C++17 needs
version 7 or later: that is more recent than some still-current Linux distributions but often
packages for later compilers are available: for RHEL/Centos 7 look for ‘devtoolset’.

Note that C++17 or later ‘support’ does not mean complete support: use feature tests
as well as resources such as https://en.cppreference.com/w/cpp/compiler_support,
https://gcc.gnu.org/projects/cxx-status.html and https://clang.1llvm.org/
cxx_status.html to see if the features you want to use are widely implemented.

Attempts to specify an unknown C++ standard are silently ignored: recent versions of
R throw an error for C++98 and for known standards for which no compiler+flags has been
detected.

If a package using C++ has a configure script it is essential that the script selects the
correct C++ compiler and standard, via something like

CXX17=‘"${R_HOME}/bin/R" CMD config CXX17°
if test -z "$CXX17"; then

AC_MSG_ERROR([No C++17 compiler is available])
fi
CXX17STD=°"${R_HOME}/bin/R" CMD config CXX17STD‘
CXX="8${CXX17} ${CXX17STD}"
CXXFLAGS=*"${R_HOME}/bin/R" CMD config CXX17FLAGS
for an configure.ac file
AC_LANG(C++)

if C++17 was specified, but using

CXX=‘"${R_HOME}/bin/R" CMD config CXX°
CXXFLAGS=‘"${R_HOME}/bin/R" CMD config CXXFLAGS°
for an configure.ac file

AC_LANG (C++)

if no standard was specified.

If you want to compile C++ code in a subdirectory, make sure you pass down the macros
to specify the appropriate compiler, e.g. in src/Makevars

sublibs:
@(cd libs && $(MAKE) \
CXX="$(CXX17) $(CXX17STD)" CXXFLAGS="$(CXX17FLAGS) $(CXX17PICFLAGS)")

The discussion above is about the standard R ways of compiling C++: it will not apply
to packages using src/Makefile or building in a subdirectory that do not set the C++
standard. And compilers’ default C++ standards varies widely and gets changed frequently
by vendors — for example Apple clang 14 defaults to C++98, LLVM clang 14-15 to C++14,
LLVM clang 16 to C++17 and g++ 11-13 to C++17.

For a package with a src/Makefile (or a Windows analogue), a non-default C++ com-
piler can be selected by including something like

CXX14 = ‘"${R_HOME}/bin/R" CMD config CXX14°
CXX14STD = ‘"${R_HOME}/bin/R" CMD config CXX14STD°

https://en.cppreference.com/w/cpp/compiler_support
https://gcc.gnu.org/projects/cxx-status.html
https://clang.llvm.org/cxx_status.html
https://clang.llvm.org/cxx_status.html

Chapter 1: Creating R packages 41

CXX = ${CXX14} ${CXX14STD}

CXXFLAGS = ‘"${R_HOME}/bin/R" CMD config CXX14FLAGS

CXXPICFLAGS = ‘"${R_HOME}/bin/R" CMD config CXX14PICFLAGS‘
SHLIB_LD = "${R_HOME}/bin/R" CMD config SHLIB_CXX14LD‘
SHLIB_LDFLAGS = "${R_HOME}/bin/R" CMD config SHLIB_CXX14LDFLAGS "

and ensuring these values are used in relevant compilations, after checking they are non-
empty. A common use of src/Makefile is to compile an executable, when likely something
like (for example for C++14)

CXX14 = ‘"${R_HOME}/bin/R" CMD config CXX14°
CXX14STD = ‘"${R_HOME}/bin/R" CMD config CXX14STD‘
CXX = ${CXX14} ${CXX14STD}

CXXFLAGS = ‘"${R_HOME}/bin/R" CMD config CXX14FLAGS®

suffices. On Unix (and on Windows from R 4.3.0) this can be simplified to

CXX = ${CXX14} ${CXX14STD}
CXXFLAGS = ${CXX14FLAGS}

On a Unix-alike C++ compilation defaulted to C++11 from R 3.6.0, to C++14 from R 4.1.0
and to C++17 from R 4.3.0. However, only ‘if available’, so platforms using very old OSes
might have used the previous default. Even older versions of R defaulted to the compiler’s
default, almost certainly C++98 for compilers of comparable vintage.

On Windows the default was changed from C++98 to C++11 in R 3.6.2, to C++14 in R
4.2.3 and to C++17 in R 4.3.0.

The C++11 standard could be specified as from R 3.1.0 and C++14 or C++17 as from
R 3.4.0, for C++20 from R 4.0.0 and for C++23 from R 4.3.0 (although they may not be
supported by the compilers in use). C++11 support became mandatory in R 4.0.0.

The .so/.d1l in a package may need to be linked by the C++ compiler if it or any
library it links to contains compiled C++ code. Dynamic linking usually brings in the C++
runtime library (commonly libstdc++ but can be, for example, 1ibc++) but static linking
(as used for external libraries on Windows and macOS) will not. R CMD INSTALL will link
with the C++ compiler if there are any top-level C++ files in src, but not if these are all
in subdirectories. The simplest way to force linking by the C++ compiler is to include an
empty C++ file in src, as used by package rgeos.

1.2.5 C standards

C has had standards C89/C90, C99, C11, C17 (also known as C18), and C23 is in final
draft and expected to be published in early 2024. C11 was a minor change to C99 which
introduced some new features and made others optional, and C17 is a ‘bug-fix’ update to
C11. On the other hand, C23 makes extensive changes, including making bool, true and
false reserved words, finally disallowing K&R-style function declarations and clarifying
the formerly deprecated meaning of function declarations with an empty parameter list to
mean zero parameters. (There are many other additions: see for example https://en.
cppreference.com/w/c/23.)

The configure script in recent versions of R aims to choose a C compiler which supports
C11: as the default in recent versions of gcc, LLVM clang and Apple clang is C17, that is
what is likely to be chosen. On the other hand, until R 4.3.0 the makefiles for the Windows

https://en.cppreference.com/w/c/23
https://en.cppreference.com/w/c/23

Chapter 1: Creating R packages 42

build specified C99. They now use the compiler default which for the recommended compiler
is C17.

Packages may want to either avoid or embrace the changes in C23, and can do so via spec-
ifying ‘USE_Cnn’ for 17, 23, 90 or 99 in the ‘SystemRequirements’ field of their DESCRIPTION
file of a package depending on ‘R (>=4.3.0)". Those using a configure script should set
the corresponding compiler and flags, for example using

CC=¢"${R_HOME}/bin/R" CMD config CC23°
CFLAGS=‘"${R_HOME}/bin/R" CMD config C23FLAGS
CPPFLAGS=¢"${R_HOME}/bin/R" CMD config CPPFLAGS"
LDFLAGS=""${R_HOME}/bin/R" CMD config LDFLAGS

The (claimed) C standard in use can be checked by the macro __STDC_VERSION__. This
is undefined in C89/C90 and should have values 199901L, 201112L and 201710L for C99,
Cl11 and C17. As C23 is not yet published there is as yet no definitive value: compilers
are currently using 202000L. C23 has macros similar to C++ ‘feature tests’ for many of its

changes, for example __STDC_VERSION_LIMITS_H__.

However, note the ‘claimed’ as no compiler had 100% conformance, and it is better
to use configure to test for the feature you want to use than to condition on the value
of __STDC_VERSION__. In particular, C11 alignment functionality such as _Alignas and
aligned_alloc is not implemented on Windows.

End users can specify a standard by something like R CMD INSTALL --use-C17. This
overrides the ‘SystemRequirements’ field, but not for any configure file.

1.2.6 Using cmake

Packages often wish to include the sources of other software and compile that for inclusion
in their .so or .d11, which is normally done by including (or unpacking) the sources in a
subdirectory of src, as considered above.

Further issues arise when the external software uses another build system such as cmake,
principally to ensure that all the settings for compilers, include and load paths etc are
made. This section has already mentioned the need to set at least some of

CC CFLAGS CXX CXXFLAGS CPPFLAGS LDFLAGS

CFLAGS and CXXFLAGS will need to include CPICFLAGS and CXXPICFLAGS respectively unless
(as below) cmake is asked to generate PIC code.

Setting these (and more) as environment variables controls the behaviour of cmake
(https: //cmake . org/cmake/help/latest /manual / cmake-env-variables .7 .html#
manual : cmake-env-variables (7)), but it may be desirable to translate these into native
settings such as

CMAKE_C_COMPILER

CMAKE_C_FLAGS
CMAKE_CXX_COMPILER
CMAKE_CXX_FLAGS
CMAKE_INCLUDE_PATH
CMAKE_LIBRARY_PATH
CMAKE_SHARED_LINKER_FLAGS_INIT
CMAKE_OSX_DEPLOYMENT_TARGET

https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html#manual:cmake-env-variables(7)
https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html#manual:cmake-env-variables(7)

Chapter 1: Creating R packages 43

and it is often necessary to ensure a static library of PIC code is built by

-DBUILD_SHARED_LIBS:bool=0FF
-DCMAKE_POSITION_INDEPENDENT_CODE:bool=0N

If R is to be detected or used, this must be the build being used for package installation
— "${R_HOME}"/bin/R.

To fix ideas, consider a package with sources for a library myLib under src/libs. Two
approaches have been used. It is often most convenient to build the external software in a
directory other than its sources (particularly during development when the build directory
can be removed between builds rather than attempting to clean the sources) — this is
illustrated in the first approach.

1. Use the package’s configure script to create a static library src/build/libmyLib.a.
This can then be treated in the same way as external software, for example having in
src/Makevars

PKG_CPPFLAGS = -Ilibs/include

PKG_LIBS = build/libmyLib.a
(-Lbuild -1myLib could also be used but this explicit specification avoids any confusion
with dynamic libraries of the same name.)

The configure script will need to contain something like (for C code)

: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1
fi
CC=‘"${R_HOME}/bin/R" CMD config CC¢
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS®
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS‘
LDFLAGS=‘"${R_HOME}/bin/R" CMD config LDFLAGS®

cd src

mkdir build && cd build

cmake ../libs \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS:bool=0FF \
-DCMAKE_POSITION_INDEPENDENT_CODE:bool=0N

${MAKE}

2. Use src/Makevars (or src/Makevars.win or Makevars.ucrt) to build within the sub-
directory. This could be something like (for C code)

PKG_CPPFLAGS = -Ilibs/include
PKG_LIBS = libs/libmyLib.a

$ (SHLIB): mylibs
mylibs:

(cd 1ibs; \
CC="$(CC)" CFLAGS="$(CFLAGS)" \

Chapter 1: Creating R packages 44

CPPFLAGS="$ (CPPFLAGS)" LDFLAGS="$(LDFLAGS)" \
cmake . \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS:bool=0FF \
-DCMAKE_POSITION_INDEPENDENT_CODE:bool=0N; \
$ (MAKE))

the compiler and other settings having been set as Make variables by an R makefile
included by INSTALL before src/Makevars.

A complication is that on macOS cmake (where installed) is commonly not on the path
but at /Applications/CMake.app/Contents/bin/cmake. One way to work around this is
for the package’s configure script to include

if test -z "$CMAKE"; then CMAKE="‘which cmake‘"; fi
if test -z "$CMAKE"; then CMAKE=/Applications/CMake.app/Contents/bin/cmake; fi
if test -f "$CMAKE"; then echo "no ’cmake’ command found"; exit 1; fi

and for the second approach to substitute CMAKE into src//Makevars.

1.3 Checking and building packages

Before using these tools, please check that your package can be installed. R CMD check will
inter alia do this, but you may get more detailed error messages doing the install directly.

If your package specifies an encoding in its DESCRIPTION file, you should run these tools
in a locale which makes use of that encoding: they may not work at all or may work
incorrectly in other locales (although UTF-8 locales will most likely work).

Note: R CMD check and R CMD build run R processes with ——vanilla in which
none of the user’s startup files are read. If you need R_LIBS set (to find packages
in a non-standard library) you can set it in the environment: also you can use the
check and build environment files (as specified by the environment variables R_
CHECK_ENVIRON and R_BUILD_ENVIRON; if unset, files®® ~/.R/check.Renviron
and ~/.R/build.Renviron are used) to set environment variables when using
these utilities.

Note to Windows users: R CMD build may make use of the Windows toolset
(see the “R Installation and Administration” manual) if present and in your
path, and it is required for packages which need it to install (including those
with configure.win, cleanup.win, configure.ucrt or cleanup.ucrt scripts
or a src directory) and e.g. need vignettes built.

