Writing R Extensions in Rust

David B. Dahl
Department of Statistics
Brigham Young University
dahl@stat.byu.edu

1 Introduction

Novel methods in data science and statistics with supporting
software often have a broader impact than methods introduced
without software. Supporting software is typically written in
a high-level language, with performance-critical parts calling
libraries written in C, C++, FORTRAN, etc. We recommend
Rust for performance-critical components of a Python or R
package, and we specifically address developing Rust-based
R packages in this paper. Rust “empowers everyone to build
reliable and efficient software” as performant as C/C++. (See
The Computer Language Benchmarks Game.) Rust has been
rated the “most loved programming language” in the Stack
Overflow Annual Developer Survey every year since 2016.

This paper complements Writing R Extensions, the official
guide for writing R packages, for those who are familiar with
Rust and want to write a Rust-based R package. An R pack-
age named cargo|is on CRAN to aid development. It provides
complete bindings for all of R’s API, but idiomatic Rust func-
tions are also available and often avoid the need to directly
call R’s API. Examples on R packages on CRAN developed
using the cargo package include salso, caviarpd, and fangs,

The [rextendr| package provides another approach to de-
velop Rust-based R packages. It aims to provide extensive
automatic conversion between R types (e.g., vectors, lists,
data.frames, etc.) and Rust types, including handling thorny
issues such as R’s missing value NA and R’s fluidity in the stor-
age mode of vectors. The advantages of the cargo package’s
approach include its transparency, low overhead, extensibility,
and CRAN policy compliance.

We assume the toolchain for building R packages is in-
stalled. Use RTools/on Windows and follow these instructions
on MacOS. Also, install the cargo package from CRAN using
install.packages("cargo") and install the Rust toolchain
as show in file.show(system.file("template/INSTALL",
package="cargo")) or use cargo: :install().

2 Methods

2.1 Getting started

Start a new Rust-based R package using, for example,
cargo: :new_package("/path/to/package/foo") to generate
the foo package. Or, in RStudio, select "File — New
Project... — New Directory — Rust-based R Package (us-
ing cargo package)". The resulting package is a complete R
package with the typical directory structure, plus a few Rust-
specific items. The binary package does not depend on Rust.

2.2 Calling a Rust function

Note that there are several uses of .Call() among the scripts
in the R directory. The function in R/myrnorm.R, for example,
has .Call(.myrnorm, n, mean, sd) which executes the Rust
function myrnorm defined in src/rust/src/lib.rs:

mod registration;

1

2 use roxido::¥;

3

4 #[roxido]

5 fn myrnorm(n: Rval, mean: Rval, sd: Rval) -> Rval {

6 unsafe {

7 use rbindings::*;

8 use std::convert::TryFrom;

9 let (mean, sd) = (Rf_asReal(mean.®), Rf_asReal(sd.®));
10 let length = isize::try_from(Rf_asInteger(n.®)).unwrap(Q);
11 let vec = Rf_protect(Rf_allocVector(REALSXP, length));
12 let slice = Rval(vec).slice_mut_double().unwrap();

13 GetRNGstate();

14 for x in slice { *x = Rf_rnorm(mean, sd); }

15 PutRNGstate(Q);

16 Rf_unprotect(l);

17 Rval (vec)

18 }

19 3}

All Rust functions with the #[roxido] attribute take argu-
ments of type Rval and return a value of type Rval. Among
other things, the #[roxido] attribute wraps the body of the
function in a call to Rust’s std: :panic: :catch_unwind since
unwinding from Rust code into foreign code is undefined be-
havior and will likely crash R. When a panic is caught, it is
turned into an R error, showing the corresponding message in
the R console and giving the line number. The package de-
veloper is encouraged to study the definition of the #[roxido]
attribute in src/rust/roxido_macro/src/lib.rs.

2.3 Low-level interface to R’s API

The myrnorm function above illustrates how to directly use R’s
API in Rust. Note that the statement use rbindings: :* pro-
vides direct access to R’s API through Rust bindings. These
are automatically generated by the bindgen utility from R
header files. The documentation for the Rust bindings can
be browsed by running cargo: :api_documentation() when
the current working directory is the package root. Note that
most of the functions in the rbindings module require an SEXP
value, i.e., a pointer to R’s internal SEXPREC structure. When
calling R API functions, the SEXP must be extracted from an
Rval value, e.g., mean. 0 as in line 9. Conversely, when return-
ing from a function marked with #[roxido] attribute, wrap
the SEXP value x in Rval (x), as in line 17.

When calling an R API function, care should be taken so
that the R function does not throw an error. Otherwise, a long

https://www.rust-lang.org/
https://www.python.org/
https://www.r-project.org/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://insights.stackoverflow.com/survey/
https://insights.stackoverflow.com/survey/
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/package=cargo
https://cran.r-project.org/package=salso
https://cran.r-project.org/package=caviarpd
https://cran.r-project.org/package=fangs
https://cran.r-project.org/package=rextendr
https://cran.r-project.org/bin/windows/Rtools/
https://mac.r-project.org/tools/
https://posit.co/
https://rust-lang.github.io/rust-bindgen/

jump occurs over Rust stack frames, preventing Rust from do-
ing its usual freeing of heap allocations and leaking memory.
Care must also be taken when calling R API functions that
might catch a user interrupt because an interrupt also produces
a long jump. One R API function that catches interrupts, for
example, is the Rprint £ function for printing to R’s console.

