Lognormal parameters for mode and upper quantile
Mode: \(mode = e^{\mu - \sigma^2}\)
Upper quantile: \(upper = e^{\mu + f \sigma}\).
log transformed: \[
m = \mu - \sigma^2 \\
u = \mu + f \sigma
\] Can solve for \(\sigma\):
\[
u - m = f \sigma + \sigma^2 \\
0 = \sigma^2 + f \sigma - (u-m)
\] Solution for quadratic equations of the form \(x^2 + px + q\) are \(x_{1,1} = -p/2 \pm \sqrt{p^2/4 - q}\).
\[
\sigma_{1,2} = -f/2 \pm \sqrt{f^2/4 + (u-m)}
\]
Since \(u\) is an upper quantile, \((u-m)>0\) and the root is larger than \(f/2\). Hence, there is one positive solution:
\[
\sigma = -f/2 + \sqrt{f^2/4 + (u-m)}
\\
\mu = m + \sigma^2
\]
Lognormal parameters for Mean and upper quantile
Mode: \(mean = e^{\mu + \sigma^2/2}\)
Upper quantile: \(upper = e^{\mu + f \sigma}\).
log transformed: \[
m = \mu + \sigma^2/2 \\
u = \mu + f \sigma
\] Can solve for \(\sigma\):
\[
u - m = f \sigma - \sigma^2/2 \\
0 = \sigma^2 - 2 f \sigma + 2(u-m) \\
\sigma_{1,2} = f \pm \sqrt{f^2 - 2(u-m)}
\]
Hence, there are two positive solutions. We are interested in the one that has the smaller standard deviation.
\[
\sigma = f - \sqrt{f^2 - 2(u-m)}
\\
\mu = m - \sigma^2/2
\]
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyBMb2dub3JtYWwgcGFyYW1ldGVycyBmb3IgIG1vZGUgYW5kIHVwcGVyIHF1YW50aWxlCgpNb2RlOiAkbW9kZSA9IGVee1xtdSAtIFxzaWdtYV4yfSQKClVwcGVyIHF1YW50aWxlOiAkdXBwZXIgPSBlXntcbXUgKyBmIFxzaWdtYX0kLgoKbG9nIHRyYW5zZm9ybWVkOgokJAptID0gXG11IC0gXHNpZ21hXjIgXFwKdSA9IFxtdSArIGYgXHNpZ21hCiQkCkNhbiBzb2x2ZSBmb3IgJFxzaWdtYSQ6CgokJAp1IC0gbSA9IGYgXHNpZ21hICsgXHNpZ21hXjIgXFwKMCA9IFxzaWdtYV4yICsgZiBcc2lnbWEgLSAodS1tKQokJApTb2x1dGlvbiBmb3IgcXVhZHJhdGljIGVxdWF0aW9ucyBvZiB0aGUgZm9ybSAkeF4yICsgcHggKyBxJCBhcmUKJHhfezEsMX0gPSAtcC8yIFxwbSBcc3FydHtwXjIvNCAtIHF9JC4KCiQkClxzaWdtYV97MSwyfSA9IC1mLzIgXHBtIFxzcXJ0e2ZeMi80ICsgKHUtbSl9CiQkCgpTaW5jZSAkdSQgaXMgYW4gdXBwZXIgcXVhbnRpbGUsICQodS1tKT4wJCBhbmQgdGhlIHJvb3QgaXMgbGFyZ2VyIHRoYW4gJGYvMiQuCkhlbmNlLCB0aGVyZSBpcyBvbmUgcG9zaXRpdmUgc29sdXRpb246CgokJApcc2lnbWEgPSAtZi8yICsgXHNxcnR7Zl4yLzQgKyAodS1tKX0KXFwKXG11ID0gbSArIFxzaWdtYV4yCiQkCgoKIyBMb2dub3JtYWwgcGFyYW1ldGVycyBmb3IgIE1lYW4gYW5kIHVwcGVyIHF1YW50aWxlCgpNb2RlOiAkbWVhbiA9IGVee1xtdSArIFxzaWdtYV4yLzJ9JAoKVXBwZXIgcXVhbnRpbGU6ICR1cHBlciA9IGVee1xtdSArIGYgXHNpZ21hfSQuCgpsb2cgdHJhbnNmb3JtZWQ6CiQkCm0gPSBcbXUgKyBcc2lnbWFeMi8yIFxcCnUgPSBcbXUgKyBmIFxzaWdtYQokJApDYW4gc29sdmUgZm9yICRcc2lnbWEkOgoKJCQKdSAtIG0gPSBmIFxzaWdtYSAtIFxzaWdtYV4yLzIgXFwKMCA9IFxzaWdtYV4yIC0gMiBmIFxzaWdtYSArIDIodS1tKSBcXApcc2lnbWFfezEsMn0gPSBmIFxwbSBcc3FydHtmXjIgLSAyKHUtbSl9CiQkCgpIZW5jZSwgdGhlcmUgYXJlIHR3byBwb3NpdGl2ZSBzb2x1dGlvbnMuIFdlIGFyZSBpbnRlcmVzdGVkIGluIHRoZSBvbmUKdGhhdCBoYXMgdGhlIHNtYWxsZXIgc3RhbmRhcmQgZGV2aWF0aW9uLgoKJCQKXHNpZ21hID0gZiAtIFxzcXJ0e2ZeMiAtIDIodS1tKX0KXFwKXG11ID0gbSAtIFxzaWdtYV4yLzIKJCQK