You may need to set the environment variable TMPDIR to point to a suitable
writable directory with a path not containing spaces — use forward slashes for
the separators. Also, the directory needs to be on a case-honouring file system
(some network-mounted file systems are not).

50 On systems which use sub-architectures, architecture-specific versions such as “/.R/check.Renviron.x64
take precedence.

Chapter 1: Creating R packages 45

1.3.1 Checking packages

Using R CMD check, the R package checker, one can test whether source R packages work
correctly. It can be run on one or more directories, or compressed package tar archives
with extension .tar.gz, .tgz, .tar.bz2 or .tar.xz.

It is strongly recommended that the final checks are run on a tar archive prepared by R

CMD build.

1.

This runs a series of checks, including

The package is installed. This will warn about missing cross-references and duplicate
aliases in help files.

The file names are checked to be valid across file systems and supported operating
system platforms.

The files and directories are checked for sufficient permissions (Unix-alikes only).

. The files are checked for binary executables, using a suitable version of file if avail-

able®'. (There may be rare false positives.)

The DESCRIPTION file is checked for completeness, and some of its entries for correct-
ness. Unless installation tests are skipped, checking is aborted if the package dependen-
cies cannot be resolved at run time. (You may need to set R_LIBS in the environment if
dependent packages are in a separate library tree.) One check is that the package name
is not that of a standard package, nor one of the defunct standard packages (‘ctest’,
‘eda’, ‘1gs’, ‘mle’, ‘modreg’, ‘mva’, ‘nls’, ‘stepfun’ and ‘ts’). Another check is that all
packages mentioned in library or requires or from which the NAMESPACE file imports
or are called via :: or ::: are listed (in ‘Depends’, ‘Imports’, ‘Suggests’): this is not
an exhaustive check of the actual imports.

Available index information (in particular, for demos and vignettes) is checked for
completeness.

The package subdirectories are checked for suitable file names and for not being empty.
The checks on file names are controlled by the option --check-subdirs=value. This
defaults to ‘default’, which runs the checks only if checking a tarball: the default can
be overridden by specifying the value as ‘yes’ or ‘no’. Further, the check on the src
directory is only run if the package does not contain a configure script (which corre-
sponds to the value ‘yes-maybe’) and there is no src/Makefile or src/Makefile.in.

To allow a configure script to generate suitable files, files ending in ‘.in’ will be
allowed in the R directory.

A warning is given for directory names that look like R package check directories —
many packages have been submitted to CRAN containing these.

The R files are checked for syntax errors. Bytes which are non-ASCII are reported as
warnings, but these should be regarded as errors unless it is known that the package
will always be used in the same locale.

It is checked that the package can be loaded, first with the usual default packages and
then only with package base already loaded. It is checked that the namespace can

51

A suitable file.exe is part of the Windows toolset: it checks for gfile if a suitable file is not found:
the latter is available in the OpenCSW collection for Solaris at https://www.opencsw.org/. The source
repository is http://ftp.astron.com/pub/file/.

https://www.opencsw.org/
http://ftp.astron.com/pub/file/

Chapter 1: Creating R packages 46

10.

11.

12.

13.

14.

15.

16.

17.

18.

be loaded in an empty session with only the base namespace loaded. (Namespaces
and packages can be loaded very early in the session, before the default packages are
available, so packages should work then.)

The R files are checked for correct calls to 1library.dynam. Package startup functions
are checked for correct argument lists and (incorrect) calls to functions which modify the
search path or inappropriately generate messages. The R code is checked for possible
problems using codetools (https://CRAN.R-project.org/package=codetools). In
addition, it is checked whether S3 methods have all the arguments of the corresponding
generic, and whether the final argument of replacement functions is called ‘value’. All
foreign function calls (.C, .Fortran, .Call and .External calls) are tested to see
if they have a PACKAGE argument, and if not, whether the appropriate DLL might
be deduced from the namespace of the package. Any other calls are reported. (The
check is generous, and users may want to supplement this by examining the output of
tools: :checkFF ("mypkg", verbose=TRUE), especially if the intention were to always
use a PACKAGE argument)

The R4 files are checked for correct syntax and metadata, including the presence of
the mandatory fields (\name, \alias, \title and \description). The Rd name and
title are checked for being non-empty, and there is a check for missing cross-references
(links).

A check is made for missing documentation entries, such as undocumented user-level
objects in the package.

Documentation for functions, data sets, and S4 classes is checked for consistency with
the corresponding code.

It is checked whether all function arguments given in \usage sections of Rd files are
documented in the corresponding \arguments section.

The data directory is checked for non-ASCII characters and for the use of reasonable
levels of compression.

C, C++ and Fortran source and header files®® are tested for portable (LF-only) line
endings. If there is a Makefile or Makefile.in or Makevars or Makevars.in file
under the src directory, it is checked for portable line endings and the correct use of
‘¢ (BLAS_LIBS)’ and ‘$(LAPACK_LIBS)’

Compiled code is checked for symbols corresponding to functions which might termi-
nate R or write to stdout/stderr instead of the console. Note that the latter might
give false positives in that the symbols might be pulled in with external libraries and
could never be called. Windows®? users should note that the Fortran and C++ runtime
libraries are examples of such external libraries.

Some checks are made of the contents of the inst/doc directory. These always in-
clude checking for files that look like leftovers, and if suitable tools (such as qpdf) are
available, checking that the PDF documentation is of minimal size.

The examples provided by the package’s documentation are run. (see Chapter 2 [Writ-
ing R documentation files], page 91, for information on using \examples to create

52 An exception is made for subdirectories with names starting ‘win’ or ‘Win’.

53

on most other platforms such runtime libraries are dynamic, but static libraries are currently used on
Windows because the toolchain is not a standard part of the OS.

https://CRAN.R-project.org/package=codetools

Chapter 1: Creating R packages 47

19.

20.

21.

22.

executable example code.) If there is a file tests/Examples/pkg-Ex.Rout.save, the
output of running the examples is compared to that file.

Of course, released packages should be able to run at least their own examples. Each
example is run in a ‘clean’ environment (so earlier examples cannot be assumed to have
been run), and with the variables T and F redefined to generate an error unless they
are set in the example: See Section “Logical vectors” in An Introduction to R.

If the package sources contain a tests directory then the tests specified in that directory
are run. (Typically they will consist of a set of .R source files and target output
files .Rout.save.) Please note that the comparison will be done in the end user’s
locale, so the target output files should be ASCII if at all possible. (The command
line option --test-dir=foo may be used to specify tests in a non-standard location.
For example, unusually slow tests could be placed in inst/slowTests and then R CMD
check --test-dir=inst/slowTests would be used to run them. Other names that
have been suggested are, for example, inst/testWithOracle for tests that require
Oracle to be installed, inst/randomTests for tests which use random values and may
occasionally fail by chance, etc.)

The R code in package vignettes (see Section 1.4 [Writing package vignettes], page 51)
is executed, and the vignettes re-made from their sources as a check of completeness
of the sources (unless there is a ‘BuildVignettes’ field in the package’s DESCRIPTION
file with a false value). If there is a target output file .Rout.save in the vignette
source directory, the output from running the code in that vignette is compared with
the target output file and any differences are reported (but not recorded in the log file).
(If the vignette sources are in the deprecated location inst/doc, do mark such target
output files to not be installed in .Rinstignore.)

If there is an error® in executing the R code in vignette foo.ext, a log file foo.ext.log
is created in the check directory. The vignettes are re-made in a copy of the package
sources in the vign_test subdirectory of the check directory, so for further information
on errors look in directory pkgname/vign_test/vignettes. (It is only retained if there
are errors or if environment variable _R_CHECK_CLEAN_VIGN_TEST_ is set to a false
value.)

The PDF version of the package’s manual is created (to check that the Rd files can be
converted successfully). This needs IXTEX and suitable fonts and IXTEX packages to be
installed. See Section “Making the manuals” in R Installation and Administration.

Optionally (including by R CMD check --as-cran) the HTML version of the manual is
created and checked for compliance with the HTML5 standard. This requires a recent
version® of ‘HTML Tidy’, either on the path or at a location specified by environment
variable R_TIDYCMD. Up-to-date versions can be installed from http://binaries.
html-tidy.org/.

All these tests are run with collation set to the C locale, and for the examples and tests

with environment variable LANGUAGE=en: this is to minimize differences between platforms.

4 or if option --use-valgrind is used or environment variable _R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_

55

is set to a true value or if there are differences from a target output file

for the most comprehensive checking this should be 5.8.0 or later: any for which tidy --version does
not report a version number will be too old — this includes the 2006 version shipped with macOS.

http://binaries.html-tidy.org/
http://binaries.html-tidy.org/

Chapter 1: Creating R packages 48

Use R CMD check --help to obtain more information about the usage of the R package
checker. A subset of the checking steps can be selected by adding command-line options.
It also allows customization by setting environment variables _R_CHECK_*_ as described in
Section “Tools” in R Internals: a set of these customizations similar to those used by CRAN
can be selected by the option ——as-cran (which works best if Internet access is available).
Some Windows users may need to set environment variable R_WIN_NO_JUNCTIONS to a
non-empty value. The test of cyclic declarations®®in DESCRIPTION files needs repositories
(including CRAN) set: do this in ~/.Rprofile, by e.g.

options(repos = c(CRAN="https://cran.r-project.org"))
One check customization which can be revealing is
_R_CHECK_CODETOOLS_PROFILE_="suppressLocalUnused=FALSE"

which reports unused local assignments. Not only does this point out computations which
are unnecessary because their results are unused, it also can uncover errors. (Two such are
to intend to update an object by assigning a value but mistype its name or assign in the
wrong scope, for example using <- where <<- was intended.) This can give false positives,
most commonly because of non-standard evaluation for formulae and because the intention
is to return objects in the environment of a function for later use.

Complete checking of a package which contains a file README.md needs a reasonably
current version of pandoc installed: see https://pandoc.org/installing.html.

You do need to ensure that the package is checked in a suitable locale if it contains
non-ASCII characters. Such packages are likely to fail some of the checks in a C locale, and
R CMD check will warn if it spots the problem. You should be able to check any package
in a UTF-8 locale (if one is available). Beware that although a C locale is rarely used at a
console, it may be the default if logging in remotely or for batch jobs.

Often R CMD check will need to consult a CRAN repository to check details of uninstalled
packages. Normally this defaults to the CRAN main site, but a mirror can be specified by
setting environment variables R_CRAN_WEB and (rarely needed) R_CRAN_SRC to the URL of
a CRAN mirror.

1.3.2 Building package tarballs

Packages may be distributed in source form as “tarballs” (.tar.gz files) or in binary form.
The source form can be installed on all platforms with suitable tools and is the usual
form for Unix-like systems; the binary form is platform-specific, and is the more common
distribution form for the Windows and macOS platforms.

Using R CMD build, the R package builder, one can build R package tarballs from their
sources (for example, for subsequent release). It is recommended that packages are built for
release by the current release version of R or ‘r-patched’, to avoid inadvertently picking
up new features of a development version of R.

Prior to actually building the package in the standard gzipped tar file format, a few
diagnostic checks and cleanups are performed. In particular, it is tested whether object
indices exist and can be assumed to be up-to-date, and C, C++ and Fortran source files

56 For example, in early 2014 gdata (https://CRAN.R-project.org/package=gdata) declared ‘Imports:
gtools’ and gtools (https://CRAN.R-project.org/package=gtools) declared ‘Imports: gdata’.

https://pandoc.org/installing.html
https://CRAN.R-project.org/package=gdata
https://CRAN.R-project.org/package=gtools

Chapter 1: Creating R packages 49

and relevant makefiles in a src directory are tested and converted to LF line-endings if
necessary.

Run-time checks whether the package works correctly should be performed using R CMD
check prior to invoking the final build procedure.

To exclude files from being put into the package, one can specify a list of exclude patterns
in file .Rbuildignore in the top-level source directory. These patterns should be Perl-like
regular expressions (see the help for regexp in R for the precise details), one per line, to
be matched case-insensitively against the file and directory names relative to the top-level
package source directory. In addition, directories from source control systems®’ or from
eclipse®®, directories with names check, chm, or ending .Rcheck or 01d or old and files
GNUMakefile®¥, Read-and-delete-me or with base names starting with ‘. #’, or starting and
ending with ‘#’, or ending in ‘*’, ‘.bak’ or ‘.swp’, are excluded by default®®. In addition,
same-package tarballs (from previous builds) and their binary forms will be excluded from
the top-level directory, as well as those files in the R, demo and man directories which are
flagged by R CMD check as having invalid names.

