Package ‘ConsRankClass’

October 12, 2022
Type Package
Title Classification and Clustering of Preference Rankings
Version 1.0.1
Date 2021-09-28
Maintainer Antonio D'Ambrosio <antdambr@unina.it>
Depends ConsRank
Imports janitor, methods, pracma, rlist, proxy

Description Tree-based classification and soft-
clustering method for preference rankings, with tools for external validation of fuzzy clustering.
It contains the recursive partitioning algorithm for preference rankings, non-parametric tree-
based method for a matrix of preference rankings as a response variable. It contains also the dis-
tribution-free soft clustering method for preference rankings, namely the K-median cluster com-
ponent analysis (CCA).
The package depends on the 'ConsRank’ R package.
Options for validate the tree-based method are both test-set procedure and V-fold cross validation.
The package contains the routines to compute the adjusted concordance index (a fuzzy ver-
sion of the adjusted rand index) and the normalized degree of concordance (the correspond-
ing fuzzy version of the rand index).
Essential references:
D'Ambrosio, A., Amodio, S., Iorio, C., Pandolfo, G., and Sicil-
iano, R. (2021) <doi:10.1007/s00357-020-09367-0>
D'Ambrosio, A., and Heiser, W.J. (2019) <doi:10.1007/s41237-018-0069-5>;
D'Ambrosio, A., and Heiser W.J. (2016) <doi:10.1007/s11336-016-9505-1>;
Hullermeier, E., Rifqi, M., Henz-
gen, S., and Senge, R. (2012) <doi:10.1109/TFUZZ.2011.2179303>.

License GPL-3
Encoding UTF-8

URL https://www.r-project.org/
Repository CRAN

RoxygenNote 7.1.1

NeedsCompilation no

Author Antonio D'Ambrosio [aut, cre]
Date/Publication 2021-09-28 10:10:02 UTC

https://doi.org/10.1007/s00357-020-09367-0
https://doi.org/10.1007/s41237-018-0069-5
https://doi.org/10.1007/s11336-016-9505-1
https://doi.org/10.1109/TFUZZ.2011.2179303
https://www.r-project.org/

2 cca

R topics documented:
CCA v v v v v e et e e e e e e e 2
ccacontrolo L e e 4
EVS o e 5
fuzzyconcordance L. 6
EtSUbLIEE e e 9
Irish . . . o e 10
layouttree L e e e e 11
nodepath L 12
plotranktree L. 13
predictranktree e e 14
PrINL.CCA . . . o o o e e e e e e e e e e 15
printranktree L. L L e e e e e e 16
ranktree L. e e e e 16
ranktreecontrol L. L e 19
SUMMATY.CCA .+ ¢ v v v e v e e e e et e e e e e e e e e e e e e e e 21
SUMMAry.rankiree e e e e e e e e e e e e e e e 21
treepaths L e e e e 22
Univranks oL e e e e 23
validatetree L e e 25

Index 27

cca K-Median Cluster Component Analysis
Description

K-Median Cluster Component Analysis, a distribution-free soft-clustering method for preference

rankings.
Usage
cca(X, k, control = ccacontrol(...), ...)
Arguments
X A n by m data matrix containing preference rankings, in which there are n judges
and m objects to be judged. Each row is a ranking of the objects which are
represented by the columns.
k The number of cluster components
control a list of options that control details of the cca algorithm governed by the func-

tion ccacontrol. The options govern maximum number of iterations of cca
(itercca=1 is the default), the algorithm chosen to compute the median ranking
(default, "quick"), and other options related to the consrank algorithm, which is
called by cca

arguments passed bypassing ccacontrol

cca 3

Details

The user can use any algorithm implemented in the consrank function from the ConsRank pack-
age. All algorithms allow the user to set the option ’full=TRUE’ if the median ranking(s) must be
searched in the restricted space of permutations instead of in the unconstrained universe of rankings
of n items including all possible ties. There are two classification uncertainty measures: Us and
Uprods. "Us" is the geometric mean of the membership probabilities of each individual, normal-
ized in such a way that in the case of maximum uncertainty Us=1. "Ucca" is the average of all the
"Us". "Uprods" is the product of the membership probabilities of each individual, normalized in
such a way that in the case of maximum uncertainty Uprods=1. "Uprodscca" is the average of all
the "Uprods".