2.4 High-level interface wrapping R’s API

To avoid the pitfalls of directly accessing R API func-
tions and to provide a more idiomatic Rust experience, the
cargo package also provides a high-level interface defined
in the r module. The high-level interface is not a compre-
hensive wrapper over R’s API, but it covers common use
cases and the developer can easily expand it by adding to
src/rust/roxido/src/r.rs in the package. The high-level
interface provides the check_user_interrupt function. The
rprintln! macro is analogous to Rust’s standard println!
macro, but prints to the R console and returns true if in-
terrupted. Much of the interface is provided by associated
functions for the Rval structure. For details, see the docu-
mentation using cargo: : api_documentation().

The package generated by the cargo: :new_package func-
tion provides examples of the high-level interface. Consider
the convolve2 function from Section 5.10.1 “Calling .Call” of
Writing R Extensions. A Rust translation based on the cargo
package is in src/rust/src/ lib.rs and shown here:

1 #[roxido]

2 fn convolve2(a: Rval, b: Rval) -> Rval {

3 let (a, xa) = a.coerce_double(pc).unwrap(Q);

4 let (b, xb) = b.coerce_double(pc).unwrap();

5 let (ab, xab) =

6 Rval::new_vector_double(a.len() + b.len() - 1, pc);
7 for xabi in xab.iter_mut() { *xabi = 0.0 }

8 for (i, xai) in xa.iter().enumerate() {

9 for (j, xbj) in xb.iter().enumerate() {
10 xab[i + j] += xai * xbj;

11 }

12 }

13 ab

14 }

Notice on lines 3 and 4 the calls to Rval’s coerce_double
method. The method returns either a tuple giving a (poten-
tially new) Rval and an £64 slice into it, or an error. A slice
into R’s memory for vectors of doubles, integers, and logicals
can be obtained without a potential memory allocation using
x.slice_*() or x.slice_mut_*(x), where x is an Rval.

Notice the argument to the coerce_double method on lines
3 and 4 is pc. The wrapper code provided by the #[roxido]
attribute includes let pc = &mut Pc::new(). Many of the
functions take a shared mutable reference to a Pc structure.
The purpose of Pc is to handle the bookkeeping associ-
ated with Rf_protect and Rf_unprotect calls related to R’s
garbage collection. When an instance of the Pc structure goes
out of scope, the Rust compiler automatically inserts a call
to its associated drop function which executes Rf_unprotect
using its interval protect counter. Not only does the developer
not need to manually track the number of protected items, the
developer does not need to worry about when a value should
be protected. If the method requires a shared mutable ref-
erence to a Pc, then protection is needed and automatically
handled.

2.5 Embedding Rust code in an R script

Beyond package development, the cargo package also sup-
ports defining functions by embedding Rust code directly in
an R script. This facilities quick experimentation and testing.
See the documentation for the cargo: :rust_fn function.

2.6 Workflow

The DESCRIPTION file has SystemRequirements: Cargo (>=
1.XX)..., where 1.XX is a version number, and this should
be updated when your code use features from a more recent
version of Rust. (One can use |cargo-msrv| to find the min-
imum supported Rust version.) As CRAN machines may
only occasionally update their Rust installation, one should be
somewhat conservative in adopting new Rust features.

The configure script compiles the Rust code in src/rust
to a static library using the run function from the
tools/cargo_run.R script. For the sake of CRAN policy
compliance, notice that the run function is configured to use
a temporary directory, only use two cores, and run in offline
mode. The static library is folded into the package’s shared
library through the src/Makevars file.

The cargo::prebuild function provides tools for
package maintenance. When Rust dependencies are
updated in the src/rust/Cargo.toml file, set the
working directory to the package root and run
cargo: :prebuild(c("authors", "vendor")). This updates
src/rust/vendor.tar.xz and, to help in manually up-
dating the Authors@R field of the DESCRIPTION file, cre-
ates the file authors-scratch.txt. When roxygen2
documentation is updated in a package’s R script, run
cargo: :prebuild("document"). When wanting to make
a new Rust function accessible from R (or when updat-
ing the number of arguments to a Rust function), add
the appropriate .Call to the package’s R code and run
cargo: :prebuild("register_calls").

3 Discussion

We end with a discussion of a few miscellaneous points to
keep in mind when developing. Care should be taken when
dealing with R’s special values. For example, R’s NA integer
value corresponds to Rust’s i32: :MIN. So, NA_integer_ * OL
in R equals NA_integer_ but equals ® in Rust. Associated
functions, such as Rval::is_na_integer, are provided to test
against R’s special values. See Section 5.10.3 “Missing and
special values” of Writing R Extensions|for a discussion.

Rust supports “fearless concurrency,” making it safe and
easy for Rust-based R packages to harness the power of mul-
tiple CPU cores. R’s internals are fundamentally designed
for single-threaded access, however, so any callbacks into R
should come from the same thread from which R originally
called the Rust code.

R wusers expect reproducible results when using R’s
set.seed function. Options are: (i) produce random num-
bers using R’s API (as in the previous myrnorm example) or
(ii) seed a Rust random number generator from R’s random
number generator using the provided random_bytes function.
For example, to seed Pcg64Mcg from the rand_pcg Rust crate,
use Pcg64Mcg: : from_seed(r: :random_bytes: :<16>()).

https://cran.r-project.org/doc/manuals/R-exts.html
https://crates.io/crates/cargo-msrv
https://cran.r-project.org/package=roxygen2
https://cran.r-project.org/doc/manuals/R-exts.html

	Introduction
	Methods
	Getting started
	Calling a Rust function
	Low-level interface to R's API
	High-level interface wrapping R's API
	Embedding Rust code in an R script
	Workflow

	Discussion