Use R CMD build --help to obtain more information about the usage of the R package
builder.

Unless R CMD build is invoked with the -—no-build-vignettes option (or the package’s
DESCRIPTION contains ‘BuildVignettes: no’ or similar), it will attempt to (re)build the
vignettes (see Section 1.4 [Writing package vignettes|, page 51) in the package. To do so
it installs the current package into a temporary library tree, but any dependent packages
need to be installed in an available library tree (see the Note: at the top of this section).

Similarly, if the .Rd documentation files contain any \Sexpr macros (see Section 2.12
[Dynamic pages|, page 107), the package will be temporarily installed to execute them.
Post-execution binary copies of those pages containing build-time macros will be saved in
build/partial.rdb. If there are any install-time or render-time macros, a .pdf version
of the package manual will be built and installed in the build subdirectory. (This allows
CRAN or other repositories to display the manual even if they are unable to install the
package.) This can be suppressed by the option --no-manual or if package’s DESCRIPTION
contains ‘BuildManual: no’ or similar.

One of the checks that R CMD build runs is for empty source directories. These are in
most (but not all) cases unintentional, if they are intentional use the option --keep-empty-
dirs (or set the environment variable _R_BUILD_KEEP_EMPTY_DIRS_ to ‘TRUE’, or have a
‘BuildKeepEmpty’ field with a true value in the DESCRIPTION file).

The --resave-data option allows saved images (.rda and .RData files) in the data
directory to be optimized for size. It will also compress tabular files and convert .R files to
saved images. It can take values no, gzip (the default if this option is not supplied, which
can be changed by setting the environment variable _R_BUILD_RESAVE_DATA_) and best
(equivalent to giving it without a value), which chooses the most effective compression.

57
58
59
60

called CVS or .svn or .arch-ids or .bzr or .git (but not files called .git) or .hg.
called .metadata.
which is an error: GNU make uses GNUmakefile.

see tools:::.hidden_file_exclusions and tools:::get_exclude_patterns() for further excluded
files and file patterns, respectively.

Chapter 1: Creating R packages 50

Using best adds a dependence on R (>= 2.10) to the DESCRIPTION file if bzip2 or xz com-
pression is selected for any of the files. If this is thought undesirable, --resave-data=gzip
(which is the default if that option is not supplied) will do what compression it can with
gzip. A package can control how its data is resaved by supplying a ‘BuildResaveData’
field (with one of the values given earlier in this paragraph) in its DESCRIPTION file.

The --compact-vignettes option will run tools: :compactPDF over the PDF files in
inst/doc (and its subdirectories) to losslessly compress them. This is not enabled by
default (it can be selected by environment variable _R_BUILD_COMPACT_VIGNETTES_) and
needs qpdf (https://qpdf.sourceforge.io/) to be available.

It can be useful to run R CMD check --check-subdirs=yes on the built tarball as a final
check on the contents.

Where a non-POSIX file system is in use which does not utilize execute permissions,
some care is needed with permissions. This applies on Windows and to e.g. FAT-formatted
drives and SMB-mounted file systems on other OSes. The ‘mode’ of the file recorded in the
tarball will be whatever file.info () returns. On Windows this will record only directories
as having execute permission and on other OSes it is likely that all files have reported ‘mode’
0777. A particular issue is packages being built on Windows which are intended to contain
executable scripts such as configure and cleanup: R CMD build ensures those two are
recorded with execute permission.

Directory build of the package sources is reserved for use by R CMD build: it contains
information which may not easily be created when the package is installed, including index
information on the vignettes and, rarely, information on the help pages and perhaps a copy
of the PDF reference manual (see above).

1.3.3 Building binary packages

Binary packages are compressed copies of installed versions of packages. They contain
compiled shared libraries rather than C, C++ or Fortran source code, and the R functions
are included in their installed form. The format and filename are platform-specific; for
example, a binary package for Windows is usually supplied as a .zip file, and for the
macOS platform the default binary package file extension is .tgz.

The recommended method of building binary packages is to use

R CMD INSTALL --build pkg where pkg is either the name of a source tarball (in the
usual .tar.gz format) or the location of the directory of the package source to be built.
This operates by first installing the package and then packing the installed binaries into the
appropriate binary package file for the particular platform.

By default, R CMD INSTALL --build will attempt to install the package into the default
library tree for the local installation of R. This has two implications:
e If the installation is successful, it will overwrite any existing installation of the same
package.

e The default library tree must have write permission; if not, the package will not install
and the binary will not be created.

To prevent changes to the present working installation or to provide an install location with
write access, create a suitably located directory with write access and use the -1 option to
build the package in the chosen location. The usage is then

https://qpdf.sourceforge.io/

Chapter 1: Creating R packages 51

R CMD INSTALL -1 location --build pkg

where location is the chosen directory with write access. The package will be installed as
a subdirectory of location, and the package binary will be created in the current directory.

Other options for R CMD INSTALL can be found using R CMD INSTALL --help, and
platform-specific details for special cases are discussed in the platform-specific FAQs.

Finally, at least one web-based service is available for building binary packages from
(checked) source code: WinBuilder (see https://win-builder.R-project.org/) is able
to build Windows binaries. Note that this is intended for developers on other platforms
who do not have access to Windows but wish to provide binaries for the Windows platform.

1.4 Writing package vignettes

In addition to the help files in Rd format, R packages allow the inclusion of documents
in arbitrary other formats. The standard location for these is subdirectory inst/doc of
a source package, the contents will be copied to subdirectory doc when the package is in-
stalled. Pointers from package help indices to the installed documents are automatically
created. Documents in inst/doc can be in arbitrary format, however we strongly recom-
mend providing them in PDF format, so users on almost all platforms can easily read them.
To ensure that they can be accessed from a browser (as an HTML index is provided), the
file names should start with an ASCII letter and be comprised entirely of ASCII letters or
digits or hyphen or underscore.

A special case is package vignettes. Vignettes are documents in PDF or HTML format
obtained from plain-text literate source files from which R knows how to extract R code and
create output (in PDF/HTML or intermediate WTEX). Vignette engines do this work, using
“tangle” and “weave” functions respectively. Sweave, provided by the R distribution, is
the default engine. Other vignette engines besides Sweave are supported; see Section 1.4.2
[Non-Sweave vignettes], page 54.

Package vignettes have their sources in subdirectory vignettes of the package sources.
Note that the location of the vignette sources only affects R CMD build and R CMD check: the
tarball built by R CMD build includes in inst/doc the components intended to be installed.

Sweave vignette sources are normally given the file extension .Rnw or .Rtex, but for
historical reasons extensions® .Snw and .Stex are also recognized. Sweave allows the
integration of W TEX documents: see the Sweave help page in R and the Sweave vignette in
package utils for details on the source document format.

Package vignettes are tested by R CMD check by executing all R code chunks they contain
(except those marked for non-evaluation, e.g., with option eval=FALSE for Sweave). The
R working directory for all vignette tests in R CMD check is a copy of the vignette source
directory. Make sure all files needed to run the R code in the vignette (data sets, ...) are
accessible by either placing them in the inst/doc hierarchy of the source package or by
using calls to system.file(). All other files needed to re-make the vignettes (such as IWTEX
style files, BibTEX input files and files for any figures not created by running the code in
the vignette) must be in the vignette source directory. R CMD check will check that vignette
production has succeeded by comparing modification times of output files in inst/doc with
the source in vignettes.

61 and to avoid problems with case-insensitive file systems, lower-case versions of all these extensions.

https://win-builder.R-project.org/

Chapter 1: Creating R packages 52

R CMD build will automatically® create the (PDF or HTML versions of the) vignettes in
inst/doc for distribution with the package sources. By including the vignette outputs in
the package sources it is not necessary that these can be re-built at install time, i.e., the
package author can use private R packages, screen snapshots and IATEX extensions which
are only available on their machine.%3

By default R CMD build will run Sweave on all Sweave vignette source files in vignettes.
If Makefile is found in the vignette source directory, then R CMD build will try to run make
after the Sweave runs, otherwise texi2pdf is run on each .tex file produced.

The first target in the Makefile should take care of both creation of PDF/HTML files
and cleaning up afterwards (including after Sweave), i.e., delete all files that shall not appear
in the final package archive. Note that if the make step runs R it needs to be careful to
respect the environment values of R_LIBS and R_HOME®*. Finally, if there is a Makefile and
it has a ‘clean:’ target, make clean is run.

All the usual caveats about including a Makefile apply. It must be portable (no GNU
extensions), use LF line endings and must work correctly with a parallel make: too many
authors have written things like

BAD EXAMPLE
all: pdf clean

pdf: ABC-intro.pdf ABC-details.pdf

%hopdf: .tex
texi2dvi --pdf $x

clean:
rm *.tex ABC-details-*.pdf

which will start removing the source files whilst pdflatex is working.

Metadata lines can be placed in the source file, preferably in INTEX comments in the
preamble. One such is a \VignetteIndexEntry of the form

%\VignetteIndexEntry{Using Animal}

Others you may see are \VignettePackage (currently ignored), \VignetteDepends
(a comma-separated list of package names) and \VignetteKeyword (which replaced
\VignetteKeywords). These are processed at package installation time to create the
saved data frame Meta/vignette.rds. The \VignetteEngine statement is described in
Section 1.4.2 [Non-Sweave vignettes|, page 54. Vignette metadata can be extracted from a
source file using tools: :vignetteInfo.

At install time an HTML index for all vignettes in the package is automatically created
from the \VignetteIndexEntry statements unless a file index.html exists in directory
inst/doc. This index is linked from the HTML help index for the package. If you do supply
a inst/doc/index.html file it should contain relative links only to files under the installed

62 \nless inhibited by using ‘BuildVignettes: no’ in the DESCRIPTION file.

63 provided the conditions of the package’s license are met: many, including CRAN, see the omission of
source components as incompatible with an Open Source license.

64 R_HOME/bin is prepended to the PATH so that references to R or Rscript in the Makefile do make use of
the currently running version of R.

Chapter 1: Creating R packages 53

doc directory, or perhaps (not really an index) to HTML help files or to the DESCRIPTION
file, and be valid HTML as confirmed via the W3C Markup Validation Service (https://
validator.w3.org) or Validator.nu (https://validator.nu/).

Sweave/Stangle allows the document to specify the split=TRUE option to create a single
R file for each code chunk: this will not work for vignettes where it is assumed that each
vignette source generates a single file with the vignette extension replaced by .R.

Do watch that PDFs are not too large — one in a CRAN package was 72MB! This is
usually caused by the inclusion of overly detailed figures, which will not render well in
PDF viewers. Sometimes it is much better to generate fairly high resolution bitmap (PNG,
JPEG) figures and include those in the PDF document.

When R CMD build builds the vignettes, it copies these and the vignette sources from
directory vignettes to inst/doc. To install any other files from the vignettes direc-
tory, include a file vignettes/.install_extras which specifies these as Perl-like regular
expressions on one or more lines. (See the description of the .Rinstignore file for full
details.)

1.4.1 Encodings and vignettes

Vignettes will in general include descriptive text, R input, R output and figures, IXTEX
include files and bibliographic references. As any of these may contain non-ASCII characters,
the handling of encodings can become very complicated.

The vignette source file should be written in ASCII or contain a declaration of the
encoding (see below). This applies even to comments within the source file, since vignette
engines process comments to look for options and metadata lines. When an engine’s weave
and tangle functions are called on the vignette source, it will be converted to the encoding
of the current R session.

Stangle () will produce an R code file in the current locale’s encoding: for a non-ASCII
vignette what that is is recorded in a comment at the top of the file.

Sweave () will produce a .tex file in the current encoding, or in UTF-8 if that is declared.
Non-ASCII encodings need to be declared to IMTEX via a line like

\usepackage [utf8] {inputenc}
(It is also possible to use the more recent ‘inputenx’ XTEX package.) For files where this line

is not needed (e.g. chapters included within the body of a larger document, or non-Sweave
vignettes), the encoding may be declared using a comment like

%\VignetteEncoding{UTF-8}
If the encoding is UTF-8, this can also be declared using the declaration
%\SweaveUTF8

If no declaration is given in the vignette, it will be assumed to be in the encoding declared
for the package. If there is no encoding declared in either place, then it is an error to use
non-ASCII characters in the vignette.