Value

An object of the class "cca". It contains:

pk the membership probability matrix

cle cluster centers

oclc cluster centers in terms of orderings

idc crisp partition: id of the cluster component associated with the highest membership probability

Hcca Global homogeneity measure (tau_X rank correlation coefficient)

hk Homogeneity within cluster

props estimated proportion of cases within cluster

Us Uncertainty measure per-individual (see details)

Ucca Global uncertainty measure

Uprods Uncertainty measure per-individual (see details)

Uprodscca Global uncertainty measure

consrankout complete output of rank aggregation algorithm, containing eventually multiple median rankings
Author(s)

Antonio D’ Ambrosio <antdambr@unina.it>

References

D’ Ambrosio, A. and Heiser, W.J. (2019). A Distribution-free Soft Clustering Method for Preference
Rankings. Behaviormetrika , vol. 46(2), pp. 333-351, DOI: 10.1007/s41237-018-0069-5

Heiser W.J., and D’ Ambrosio A. (2013). Clustering and Prediction of Rankings within a Kemeny
Distance Framework. In Berthold, L., Van den Poel, D, Ultsch, A. (eds). Algorithms from and for
Nature and Life.pp-19-31. Springer international. DOI: 10.1007/978-3-319-00035-0_2.

Ben-Israel, A., and Iyigun, C. (2008). Probabilistic d-clustering. Journal of Classification, 25(1),
pp-5-26. DOI: 10.1007/s00357-008-9002-z
See Also

ccacontrol

ranktree

4 ccacontrol

Examples

data(Irish)

set.seed(135) #for reproducibility

CCA with four components

ccares <- cca(Irish$rankings, 4, itercca=10)
summary (ccares)

ccacontrol Utility function

Description

Utility function to use to set the control arguments of cca

Usage

ccacontrol(
algorithm = "quick”,
full = FALSE,
itercca =1,
consrankitermax = 10,

np =15,
gl = 100,
ff = 0.4,
cr =0.9,
proc = FALSE,
ps = FALSE
)
Arguments
algorithm The algorithm used to compute the median ranking. One among"BB", "quick"
(default), "fast" and "decor"
full Specifies if the median ranking must be searched in the universe of rankings
including all the possible ties. Default: FALSE
itercca Number of iterations of cca
consrankitermax
Number of iterations for "fast" and "decor" algorithms. itermax=10 is the default
option.
np (for "decor" only) the number of population individuals. np=15 is the default

option.

EVS

gl

ff

cr

proc

ps

Value

(for"decor" only) generations limit, maximum number of consecutive genera-
tions without improvement. gl=100 is the default option.

(for"decor" only) the scaling rate for mutation. Must be in [0,1]. ff=0.4 is the
default option.

(for"decor" only) the crossover range. Must be in [0,1]. cr=0.9 is the default
option.

(for "BB" only) proc=TRUE allows the branch and bound algorithm to work

in difficult cases, i.e. when the number of objects is larger than 15 or 25.
proc=FALSE is the default option

If PS=TRUE, on the screen some information about how many branches are
processed are displayed. Default value: FALSE

A list containing all the control parameters

Author(s)

Antonio D’ Ambrosio <antdambr@unina.it>

See Also

CCa

EVS

European Values Studies (EVS) data

Description

Random sub-sample of 3584 cases of the survey conducted in 1999 in 32 countries analyzed by

Vermunt (2003).

Usage
data("EVS")

Format

The format is: List of 3
$ data:’data.frame’: 1911 obs. of 11 variables:

country, gender ,yearbird, mstatus (marital status), eduage (age of education completion), employ-
ment (Employment status: ordinal scale 1-8), householdinc (Household income: ordinal scale 1-
10), A (Maintain order in Nation),Give people more say in Government decisions, (C) Fight rising
prices, (D) Protect freedom of speech.

$ predictors:’data.frame’ with all the predictors

$ rankings : matrix with the preferencres for "A" (Maintain order in Nation), "B" (Give people more
say in Government decisions), "C" (Fight rising prices), "D" (Protect freedom of speech).