In any case, be aware that IXTEX may require the ‘usepackage’ declaration.
Sweave () will also parse and evaluate the R code in each chunk. The R output will also
be in the current locale (or UTF-8 if so declared), and should be covered by the ‘inputenc’

declaration. One thing people often forget is that the R output may not be ASCII even for
ASCII R sources, for many possible reasons. One common one is the use of ‘fancy’ quotes:

https://validator.w3.org
https://validator.w3.org
https://validator.nu/

Chapter 1: Creating R packages 54

see the R help on sQuote: note carefully that it is not portable to declare UTF-8 or CP1252
to cover such quotes, as their encoding will depend on the locale used to run Sweave():
this can be circumvented by setting options(useFancyQuotes="UTF-8") in the vignette.

The final issue is the encoding of figures — this applies only to PDF figures and not PNG
etc. The PDF figures will contain declarations for their encoding, but the Sweave option
pdf . encoding may need to be set appropriately: see the help for the pdf () graphics device.

As a real example of the complexities, consider the fortunes (https://CRAN.R-project.
org/package=fortunes) package version ‘1.4-0’. That package did not have a declared
encoding, and its vignette was in ASCII. However, the data it displays are read from a
UTF-8 CSV file and will be assumed to be in the current encoding, so fortunes.tex will
be in UTF-8 in any locale. Had read.table been told the data were UTF-8, fortunes.tex
would have been in the locale’s encoding.

1.4.2 Non-Sweave vignettes

Vignettes in formats other than Sweave are supported via “vignette engines”. For example
knitr (https://CRAN.R-project.org/package=knitr) version 1.1 or later can create .tex
files from a variation on Sweave format, and .html files from a variation on “markdown”
format. These engines replace the Sweave() function with other functions to convert vi-
gnette source files into IATEX files for processing into .pdf, or directly into .pdf or .html
files. The Stangle() function is replaced with a function that extracts the R source from
a vignette.

R recognizes non-Sweave vignettes using filename extensions specified by the engine. For
example, the knitr (https://CRAN.R-project.org/package=knitr) package supports the
extension .Rmd (standing for “R markdown”). The user indicates the vignette engine within
the vignette source using a \VignetteEngine line, for example

%\VignetteEngine{knitr: :knitr}

This specifies the name of a package and an engine to use in place of Sweave in processing
the vignette. As Sweave is the only engine supplied with the R distribution, the package
providing any other engine must be specified in the ‘VignetteBuilder’ field of the package
DESCRIPTION file, and also specified in the ‘Suggests’, ‘Imports’ or ‘Depends’ field (since
its namespace must be available to build or check your package). If more than one package
is specified as a builder, they will be searched in the order given there. The utils package is
always implicitly appended to the list of builder packages, but may be included earlier to
change the search order.

Note that a package with non-Sweave vignettes should always have a ‘VignetteBuilder’
field in the DESCRIPTION file, since this is how R CMD check recognizes that there are vi-
gnettes to be checked: packages listed there are required when the package is checked.

The vignette engine can produce .tex, .pdf, or .html files as output. If it produces
.tex files, R will call texi2pdf to convert them to .pdf for display to the user (unless there
is a Makefile in the vignettes directory).

Package writers who would like to supply vignette engines need to register those engines
in the package .onLoad function. For example, that function could make the call

tools::vignetteEngine("knitr", weave = vweave, tangle = vtangle,
pattern = "[.]JRmd$", package = "knitr")

https://CRAN.R-project.org/package=fortunes
https://CRAN.R-project.org/package=fortunes
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=knitr

Chapter 1: Creating R packages 55

(The actual registration in knitr (https://CRAN.R-project.org/package=knitr) is more
complicated, because it supports other input formats.) See the ?tools::vignetteEngine
help topic for details on engine registration.

1.5 Package namespaces

R has a namespace management system for code in packages. This system allows the
package writer to specify which variables in the package should be exported to make them
available to package users, and which variables should be imported from other packages.

The namespace for a package is specified by the NAMESPACE file in the top level package
directory. This file contains namespace directives describing the imports and exports of the
namespace. Additional directives register any shared objects to be loaded and any S3-style
methods that are provided. Note that although the file looks like R code (and often has
R-style comments) it is not processed as R code. Only very simple conditional processing
of if statements is implemented.

Packages are loaded and attached to the search path by calling library or require.
Only the exported variables are placed in the attached frame. Loading a package that
imports variables from other packages will cause these other packages to be loaded as well
(unless they have already been loaded), but they will not be placed on the search path
by these implicit loads. Thus code in the package can only depend on objects in its own
namespace and its imports (including the base namespace) being visible%®.

Namespaces are sealed once they are loaded. Sealing means that imports and exports
cannot be changed and that internal variable bindings cannot be changed. Sealing allows
a simpler implementation strategy for the namespace mechanism and allows code analysis
and compilation tools to accurately identify the definition corresponding to a global variable
reference in a function body.

The namespace controls the search strategy for variables used by functions in the package.
If not found locally, R searches the package namespace first, then the imports, then the base
namespace and then the normal search path (so the base namespace precedes the normal
search rather than being at the end of it).

1.5.1 Specifying imports and exports
Exports are specified using the export directive in the NAMESPACE file. A directive of the
form
export(f, g)
specifies that the variables f and g are to be exported. (Note that variable names may be
quoted, and reserved words and non-standard names such as [<-.fractions must be.)
For packages with many variables to export it may be more convenient to specify the
names to export with a regular expression using exportPattern. The directive
exportPattern("~[~\\.1")
exports all variables that do not start with a period. However, such broad patterns are
not recommended for production code: it is better to list all exports or use narrowly-
defined groups. (This pattern applies to S4 classes.) Beware of patterns which include

65 Note that lazy-loaded datasets are not in the package’s namespace so need to be accessed via ::, e.g.
survival: :survexp.us.

https://CRAN.R-project.org/package=knitr

Chapter 1: Creating R packages 56

names starting with a period: some of these are internal-only variables and should never be
exported, e.g. ‘. __S3MethodsTable__.’ (and loading excludes known cases).

Packages implicitly import the base namespace. Variables exported from other pack-
ages with namespaces need to be imported explicitly using the directives import and
importFrom. The import directive imports all exported variables from the specified pack-
age(s). Thus the directives

import (foo, bar)

specifies that all exported variables in the packages foo and bar are to be imported. If only
some of the exported variables from a package are needed, then they can be imported using
importFrom. The directive

importFrom(foo, f, g)

specifies that the exported variables £ and g of the package foo are to be imported. Using
importFrom selectively rather than import is good practice and recommended notably when
importing from packages with more than a dozen exports and especially from those written
by others (so what they export can change in future).

To import every symbol from a package but for a few exceptions, pass the except
argument to import. The directive

import (foo, except=c(bar, baz))

imports every symbol from foo except bar and baz. The value of except should eval-
uate to something coercible to a character vector, after substituting each symbol for its
corresponding string.

It is possible to export variables from a namespace which it has imported from other
namespaces: this has to be done explicitly and not via exportPattern.

If a package only needs a few objects from another package it can use a fully qualified
variable reference in the code instead of a formal import. A fully-qualified reference to the
function f in package foo is of the form foo::f. This is slightly less efficient than a formal
import and also loses the advantage of recording all dependencies in the NAMESPACE file
(but they still need to be recorded in the DESCRIPTION file). Evaluating foo: :f will cause
package foo to be loaded, but not attached, if it was not loaded already—this can be an
advantage in delaying the loading of a rarely used package. However, if foo is listed only in
‘Suggests’ or ‘Enhances’ this also delays the check that it is installed: it is good practice
to use such imports conditionally (e.g. via requireNamespace("foo", quietly = TRUE)).

Using the foo: :f form will be necessary when a package needs to use a function of the
same name from more than one namespace.

Using foo:::f instead of foo: :f allows access to unexported objects. This is generally
not recommended, as the existence or semantics of unexported objects may be changed by
the package author in routine maintenance.

1.5.2 Registering S3 methods

The standard method for S3-style UseMethod dispatching might fail to locate methods
defined in a package that is imported but not attached to the search path. To ensure
that these methods are available the packages defining the methods should ensure that the
generics are imported and register the methods using S3method directives. If a package

Chapter 1: Creating R packages 57

defines a function print.foo intended to be used as a print method for class foo, then
the directive

S3method (print, foo)

ensures that the method is registered and available for UseMethod dispatch, and the function
print.foo does not need to be exported. Since the generic print is defined in base it does
not need to be imported explicitly.

(Note that function and class names may be quoted, and reserved words and non-
standard names such as [<- and function must be.)

It is possible to specify a third argument to S3method, the function to be used as the
method, for example

S3method (print, check_so_symbols, .print.via.format)
when print.check_so_symbols is not needed.

As from R 3.6.0 one can also use S3method () directives to perform delayed registration.
With
if (getRversion() >= "3.6.0") {
S3method (pkg: :gen, cls)
}

function gen.cls will get registered as an S3 method for class cls and generic gen from
package pkg only when the namespace of pkg is loaded. This can be employed to deal
with situations where the method is not “immediately” needed, and having to pre-load
the namespace of pkg (and all its strong dependencies) in order to perform immediate
registration is considered too onerous.

1.5.3 Load hooks

There are a number of hooks called as packages are loaded, attached, detached, and un-
loaded. See help(".onLoad") for more details.

Since loading and attaching are distinct operations, separate hooks are provided for each.
These hook functions are called .onLoad and .onAttach. They both take arguments®®
libname and pkgname; they should be defined in the namespace but not exported.

Packages can use a .onDetach or .Last.lib function (provided the latter is exported
from the namespace) when detach is called on the package. It is called with a single
argument, the full path to the installed package. There is also a hook .onUnload which is
called when the namespace is unloaded (via a call to unloadNamespace, perhaps called by
detach(unload = TRUE)) with argument the full path to the installed package’s directory.
Functions .onUnload and .onDetach should be defined in the namespace and not exported,
but .Last.1lib does need to be exported.

Packages are not likely to need .onAttach (except perhaps for a start-up banner); code
to set options and load shared objects should be placed in a .onLoad function, or use made
of the useDynLib directive described next.

User-level hooks are also available: see the help on function setHook.

These hooks are often used incorrectly. People forget to export .Last.lib. Compiled
code should be loaded in .onLoad (or via a useDynLb directive: see below) and unloaded in

66 they will be called with two unnamed arguments, in that order.

Chapter 1: Creating R packages 58

.onUnload. Do remember that a package’s namespace can be loaded without the namespace
being attached (e.g. by pkgname: : fun) and that a package can be detached and re-attached
whilst its namespace remains loaded.

It is good practice for these functions to be quiet. Any messages should use
packageStartupMessage so users (include check scripts) can suppress them if desired.

1.5.4 useDynLib

A NAMESPACE file can contain one or more useDynLib directives which allows shared objects
that need to be loaded.%” The directive

useDynLib(foo)

registers the shared object f0o% for loading with library.dynam. Loading of registered
object(s) occurs after the package code has been loaded and before running the load hook
function. Packages that would only need a load hook function to load a shared object can
use the useDynLib directive instead.

The useDynLib directive also accepts the names of the native routines that are to be
used in R wia the .C, .Call, .Fortran and .External interface functions. These are given
as additional arguments to the directive, for example,

useDynLib(foo, myRoutine, myOtherRoutine)

By specifying these names in the useDynLib directive, the native symbols are resolved
when the package is loaded and R variables identifying these symbols are added to the
package’s namespace with these names. These can be used in the .C, .Call, .Fortran
and .External calls in place of the name of the routine and the PACKAGE argument. For
instance, we can call the routine myRoutine from R with the code

.Call(myRoutine, x, y)
rather than
.Call("myRoutine", x, y, PACKAGE = "foo")

There are at least two benefits to this approach. Firstly, the symbol lookup is done just
once for each symbol rather than each time the routine is invoked. Secondly, this removes
any ambiguity in resolving symbols that might be present in more than one DLL. However,
this approach is nowadays deprecated in favour of supplying registration information (see
below).

In some circumstances, there will already be an R variable in the package with the
same name as a native symbol. For example, we may have an R function in the package
named myRoutine. In this case, it is necessary to map the native symbol to a different R
variable name. This can be done in the useDynLib directive by using named arguments.
For instance, to map the native symbol name myRoutine to the R variable myRoutine_sym,
we would use

useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)
We could then call that routine from R using the command

.Call(myRoutine_sym, x, y)

67 NB: this will only be read in all versions of R if the package contains R code in a R directory.

68 Note that this is the basename of the shared object, and the appropriate extension (.so or .d11) will be
added.

Chapter 1: Creating R packages 59

Symbols without explicit names are assigned to the R variable with that name.

In some cases, it may be preferable not to create R variables in the package’s namespace
that identify the native routines. It may be too costly to compute these for many routines
when the package is loaded if many of these routines are not likely to be used. In this case,
one can still perform the symbol resolution correctly using the DLL, but do this each time
the routine is called. Given a reference to the DLL as an R variable, say d11, we can call
the routine myRoutine using the expression

.Call(d11l$myRoutine, x, y)

The $ operator resolves the routine with the given name in the DLL using a call to
getNativeSymbol. This is the same computation as above where we resolve the symbol
when the package is loaded. The only difference is that this is done each time in the case
of d11$myRoutine.

In order to use this dynamic approach (e.g., d11$myRoutine), one needs the reference
to the DLL as an R variable in the package. The DLL can be assigned to a variable by
using the variable = d11Name format used above for mapping symbols to R variables. For
example, if we wanted to assign the DLL reference for the DLL foo in the example above
to the variable myDLL, we would use the following directive in the NAMESPACE file:

myDLL = useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

Then, the R variable myDLL is in the package’s namespace and available for calls such as
myDLL$dynRoutine to access routines that are not explicitly resolved at load time.

If the package has registration information (see Section 5.4 [Registering native routines],
page 142), then we can use that directly rather than specifying the list of symbols again in
the useDynLib directive in the NAMESPACE file. Each routine in the registration information
is specified by giving a name by which the routine is to be specified along with the address
of the routine and any information about the number and type of the parameters. Using
the .registration argument of useDynLib, we can instruct the namespace mechanism to
create R variables for these symbols. For example, suppose we have the following registration
information for a DLL named myDLL:

static R_NativePrimitiveArgType foo_t[] = {
REALSXP, INTSXP, STRSXP, LGLSXP
s

static const R_CMethodDef cMethods[] = {
{"foo", (DL_FUNC) &foo, 4, foo_t},
{"bar_sym", (DL_FUNC) &bar, O},
{NULL, NULL, O, NULL}

};

static const R_CallMethodDef callMethods[] = {
{"R_call_sym", (DL_FUNC) &R_call, 4},
{"R_version_sym", (DL_FUNC) &R_version, O},
{NULL, NULL, O}
+;
Then, the directive in the NAMESPACE file
useDynLib(myDLL, .registration = TRUE)

Chapter 1: Creating R packages 60

causes the DLL to be loaded and also for the R variables foo, bar_sym, R_call_sym and
R_version_sym to be defined in the package’s namespace.

Note that the names for the R variables are taken from the entry in the registration
information and do not need to be the same as the name of the native routine. This allows
the creator of the registration information to map the native symbols to non-conflicting
variable names in R, e.g. R_version to R_version_sym for use in an R function such as

R_version <- function()
{
.Call(R_version_sym)

¥

Using argument .fixes allows an automatic prefix to be added to the registered sym-
bols, which can be useful when working with an existing package. For example, package
KernSmooth (https://CRAN.R-project.org/package=KernSmooth) has

useDynLib(KernSmooth, .registration = TRUE, .fixes = "F_")

which makes the R variables corresponding to the Fortran symbols F_bkde and so on, and
so avoid clashes with R code in the namespace.

NB: Using these arguments for a package which does not register native symbols merely
slows down the package loading (although many CRAN packages have done so). Once sym-
bols are registered, check that the corresponding R variables are not accidentally exported
by a pattern in the NAMESPACE file.

1.5.5 An example

As an example consider two packages named foo and bar. The R code for package foo in
file foo.R is

x <-1

f <- function(y) c(x,y)

foo <- function(x) .Call("foo", x, PACKAGE="foo")
print.foo <- function(x, ...) cat("<a foo>\n")

Some C code defines a C function compiled into DLL foo (with an appropriate extension).
The NAMESPACE file for this package is

useDynLib(foo)
export (f, foo)
S3method (print, foo)

The second package bar has code file bar.R

c <- function(...) sum(...)
g <- function(y) f(c(y, 7))
h <- function(y) y+9

and NAMESPACE file

https://CRAN.R-project.org/package=KernSmooth

Chapter 1: Creating R packages 61

import (foo)
export(g, h)

Calling library(bar) loads bar and attaches its exports to the search path. Package foo
is also loaded but not attached to the search path. A call to g produces

> g(6)
[1] 1 13

This is consistent with the definitions of ¢ in the two settings: in bar the function c is
defined to be equivalent to sum, but in foo the variable c refers to the standard function c
in base.

1.5.6 Namespaces with S4 classes and methods

Some additional steps are needed for packages which make use of formal (S4-style) classes
and methods (unless these are purely used internally). The package should have Depends:
methods in its DESCRIPTION and import(methods) or importFrom(methods, ...) plus
any classes and methods which are to be exported need to be declared in the NAMESPACE
file. For example, the stats4 package has

export(mle) # exporting methods implicitly exports the generic
importFrom("stats", approx, optim, pchisq, predict, qchisq, gnorm, spline)
For these, we define methods or (AIC, BIC, nobs) an implicit generic:
importFrom("stats", AIC, BIC, coef, confint, logLik, nobs, profile,

update, vcov)
exportClasses(mle, profile.mle, summary.mle)
All methods for imported generics:
exportMethods(coef, confint, logLik, plot, profile, summary,

show, update, vcov)

implicit generics which do not have any methods here
export (AIC, BIC, nobs)

All S4 classes to be used outside the package need to be listed in an exportClasses directive.
Alternatively, they can be specified using exportClassPattern® in the same style as for
exportPattern. To export methods for generics from other packages an exportMethods
directive can be used.

Note that exporting methods on a generic in the namespace will also export the generic,
and exporting a generic in the namespace will also export its methods. If the generic
function is not local to this package, either because it was imported as a generic function
or because the non-generic version has been made generic solely to add S4 methods to it
(as for functions such as coef in the example above), it can be declared via either or both
of export or exportMethods, but the latter is clearer (and is used in the stats4 example
above). In particular, for primitive functions there is no generic function, so export would
export the primitive, which makes no sense. On the other hand, if the generic is local to
this package, it is more natural to export the function itself using export (), and this must
be done if an implicit generic is created without setting any methods for it (as is the case
for AIC in stats4).

69 This defaults to the same pattern as exportPattern: use something like exportClassPattern(""$") to
override this.

Chapter 1: Creating R packages 62

A non-local generic function is only exported to ensure that calls to the function will
dispatch the methods from this package (and that is not done or required when the methods
are for primitive functions). For this reason, you do not need to document such implicitly
created generic functions, and undoc in package tools will not report them.

If a package uses S4 classes and methods exported from another package, but does not
import the entire namespace of the other package™, it needs to import the classes and
methods explicitly, with directives

importClassesFrom(package, ...)
importMethodsFrom(package, ...)

listing the classes and functions with methods respectively. Suppose we had two small
packages A and B with B using A. Then they could have NAMESPACE files

export(f1, ngil)
exportMethods (" [")
exportClasses(cl)

and
(7
importFrom(4, ngl)
importClassesFrom(A, cl)
importMethodsFrom(A, f1)
export (f4, £5)
exportMethods(£6, "[")
exportClasses(cl, c2)
N J
respectively.

Note that importMethodsFrom will also import any generics defined in the namespace
on those methods.

It is important if you export S4 methods that the corresponding generics are available.
You may for example need to import coef from stats to make visible a function to be
converted into its implicit generic. But it is better practice to make use of the generics
exported by stats4 as this enables multiple packages to unambiguously set methods on
those generics.

1.6 Writing portable packages

This section contains advice on writing packages to be used on multiple platforms or for
distribution (for example to be submitted to a package repository such as CRAN).

Portable packages should have simple file names: use only alphanumeric ASCII characters
and period (.), and avoid those names not allowed under Windows (see Section 1.1 [Package
structure], page 3).

Many of the graphics devices are platform-specific: even X11() (aka x11()) which al-
though emulated on Windows may not be available on a Unix-alike (and is not the preferred

70 ifit does, there will be opaque warnings about replacing imports if the classes/methods are also imported.

Chapter 1: Creating R packages 63

screen device on OS X). It is rarely necessary for package code or examples to open a new

device, but if essentia,

1, use dev.new().

Use R CMD build to make the release .tar.gz file.

R CMD check provides a basic set of checks, but often further problems emerge when

people try to install and use packages submitted to CRAN — many of these involve compiled
code. Here are some further checks that you can do to make your package more portable.

e If your package has a configure script, provide a configure.win or configure.ucrt

script to be used on Windows (an empty configure.win file if no actions are needed).

e If your package has a Makevars or Makefile file, make sure that you use only portable

make features. Such files should be LF-terminated™ (including the final line of the
file) and not make use of GNU extensions. (The POSIX specification is available at
https://pubs . opengroup . org/onlinepubs /9699919799 /utilities/make . html;
anything not documented there should be regarded as an extension to be avoided. Fur-
ther advice can be found at https://www.gnu.org/software/autoconf/manual/
autoconf . html#Portable-Make.) Commonly misused GNU extensions are condi-
tional inclusions (ifeq and the like), ${shell ...}, ${wildcard ...} and similar,
and the use of +=" and :=. Also, the use of $< other than in implicit rules is a GNU
extension, as is the $~ macro. As is the use of .PHONY (some other makes ignore it).
Unfortunately makefiles which use GNU extensions often run on other platforms but
do not have the intended results.

Note that the -C flag for make is not included in the POSIX specification and is not
implemented by some of the makes which have been used with R.

The use of ${shell ...} can be avoided by using backticks, e.g.
PKG_CPPFLAGS = ‘gsl-config --cflags®

which works in all versions of make known™ to be used with R.

If you really must require GNU make, declare it in the DESCRIPTION file by
SystemRequirements: GNU make

and ensure that you use the value of environment variable MAKE (and not just make) in
your scripts. (On some platforms GNU make is available under a name such as gmake,
and there SystemRequirements is used to set MAKE.)

If you only need GNU make for parts of the package which are rarely needed (for
example to create bibliography files under vignettes), use a file called GNUmakefile
rather than Makefile as GNU make (only) will use the former.

macOS has used GNU make for many years (it previously used BSD make), but the
version has been frozen at 3.81 (from 2006).

71

72

73

74

People use dev.new() to open a device at a particular size: that is not portable but using
dev.new(noRStudioGD = TRUE) helps.

Solaris make did not accept CRLF-terminated Makefiles; Solaris warned about and some other makes
ignore incomplete final lines.

This was apparently introduced in SunOS 4, and is available elsewhere provided it is surrounded by
spaces.

GNU make, BSD make and other variants of pmake in FreeBSD, NetBSD and formerly in macOS,
and formerly AT&T make as implemented on Solaris and ‘Distributed Make’ (dmake), part of Oracle
Developer Studio and available in other versions including from Apache OpenOffice.