6 fuzzyconcordance

Details

Rankings were obtained by applying the post-materialism scale developed by Inglehart (1977). The
scale is based upon an experiment of the type “pick 2 out of 4” most important political goals
for your Governments. For this reason, replace the "NA’s with 3 before using the rankings with
codes ’'ranktree’ or ’cca’ (see D’ Ambrosio and Heiser, 2016). About the predictors, the coding
of the Countries are: G1 (Austria, Denmark, Netherlands, Sweden), G2 (Belgium, Croatia, France,
Greece, Ireland, Northern Ireland, Spain), G3 (Bulgaria, Czechnia, East, Germany, Finland, Iceland,
Luxembourg, Malta, Portugal, Romania, Slovenia, West Germany), G4 (Belarus, Estonia, Hungary,
Latvia, Lithuania, Poland, Russia, Slovakia, Ukraine). Coding of predictor "mstatus" are: mar
(married), wid (widowed), div (divorced), sep (separated), nevm (never married).

Source

http://statisticalinnovations.com/technicalsupport/choice_datasets.html

References

Vermunt, J. K. (2003). Multilevel latent class models. Sociological Methodology, 33(1), 213-239.

Inglehart, R. (1977). The silent revolution: Changing values and political styles among Western
Publics. Princeton, NJ: Princeton University Press.

D’ Ambrosio, A., and Heiser W.J. (2016). A recursive partitioning method for the prediction of
preference rankings based upon Kemeny distances. Psychometrika, vol. 81 (3), pp.774-94.

Examples

data(EVS)

EVS$rankings[is.na(EVS$rankings)] <- 3 #place unranked objects in a tie to the third position
ccares <- cca(EVS$rankings,4) #solution with 4 components

fuzzyconcordance Normalized Degree of Concordance (NDC) and Adjusted Concor-
dance Index (ACI)

Description

Given two fuzzy (Ruspini) partitions, it compute the NDC and the ACI. NDC is the fuzzy version
of the Rand Index, as well as ACI is the fuzzy version of the Adjusted Rand Index

Usage

fuzzyconcordance(P, Q, nperms = 1000)

fuzzyconcordance

Arguments

P

nperms

Details

A fuzzy partition. It has to be a matrix with n rows and k columns. Each column
is expression of the degree of membership of the i-th row over the k partitions
(see details).

A fuzzy partition. It has to be a matrix with n rows and h columns. Each column
is expression of the degree of membership of the i-th row over the h partitions
(see details).

number of permutations necessary to compute ACI. Default: 1000

Both P and Q, or only one of those, can be crisp (or hard) partitions. In this case, each row must
contain either O or 1, and the sum of the i-th row must be 1. In other words, either P or Q (or both)
are expressed in terms of dummy coding. If both partitions are crisp, then NDC is equal to Rand
Index and ACI is equal to Adjusted Rand Index. This function can be used to externally validate
the output of any fuzzy clustering method

Value

A list containing:

Author(s)

ACI the Adjusted Concordance Index
NDC the Normalized Degree of Concordance

Antonio D’ Ambrosio <antdambr@unina.it>

References

D’ Ambrosio, A., Amodio, S., Iorio, C., Pandolfo, G. and Siciliano, R. (2021). Adjusted Concor-
dance Index: an Extension of the Adjusted Rand Index to Fuzzy Partitions. Journal of Classification
vol. 38(1), pp. 112-128 (2021). DOI: 10.1007/300357-020-09367-0

Hullermeier, E., Rifqi, M., Henzgen, S., and Senge, R. (2012). Comparing fuzzy partitions: a

generalization of the Rand index and related measures. IEEE Transactions on Fuzzy Systems,
20(3), 546-556. DOI: 10.1109/TFUZZ.2011.2179303

See Also

CCa

Examples

#two random fuzzy partitions

P = rbind(c(0.5259, 0.1656, 0.3085),
c(0.5623, 0.1036, ©.3341),
c(0.2508, 0.1849, ©.5643),
c(0.5654, 0.1934, 0.2413),