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Make
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Make

Chapter 1: Creating R packages 64

Since the only viable make for Windows is GNU make, it is permissible to use GNU
extensions in files Makevars.win, Makevars.ucrt, Makefile.win or Makefile.ucrt.

e If you use src/Makevars to compile code in a subdirectory, ensure that you have
followed all the advice above. In particular

e Anticipate a parallel make. See Section 1.2.1 [Using Makevars|, page 28.

e Pass macros down to the makefile in the subdirectory, including all the needed
compiler flags (including PIC and visibility flags). If they are used in the sub-
directory’s Makefile, this includes macros ‘AR’ and ‘RANLIB’. See Section 1.2.1.3
[Compiling in sub-directories], page 35, which has a C example. A C++ example:

pkg/libpkg.a:
(cd pkg && $(MAKE) -f make_pkg libpkg.a \
CXX="$(CXX)" CXXFLAGS="$(CXXFLAGS) $(CXXPICFLAGS) $(C_VISIBILITY)" \
AR="$(AR)" RANLIB="$(RANLIB)")

e Ensure that cleanup will be performed by R CMD build, for example in a cleanup
script or a ‘clean’ target.

e If your package uses a src/Makefile file to compile code to be linked into R, ensure
that it uses exactly the same compiler and flag settings that R uses when compiling
such code: people often forget ‘PIC’ flags. If R CMD config is used, this needs something
like (for C++)

RBIN = ‘"${R_HOME}/bin/R"°
CXX = ‘"${RBIN}" CMD config CXX‘
CXXFLAGS = ‘"${RBIN}" CMD config CXXFLAGS‘ ‘"${RBIN}" CMD config CXXPICFLAGS®

e Names of source files including = (such as src/complex_Sig=gen.c) will confuse some
make programs and should be avoided.

e Bash extensions also need to be avoided in shell scripts, including expressions in Make-
files (which are passed to the shell for processing). Some R platforms use strict” Bourne
shells: an earlier R toolset on Windows™ and some Unix-alike OSes use ash (https://
en.wikipedia.org/wiki/Almquist_shell, a ‘lightweight shell with few builtins) or
derivatives such as dash. Beware of assuming that all the POSIX command-line util-
ities are available, especially on Windows where only a subset (which has changed by
version of Rtools) is provided for use with R. One particular issue is the use of echo,
for which two behaviours are allowed (https://pubs.opengroup.org/onlinepubs/
9699919799/utilities/echo.html) and both have occurred as defaults on R plat-
forms: portable applications should use neither -n (as the first argument) nor escape
sequences. The recommended replacement for echo -n is the command printf. An-
other common issue is the construction

export FOO=value

which is bash-specific (first set the variable then export it by name).

™ For example, test options -a and -e are not portable, and not supported in the AT&T Bourne shell
used on Solaris 10/11, even though they are in the POSIX standard. Nor did Solaris support ‘¢ (cmd)’.

76 as from R 4.0.0 the default is bash.

https://en.wikipedia.org/wiki/Almquist_shell
https://en.wikipedia.org/wiki/Almquist_shell
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.html

Chapter 1: Creating R packages 65

Using test —e (or [—e]) in shell scripts is not fully portable™: -f is normally what
is intended. Flags —a and -o are nowadays declared obsolescent by POSIX and should
not be used.

Use of ‘brace expansion’, e.g.,
rm -f src/*.{o,s0,d}
is not portable.

The -o flag for set in shell scripts is optional in POSIX and not supported on all the
platforms R is used on.

The variable ‘OSTYPE’ is shell-specific and its values are rather unpredictable and may
include a version such as ‘darwin19.0’: ‘uname° is often what is intended (with com-
mon values ‘Darwin’, ‘Linux’ and ‘Sun0S’).

On macOS which shell /bin/sh invokes is user- and platform-dependent: it might be
bash version 3.2, dash or zsh (for new accounts it is zsh, for accounts ported from
Mojave or earlier it is usually bash).

e Make use of the abilities of your compilers to check the standards-conformance of your
code. For example, gcc, clang and gfortran™ can be used with options -Wall -
pedantic to alert you to potential problems. This is particularly important for C++,
where g++ -Wall -pedantic will alert you to the use of some of the GNU extensions
which fail to compile on most other C++ compilers. If R was not configured accordingly,
one can achieve this via personal Makevars files. See Section “Customizing package
compilation” in R Installation and Administration,

Portable C++ code needs to follow both the 2011, 2014 and 2017 standards or to specify
C+11/14/17/20 where available (which is not the case on all R platforms). Currently
C++20 support is patchy across R platforms.

If using Fortran with the GNU compiler, use the flags -std=£f95 -Wall -pedantic
which reject most GNU extensions and features from later standards. (Although R
only requires Fortran 90, gfortran does not have a way to specify that standard.)
Also consider -std=£2008 as some recent compilers have Fortran 2008 or even 2018 as
the minimum supported standard.

Not all common R platforms conform to the expected standards, e.g. C99 for C code.
One common area of problems is the *printf functions where Windows did not sup-
port %11d, %Lf and similar formats (and has its own formats such as %I64d for 64-bit
integers). It is very rare to need to output such types, and 64-bit integers can usually
be converted to doubles for output. However, the C11 standard (section 7.8.1) in-
cludes PRIxNN macros™ in C header inttypes.h (for example PRId64) so the portable
approach is to test for these and if not available provide emulations in the package.

As from macOS 11 (late 2020), its C compiler sets the flag -Werror=implicit-
function-declaration by default which forces stricter conformance to (€99.
This can be used on other platforms with gcc or clang. If your package has a
(autoconf-generated) configure script, try installing it whilst using this flag,

"7 it was not in the Bourne shell, and was not supported by Solaris 10.

78 https://fortranwiki.org/fortran/show/Modernizing+0ld+Fortran may help explain some of the
warnings from gfortran -Wall -pedantic.

™ These are optional because the corresponding types are, but must be provided if the types are.

https://fortranwiki.org/fortran/show/Modernizing+Old+Fortran

Chapter 1: Creating R packages 66

and read through the config.log file — compilation warnings and errors can lead
to features which are present not being detected. (If possible do this on several
platforms.)

e R CMD check performs some checks for non-portable compiler/linker flags in
src/Makevars. However, it cannot check the meaning of such flags, and some
are commonly accepted but with compiler-specific meanings. There are other
non-portable flags which are not checked, nor are src/Makefile files and makefiles in
sub-directories. As a comment in the code says

It is hard to think of anything apart from -I* and -D* that is safe for
general use . ..

although -pthread is pretty close to portable. (Option -U is portable but little use
on the command line as it will only cancel built-in defines (not portable) and those
defined earlier on the command line (R does not use any).)

People have used configure to customize src/Makevars, including for specific com-
pilers. This is unsafe for several reasons. First, unintended compilers might meet the
check—for example, several compilers other than GCC identify themselves as ‘GCC’
whilst being only partially conformant. Second, future versions of compilers may be-
have differently (including updates to quite old series) so for example -Werror (and
specializations) can make a package non-installable under a future version. Third, using
flags to suppress diagnostic messages can hide important information for debugging on
a platform not tested by the package maintainer. (R CMD check can optionally report
on unsafe flags which were used.)

Avoid the use of -march and especially -march=native. This allows the compiler to
generate code that will only run on a particular class of CPUs (that of the compiling
machine for ‘native’). People assume this is a ‘minimum’ CPU specification, but
that is not how it is documented for gcc (it is accepted by clang but apparently it is
undocumented what precisely it does, and it can be accepted and may be ignored for
other compilers). (For personal use -mtune is safer, but still not portable enough to be
used in a public package.) Not even gcc supports ‘native’ for all CPUs, and it can do
surprising things if it finds a CPU released later than its version.

e Do be very careful with passing arguments between R, C and Fortran code. In par-
ticular, long in C will be 32-bit on some R platforms (including 64-bit Windows), but
64-bit on most modern Unix and Linux platforms. It is rather unlikely that the use
of long in C code has been thought through: if you need a longer type than int you
should use a configure test for a C99/C++11 type such as int_fast64_t (and failing
that, long long) and typedef your own type, or use another suitable type (such as
size_t, but beware that is unsigned and ssize_t is not portable).

It is not safe to assume that long and pointer types are the same size, and they are
not on 64-bit Windows. If you need to convert pointers to and from integers use the
C99/C++11 integer types intptr_t and uintptr_t (in the headers <stdint.h> and
<cstdint>: they are not required to be implemented by the standards but are used in
C code by R itself).

Note that integer in Fortran corresponds to int in C on all R platforms.

e Under no circumstances should your compiled code ever call abort or exit®’: these

Chapter 1: Creating R packages 67

terminate the user’s R process, quite possibly losing all unsaved work. One usage that
could call abort is the assert macro in C or C++ functions, which should never be
active in production code. The normal way to ensure that is to define the macro NDEBUG,
and R CMD INSTALL does so as part of the compilation flags. Beware of including headers
(including from other packages) which could undefine it, now or in future versions.
If you wish to use assert during development. you can include -UNDEBUG in PKG_
CPPFLAGS or #undef it in your headers or code files. Note that your own src/Makefile
or makefiles in sub-directories may also need to define NDEBUG.

This applies not only to your own code but to any external software you compile in or
link to.

Compiled code should not write to stdout or stderr and C++ and Fortran I/O should
not be used. As with the previous item such calls may come from external software
and may never be called, but package authors are often mistaken about that.

Compiled code should not call the system random number generators such as rand,
drand48 and random®!, but rather use the interfaces to R’s RNGs described in
Section 6.3 [Random numbers|, page 186. In particular, if more than one package
initializes a system RNG (e.g. via srand), they will interfere with each other. This
applies also to Fortran 90’s random_number and random_seed, and Fortran 2018’s
random_init. And to GNU Fortran’s rand, irand and srand. Except for drand4s,
what PRNG these functions use is implementation-dependent.

Nor should the C++11 random number library be used nor any other third-party random
number generators such as those in GSL.

Use of sprintf and vsprintf is regarded as a potential security risk and warned about
on some platforms.®? R CMD check reports if any calls are found.

Errors in memory allocation and reading/writing outside arrays are very common
causes of crashes (e.g., segfaults) on some machines. See Section 4.3 [Checking memory
access|, page 123, for tools which can be used to look for this.

Many platforms will allow unsatisfied entry points in compiled code, but will crash the
application (here R) if they are ever used. Some (notably Windows) will not. Looking
at the output of

nm -pg mypkg.so

and checking if any of the symbols marked U is unexpected is a good way to avoid this.
Linkers have a lot of freedom in how to resolve entry points in dynamically-loaded
code, so the results may differ by platform. One area that has caused grief is packages
including copies of standard system software such as 1ibz (especially those already
linked into R). In the case in point, entry point gzgets was sometimes resolved against
the old version compiled into the package, sometimes against the copy compiled into R
and sometimes against the system dynamic library. The only safe solution is to rename
the entry points in the copy in the package. We have even seen problems with entry
point name myprintf, which is a system entry point®® on some Linux systems.

80
81

82
83

or where supported the variants _Exit and _exit.

This and srandom are in any case not portable. They are in POSIX but not in the C99 standard, and
not available on Windows.

including macOS as from version 13.

in libselinux.

Chapter 1: Creating R packages 68

A related issue is the naming of libraries built as part of the package installation.
macOS and Windows have case-insensitive file systems, so using

-L. -1LZ4

in PKG_LIBS will match 1iblz4. And -L. only appends to the list of searched locations,
and 1iblz4 might be found in an earlier-searched location (and has been). The only
safe way is to give an explicit path, for example

./1iblLZ4.a

Conflicts between symbols in DLLs are handled in very platform-specific ways. Good
ways to avoid trouble are to make as many symbols as possible static (check with nm
-pg), and to use names which are clearly tied to your package (which also helps users
if anything does go wrong). Note that symbol names starting with R_ are regarded as
part of R’s namespace and should not be used in packages.

It is good practice for DLLs to register their symbols (see Section 5.4 [Registering
native routines|, page 142), restrict visibility (see Section 6.16 [Controlling visibility],
page 207) and not allow symbol search (see Section 5.4 [Registering native routines|,
page 142). It should be possible for a DLL to have only one visible symbol, R_init_
pkgname, on suitable platforms®®, which would completely avoid symbol conflicts.

It is not portable to call compiled code in R or other packages via .Internal, .C,
.Fortran, .Call or .External, since such interfaces are subject to change without
notice and will probably result in your code terminating the R process.

Do not use (hard or symbolic) file links in your package sources. Where possible R CMD
build will replace them by copies.

If you do not yourself have a Windows system, consider submitting your source package
to WinBuilder (https://win-builder.r-project.org/) before distribution. If you
need to check on an M1 Mac, there is a check service at https://mac.r-project.
org/macbuilder/submit.html.

It is bad practice for package code to alter the search path using library, require or
attach and this often does not work as intended. For alternatives, see Section 1.1.3.1
[Suggested packages|, page 13, and with().

Examples can be run interactively via example as well as in batch mode when checking.
So they should behave appropriately in both scenarios, conditioning by interactive ()
the parts which need an operator or observer. For instance, progress bars®® are only
appropriate in interactive use, as is displaying help pages or calling View() (see below).

Be careful with the order of entries in macros such as PKG_LIBS. Some linkers will
re-order the entries, and behaviour can differ between dynamic and static libraries.
Generally -L options should precede®® the libraries (typically specified by -1 options)
to be found from those directories, and libraries are searched once in the order they
are specified. Not all linkers allow a space after -L .

Care is needed with the use of LinkingTo. This puts one or more directories on the in-
clude search path ahead of system headers but (prior to R 3.4.0) after those specified in

84
85
86

At least Linux and Windows, but not macOS.
except perhaps the simplest kind as used by download.file() in non-interactive use.
Whereas the GNU linker reorders so -L options are processed first, the Solaris one did not.

https://win-builder.r-project.org/
https://mac.r-project.org/macbuilder/submit.html
https://mac.r-project.org/macbuilder/submit.html

Chapter 1: Creating R packages 69

the CPPFLAGS macro of the R build (which normally includes -I/usr/local/include,
but most platforms ignore that and include it with the system headers).

Any confusion would be avoided by having LinkingTo headers in a directory named
after the package. In any case, name conflicts of headers and directories under package
include directories should be avoided, both between packages and between a package
and system and third-party software.

e The ar utility is often used in makefiles to make static libraries. Its modifier u is
defined by POSIX but is disabled in GNU ar on some Linux distributions which use
‘deterministic mode’. The safest way to make a static library is to first remove any
existing file of that name then use ar -cr and then ranlib if needed (which is system-
dependent: on most systems®” ar always maintains a symbol table). The POSIX
standard says options should be preceded by a hyphen (as in -cr), although most OSes
accept them without. Note that on some systems ar —cr must have at least one file
specified.

The s modifier (to replace a separate call to ranlib) is required by X/OPEN but not
POSIX, so ar -crs is not portable.

e The strip utility is platform-specific (and CRAN prohibits removing debug symbols).
For example the options --strip-debug and --strip-unneeded of the GNU version
are not supported on macOS: the POSIX standard for strip does not mention any
options, and what calling it without options does is platform-dependent. Stripping a
.so file could even prevent it being dynamically loaded into R on an untested platform.
1d -S invokes strip --strip-debug for GNU 14 (and similarly on macOS) but is not
portable: in particular on Solaris it did something completely different and took an
argument.

e Some people have a need to set a locale. Locale names are not portable, and e.g.
‘fr_FR.utf8’ is commonly used on Linux but not accepted on macOS. ‘fr_FR.UTF-8’
is more portable, being accepted on recent Linux, AIX, FreeBSD, macOS and Solaris
(at least). However, some Linux distributions micro-package, so locales defined by glibc
(including these examples) may not be installed.

e Avoid spaces in file names, not least as they can cause difficulties for external tools. An
example was a package with a knitr (https://CRAN.R-project.org/package=knitr)
vignette that used spaces in plot names: this caused some older versions of pandoc to
fail with a baffling error message.

Non-ASCII filenames can also cause problems (particularly in non-UTF-8 locales).

e Take care in naming IATEX macros (also known as ‘commands’) in vignette sources:
if these are also defined in a future version of one of the INTEX packages used there
will be a fatal error. One instance in 2021 was package ‘hyperref’ newly defining ‘\C’,
‘\F’, ‘\G’, ‘\U’ and ‘\textapprox’. If you are confident that your definitions will be the
only ones relevant you can use ‘\renewcommand’ but it is better to use names clearly
associated with your package.

e Make sure that any version requirement for Java code is both declared in the
‘SystemRequirements’ field®® and tested at runtime (not least as the Java installation

87 some versions of macOS did not.

88 If a Java interpreter is required directly (not via rJava (https://CRAN.R-project.org/package=rJava))
this must be declared and its presence tested like any other external command.

https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rJava

Chapter 1: Creating R packages 70

when the package is installed might not be the same as when the package is run and
will not be for binary packages).

When specifying a minimum Java version please use the official version names, which
are (confusingly)

1.11.21.31.45.067 89 10 11 12 13 14 15 16 17 18 19 20 21

and as from 2018 a year.month scheme such as ‘18.9’ is also in use. Fortunately only
the integer values are likely to be relevant. If at all possible, use one of the LTS versions
(8,11, 17, 21 . ..) as the minimum version. The preferred form of version specification

is
SystemRequirements: Java (>= 11)

A suitable test for Java at least version 8 for packages using rJava (https://CRAN.
R-project.org/package=rJava) would be something like
.jinit ()
jv <= .jcall("java/lang/System", "S", "getProperty", "java.runtime.version")
if (substr(jv, 1L, 2L) == "1.") {
jvn <- as.numeric(pasteO(strsplit(jv, "[.1")[[1L]1]1[1:2], collapse = "."))
if(jvn < 1.8) stop("Java >= 8 is needed for this package but not available")
}

Java 9 changed the format of this string (which used to be something like
1.8.0_292-b10’); Java 11 gave jv as ‘11+28’ whereas Java 11.0.11 gave ‘11.0.11+9’.
(https://openjdk.org:443/jeps/322 details the current scheme. Note that it is
necessary to allow for pre-releases like ‘11-ea+22’.)

Note too that the compiler used to produce a jar can impose a minimum Java version,
often resulting in an arcane message like

java.lang.UnsupportedClassVersionError: ... Unsupported major.minor version 52.0

(Where https://en.wikipedia.org/wiki/Java_class_file maps class-file version
numbers to Java versions.) Compile with something like javac -target 11 to ensure
this is avoided. Note this also applies to packages distributing (or even downloading)
compiled Java code produced by others, so their requirements need to be checked (they
are often not documented accurately) and accounted for. It should be possible to check
the class-file version via command-line utility javap, if necessary after extracting the
.class files from a .jar archive. For example,

jar xvf some.jar
javap -verbose path/to/some.class | grep major

Some packages have stated a requirement on a particular JDK, but a package should
only be requiring a JRE unless providing its own Java interface.

Java 8 is still in widespread use (and may remain so because of licence changes and
support on older OSes: OpenJDK has security support until March 2026). On the
other hand, newer platforms may only have support for recent versions of Java: for
‘arm64’ macOS the first officially supported version was 17.

e A package with a hard-to-satisfy system requirement is by definition not portable,
annoyingly so if this is not declared in the ‘SystemRequirements’ field. The most
common example is the use of pandoc, which is only available for a very limited range

https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava
https://openjdk.org:443/jeps/322
https://en.wikipedia.org/wiki/Java_class_file

Chapter 1: Creating R packages 71

of platforms (and has onerous requirements to install from source) and has capabilities®®
that vary by build but are not documented. Several recent versions of pandoc for macOS
did not work on R’s then target of High Sierra (and this too was undocumented).
Another example is the Rust compilation system (cargo and rustc).

Usage of external commands should always be conditional on a test for presence (per-
haps using Sys.which), as well as declared in the ‘SystemRequirements’ field. A pack-
age should pass its checks without warnings nor errors without the external command
being present.

An external command can be a (possibly optional) requirement for an imported or
suggested package but needed for examples, tests or vignettes in the package itself.
Such usages should always be declared and conditional.

Interpreters for scripting languages such as Perl, Python and Ruby need to be de-
clared as system requirements and used conditionally: for example macOS 10.16 was
announced not to have them (but released as macOS 11 with them); later it was
announced that macOS 12.3 does not have Python 2 and only a minimal install of
Python 3 is included. Python 2 has passed end-of-life and been removed from many
major distributions. Support for Rust or Go cannot be assumed.

Command cmake is not commonly installed, and where it is, it might not
be on the path. In particular, the most common location on macOS is
/Applications/CMake.app/Contents/bin/cmake and that should be looked for if
cmake is not found on the path.

e Be sure to use portable encoding names: none of utf8, mac and macroman is portable.
See the help for file for more details.

e Do not invoke R by plain R, Rscript or (on Windows) Rterm in your examples, tests,
vignettes, makefiles or other scripts. As pointed out in several places earlier in this
manual, use something like

"$(R_HOME) /bin/Rscript"
"$ (R_HOME) /bin$ (R_ARCH_BIN) /Rterm"

with appropriate quotes (as, although not recommended, R_HOME can contain spaces).

e Do not use R_HOME in makefiles except when passing them to the shell. Specifically, do
not use R_HOME in the argument to include, as R_HOME can contain spaces. Quoting
the argument to include does not help. A portable and the recommended way to
avoid the problem of spaces in ${R_HOME} is using option -f of make. This is easy to do
with recursive invocation of make, which is also the only usual situation when R_HOME
is needed in the argument for include.

$(MAKE) -f "${R_HOME}/etc${R_ARCH}/Makeconf" -f Makefile.inner

e If distributing datasets involving date-times, consider if a time zone needs to be speci-
fied. The most portable way to distribute date-times is as objects of class "POSIXct"
and as these record the time in UTC, the time represented is independent of the time
zone: but how it is printed may not be. Objects of class "POSIX1t" should have a
"tzone" attribute. Dates (e.g, birthdays) are conventionally considered independently
of time zone.

89 For example, the ability to handle ‘https://’ URLs.

Chapter 1: Creating R packages 72

e If at all possible avoid any Internet access during package installation. Installation
and use may well be on different machines/accounts and those allowed to install soft-
ware may have no Internet access, and being self-contained helps ensure long-term
reproducibility.

Do be careful in what your tests (and examples) actually test. Bad practice seen in
distributed packages include:

e [t is not reasonable to test the time taken by a command: you cannot know how
fast or how heavily loaded an R platform might be. At best you can test a ratio
of times, and even that is fraught with difficulties and not advisable: for example,
the garbage collector may trigger at unpredictable times following heuristics that may
change without notice.

e Do not test the exact format of R messages (from R itself or from other packages):
They change, and they can be translated.

Packages have even tested the exact format of system error messages, which are
platform-dependent and perhaps locale-dependent. For example, in late 2021 libcurl
changed its warning/error messages, including when URLs are not found.

e If you use functions such as View, remember that in testing there is no one to look at
the output. It is better to use something like one of

if (interactive()) View(obj) else print(head(obj))
if (interactive()) View(obj) else str(obj)

e Be careful when comparing file paths. There can be multiple paths to a single file, and
some of these can be very long character strings. If possible canonicalize paths before
comparisons, but study ?normalizePath to be aware of the pitfalls.

e Only test the accuracy of results if you have done a formal error analysis. Things such
as checking that probabilities numerically sum to one are silly: numerical tests should
always have a tolerance. That the tests on your platform achieve a particular tolerance
says little about other platforms. R is configured by default to make use of long doubles
where available, but they may not be available or be too slow for routine use. Most R
platforms use ‘ix86’ or ‘x86_64" CPUs: these may use extended precision registers on
some but not all of their FPU instructions. Thus the achieved precision can depend
on the compiler version and optimization flags—our experience is that 32-bit builds
tend to be less precise than 64-bit ones. But not all platforms use those CPUs, and
not all?® which use them configure them to allow the use of extended precision. In
particular, current ARM CPUs do not have extended precision nor long doubles, and
clang currently has long double the same as double on all ARM CPUs. On the other
hand some CPUs have higher-precision modes which may be used for long double,
notably 64-bit PowerPC and Sparc.

If you must try to establish a tolerance empirically, configure and build R with
--disable-long-double and use appropriate compiler flags (such as -ffloat-store
and -fexcess-precision=standard for gcc, depending on the CPU type’) to
mitigate the effects of extended-precision calculations. The platform most often seen

90 Not doing so is the default on Windows, overridden for the R executables.
91 These are not needed for the default compiler settings on ‘x86_64’ but are likely to be needed on ‘1ix86’.

Chapter 1: Creating R packages 73

to give different numerical results is ‘arm64’ macOS, so be sure to include that in any
empirical determination.

Tests which involve random inputs or non-deterministic algorithms should normally set
a seed or be tested for many seeds.

e Tests should use options(warn = 1) as reporting
There were 22 warnings (use warnings() to see them)
is pointless, especially for automated checking systems.

e If your package uses dates/times, ensure that it works in all timezones, especially those
near boundaries (problems have most often be seen in ‘Europe/London’ (zero offset in
Winter) and ‘Pacific/Auckland’, near enough the International Date line) and with
offsets not in whole hours (Adelaide, Chatham Islands, ...). More extreme examples
are ‘Africa/Conakry’ (permanent UTC), ‘Asia/Calcutta’ (no DST, permanent half-
hour offset) and ‘Pacific/Kiritimati’(no DST, more than 12 hours ahead of UTC).

1.6.1 PDF size

There are a several tools available to reduce the size of PDF files: often the size can be
reduced substantially with no or minimal loss in quality. Not only do large files take up
space: they can stress the PDF viewer and take many minutes to print (if they can be
printed at all).

qpdf (https://qpdf .sourceforge.io/) can compress losslessly. It is fairly readily
available (e.g. it has binaries for Windows and packages in Debian/Ubuntu/Fedora, and
is installed as part of the CRAN macOS distribution of R). R CMD build has an option to
run qpdf over PDF files under inst/doc and replace them if at least 10Kb and 10% is
saved. The full path to the gpdf command can be supplied as environment variable R_QPDF
(and is on the CRAN binary of R for macOS). It seems MiKTeX does not use PDF object
compression and so gpdf can reduce considerably the sizes of files it outputs: MiKTeX’s
defaults can be overridden by code in the preamble of an Sweave or KTEX file — see how
this is done for the R reference manual at https://svn.r-project.org/R/trunk/doc/
manual/refman.top.

Other tools can reduce the size of PDFs containing bitmap images at excessively high
resolution. These are often best re-generated (for example Sweave defaults to 300 ppi, and
100-150 is more appropriate for a package manual). These tools include Adobe Acrobat
(not Reader), Apple’s Preview”? and Ghostscript (which converts PDF to PDF by

ps2pdf options -dAutoRotatePages=/None -dPrinted=false in.pdf out.pdf
and suitable options might be

-dPDFSETTINGS=/ebook
-dPDFSETTINGS=/screen

See https://ghostscript.readthedocs.io/en/latest/VectorDevices.html for more
such and consider all the options for image downsampling). There have been examples in
CRAN packages for which current versions of Ghostscript produced much bigger reductions
than earlier ones (e.g. at the upgrades from 9.50 to 9.52, from 9.55 to 9.56 and then to
10.00.0).

92 Select ‘Save as’, and select ‘Reduce file size’ from the ‘Quartz filter’ menu’: this can be accessed in other
ways, for example by Automator.

https://qpdf.sourceforge.io/
https://svn.r-project.org/R/trunk/doc/manual/refman.top
https://svn.r-project.org/R/trunk/doc/manual/refman.top
https://ghostscript.readthedocs.io/en/latest/VectorDevices.html

Chapter 1: Creating R packages 74

We come across occasionally large PDF files containing excessively complicated figures
using PDF vector graphics: such figures are often best redesigned or failing that, output as
PNG files.

Option --compact-vignettes to R CMD build defaults to value ‘qpdf’: use ‘both’ to
try harder to reduce the size, provided you have Ghostscript available (see the help for
tools: : compactPDF).

1.6.2 Check timing

There are several ways to find out where time is being spent in the check process. Start by
setting the environment variable _R_CHECK_TIMINGS_ to ‘0’. This will report the total CPU
times (not Windows) and elapsed times for installation and running examples, tests and
vignettes, under each sub-architecture if appropriate. For tests and vignettes, it reports the
time for each as well as the total.

Setting _R_CHECK_TIMINGS_ to a positive value sets a threshold (in seconds elapsed time)
for reporting timings.

If you need to look in more detail at the timings for examples, use option --timings
to R CMD check (this is set by --as-cran). This adds a summary to the check output
for all the examples with CPU or elapsed time of more than 5 seconds. It produces a file
mypkg.Rcheck/mypkg-Ex.timings containing timings for each help file: it is a tab-delimited
file which can be read into R for further analysis.

Timings for the tests and vignette runs are given at the bottom of the corresponding log
file: note that log files for successful vignette runs are only retained if environment variable
_R_CHECK_ALWAYS_LOG_VIGNETTE_QUTPUT_ is set to a true value.

1.6.3 Encoding issues

The issues in this subsection have been much alleviated by the change in R 4.2.0 to running
the Windows port of R in a UTF-8 locale where available. However, Windows users might
be running an earlier version of R on an earlier version of Windows which does not support
UTF-8 locales.

Care is needed if your package contains non-ASCII text, and in particular if it is in-
tended to be used in more than one locale. It is possible to mark the encoding used in the
DESCRIPTION file and in .Rd files, as discussed elsewhere in this manual.

First, consider carefully if you really need non-ASCII text. Some users of R will only be
able to view correctly text in their native language group (e.g. Western European, Eastern
European, Simplified Chinese) and ASCIL.?3. Other characters may not be rendered at all,
rendered incorrectly, or cause your R code to give an error. For .Rd documentation, marking
the encoding and including ASCII transliterations is likely to do a reasonable job. The set
of characters which is commonly supported is wider than it used to be around 2000, but
non-Latin alphabets (Greek, Russian, Georgian, . ..) are still often problematic and those
with double-width characters (Chinese, Japanese, Korean, emoji) often need specialist fonts
to render correctly.

93 except perhaps some special characters such as backslash and hash which may be taken over for currency

symbols.

Chapter 1: Creating R packages 75

Several CRAN packages have messages in their R code in French (and a few in German).
A better way to tackle this is to use the internationalization facilities discussed elsewhere
in this manual.

Function showNonASCIIfile in package tools can help in finding non-ASCII bytes in
files.

There is a portable way to have arbitrary text in character strings (only) in your R
code, which is to supply them in Unicode as ‘\uxxxx’ escapes (or, rarely needed except for
emojis, ‘\Uxxxxxxxx escapes). If there are any characters not in the current encoding the
parser will encode the character string as UTF-8 and mark it as such. This applies also to
character strings in datasets: they can be prepared using ‘\uxxxx’ escapes or encoded in
UTF-8 in a UTF-8 locale, or even converted to UTF-8 via iconv(). If you do this, make
sure you have ‘R (>=2.10)’ (or later) in the ‘Depends’ field of the DESCRIPTION file.

R sessions running in non-UTF-8 locales will if possible re-encode such strings for display
(and this is done by RGui on older versions of Windows, for example). Suitable fonts will
need to be selected or made available®® both for the console/terminal and graphics devices
such as ‘X11()’ and ‘windows()’. Using ‘postscript’ or ‘pdf’ will choose a default 8-bit
encoding depending on the language of the UTF-8 locale, and your users would need to be
told how to select the ‘encoding’ argument.

Note that the previous two paragraphs only apply to character strings in R code. Non-
ASCII characters are particularly prevalent in comments (in the R code of the package,
in examples, tests, vignettes and even in the NAMESPACE file) but should be avoided there.
Most commonly people use the Windows extensions to Latin-1 (often directional single and
double quotes, ellipsis, bullet and en and em dashes) which are not supported in strict
Latin-1 locales nor in CJK locales on Windows. A surprisingly common misuse is to use a
right quote in ‘don’t’ instead of the correct apostrophe.

Datasets can include marked UTF-8 or Latin-1 character strings. As R is nowadays
unlikely to be run in a Latin-1 or Windows’ CP1252 locale, for performance reasons these
should be converted to UTF-8.

If you want to run R CMD check on a Unix-alike over a package that sets a package
encoding in its DESCRIPTION file and do not use a UTF-8 locale you may need to specify
a suitable locale via environment variable R_ENCODING_LOCALES. The default is equivalent
to the value

"latinl=en_US:latin2=pl_PL:UTF-8=en_US.UTF-8:latin9=fr_FR.is08859150euro"

(which is appropriate for a system based on glibc: macOS requires latin9=fr_
FR.IS08859-15) except that if the current locale is UTF-8 then the package code is
translated to UTF-8 for syntax checking, so it is strongly recommended to check in a
UTF-8 locale.

1.6.4 Portable C and C++ code

Writing portable C and C++ code is mainly a matter of observing the standards (C99, C++14
or where declared C++11/17/20) and testing that extensions (such as POSIX functions) are
supported. Do make maximal use of your compiler diagnostics — this typically means

94 Typically on a Unix-alike this is done by telling fontconf ig where to find suitable fonts to select glyphs
from.

Chapter 1: Creating R packages 76

using flags -Wall and -pedantic for both C and C++ and additionally ~-Werror=implicit-
function-declaration and -Wstrict-prototypes for C (on some platforms and compiler
versions) these are part of -Wall or -pedantic).

C++ standards: From version 3.6.0 (3.6.2 on Windows), R defaulted to C++11 where
available®®; from R 4.1.0 to C++14 and from R 4.3.0 to C++17 (where available). However,
in earlier versions the default standard was that of the compiler used, often C++98 or C++14,
and the default is likely to change in future. For maximal portability a package should either
specify a standard (see Section 1.2.4 [Using C++ code|, page 38) or be tested under all of
C++11, C++98, C++14 and C++17. (Specifying C++14 or later will limit portability.)

Note that the ‘TR1’ C++ extensions are not part of any of these standards and the
<trl/name> headers are not supplied by some of the compilers used for R, including on
macOS. (Use the C++11 versions instead.)

A common error is to assume recent versions of compilers or OSes. In production envi-
ronments ‘long term support’ versions of OSes may be in use for many years,”® and their
compilers may not be updated during that time. For example, GCC 4.8 was still in use in
2022 and could be (in RHEL 7) until 2028: that supports neither C++14 nor C++17.

The POSIX standards only require recently-defined functions to be declared if certain
macros are defined with large enough values, and on some compiler/OS combinations®” they
are not declared otherwise. So you may need to include something like one of

#define _XOPEN_SOURCE 600
or

#ifdef __GLIBC__
define _POSIX_C_SOURCE 200809L
#endif

before any headers. (strdup, strncasecmp and strnlen are such functions — there were
several older platforms which did not have the POSIX 2008 function strnlen.)

However, some common errors are worth pointing out here. It can be helpful to look up
functions at https://cplusplus.com/reference/ or https://en.cppreference.com/w/
and compare what is defined in the various standards.

More care is needed for functions such as mallinfo which are not specified by any of
these standards—hopefully the man page on your system will tell you so. Searching online
for such pages for various OSes (preferably at least Linux and macOS, and the FreeBSD
manual pages at https://man.freebsd.org/cgi/man.cgi allow you to select many OSes)
should reveal useful information but a configure script is likely to be needed to check
availability and functionality.

Both the compiler and OS (via system header files, which may differ by architecture even
for nominally the same OS) affect the compilability of C/C++ code. Compilers from the

95 which it is on all known platforms, and is required as from R 4.0.0

96 Ubuntu provides 5 years of support (but people were running 14.04 after 7 years) and RHEL provides
10 years full support and up to 14 with extended support.

97 This is seen on Linux, Solaris and FreeBSD, although each has other ways to turn on all extensions,
e.g. defining _GNU_SOURCE, __EXTENSIONS__ or _BSD_SOURCE: the GCC compilers by default define _GNU_
SOURCE unless a strict standard such as —std=c99 is used. On macOS extensions are declared unless one
of these macros is given too small a value.

https://cplusplus.com/reference/
https://en.cppreference.com/w/
https://man.freebsd.org/cgi/man.cgi

Chapter 1: Creating R packages 7

GCC, LLVM (clang and flang) Intel and Oracle Developer Studio suites have been used
with R, and both LLVM clang and Oracle have more than one implementation of C++
headers and library. The range of possibilities makes comprehensive empirical checking
impossible, and regrettably compilers are patchy at best on warning about non-standard
code.

e Mathematical functions such as sqrt are defined in C++11 for floating-point arguments:
float, double, long double and possibly more. The standard specifies what happens
with an argument of integer type but this is not always implemented, resulting in a
report of ‘overloading ambiguity’: this was commonly seen on Solaris, but for pow also
seen on macOS and other platforms using clang++.

A not-uncommonly-seen problem is to mistakenly call floor (x/y) or ceil(x/y) for
int arguments x and y. Since x/y does integer division, the result is of type int and
‘overloading ambiguity’ may be reported. Some people have (pointlessly) called floor
and ceil on arguments of integer type, which may have an ‘overloading ambiguity’.

A surprising common misuse is things like pow(10, -3): this should be the con-
stant 1e-3. Note that there are constants such as M_SQRT2 defined vie Rmath.h"®
for sqrt (2.0), frequently mis-coded as sqrt(2).

e Function fabs is defined only for floating-point types, except in C++11 and later which
have overloads for std::fabs in <cmath> for integer types. Function abs is defined
in C99’s <stdlib.h> for int and in C++’s <cstdlib> for integer types, overloaded
in <cmath> for floating-point types. C++11 has additional overloads for std::abs
in <cmath> for integer types. The<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>