c(0.4529, 0.1679, 0.3792),

c(0.2390, 0.1758, 0.5852),
c(0.3114, 0.1743, 0.5143),
c(0.4188, 0.1392, 0.4420),
c(0.5830, 0.1655, 0.2514),
c(0.5860, ©.1171, 0.2969),
c(0.2630, 0.1706, 0.5664),
c(0.5882, 0.1032, 0.3086),
c(0.5829, 0.1277, 0.2894),
c(0.3942, 0.1046, 0.5012),
c(0.5201, 0.1097, 0.3702),
c(0.2568, ©.1823, 0.5609),
c(0.3687, 0.1695, 0.4618),
c(0.5663, 0.1317, 0.3020),
c(0.5169, ©.1950, 0.2881),
c(0.5838, 0.1034, 0.3128))
Q = rbind(c(0.4494, 0.3755, ©.1751),
c(0.5219, 0.3526, 0.1255),
c(0.3432, 0.5062, 0.1506),
c(0.3120, ©.5181, 0.1699),
c(0.5362, ©.2747, 0.1891),
c(0.4082, ©.3959, 0.1959),
c(0.4670, ©.3782, 0.1547),
c(0.4276, 0.4585, 0.1139),
c(0.4013, 0.4837, 0.1149),
c(0.3724, 0.5019, 0.1258),
c(0.5055, ©.3104, 0.1841),
c(0.4027, 0.4719, 0.1254),
c(0.3565, 0.4620, 0.1814),
c(0.6106, 0.2650, 0.1244),
c(0.5595, 0.2476, 0.1929),
c(0.4657, ©.3993, 0.1350),
c(0.2964, ©.5839, 0.1197),
c(0.5387, ©.3362, 0.1251),
c(0.4043, 0.4341, 0.1616),
c(0.5631, 0.2895, ©0.1473))

ci <- fuzzyconcordance(P,Q)

#generate a random fuzzy partition with two components (clusters)
Q2 <- matrix(runif(20),ncol=1)

Q2 <~ chind(Q2,1-02)

ci2 <- fuzzyconcordance(P,Q2)

#generate a random crisp partition
P2 <- t(rmultinom(20,1,c(0.3,0.3,0.4)))

ci3 <- fuzzyconcordance(P2,Q)
Not run:

install.packages("Rankcluster")
library(”"Rankcluster”) # model-based clustering algorithm for

fuzzyconcordance

getsubtree 9

ranking data by Biernacki and Jacques (2013)
<doi:10.1016/j.csda.2012.08.008>
data(APA)
set.seed(136) #for reproducibility
rcres <- rankclust(APA$data,K=3) # solution with 3 centers, it takes about 75 seconds
#H#
ccares <- cca(APA$data,k=3) #solution with 3 components, it takes about 7 seconds
#H#
ci <- fuzzyconcordance(rcres[3]@tik,ccares$pk)
Ci$ACI # 0.0226 means that the two partitions are similar (see NDC below),
but their similarity is mainly due to chance
ci$NDC

End(Not run)

getsubtree Determine a tree from the main tree-based structure

Description
Given a tree belonging to the class "ranktree", determine a subtree with a given number of terminal
nodes

Usage
getsubtree(Tree, cut, tokeep = NULL)

Arguments
Tree An object of the class "ranktree" coming form te function ranktree
cut The maximum number of terminal nodes that the Tree must have
tokeep parameter invoked by other internal functions

Details

If the pruning sequence returns a series of subtrees with, say, 1,2,4,7,9 terminal nodes and the user
set cut=8, the function extract the subtree with 7 terminal nodes.

Value
An object of the class "ranktree", containing the same information of the output of the function
ranktree

Author(s)

Antonio D’ Ambrosio <antdambr@unina.it>

10 Irish

Examples

data("Univranks")

tree <- ranktree(Univranks$rankings,Univranks$predictors,num=50)

#see how many terminal nodes have the trees compomimg the nested sequence of subtrees
infoprun <- tree$pruneinfo$termnodes

#select the tree with, say, 6 terminal nodes

tree6 <- getsubtree(tree,6)

Irish Irish Election data set

Description

An opinion poll conducted by Irish Marketing Surveys one month prior to the election in 1997.
Interviews were conducted on about 1100 respondents, drawn from 100 sampling areas. Interviews
took place at randomly located homes, with respondents selected according to a socioeconomic
quota. A range of sociological questions was asked of each respondent, as was their voting prefer-
ence, if any, for each of the candidates.

Usage

data("Irish")

Format

The format is: List of 3

$ IrishElection: ’data.frame’: 1083 obs. of 11 variables: Gender (male, housewife, nonhousewife),
marital status (single, married, separated), age, socialclass (five unordered categories), Area (rural,
city, town), government satisfaction (no opinion,m satisfied, dissatisfied), Bano , Roch, McAl, Nall,
Scal

$ predictors :’data.frame’ with all the predictors

$ rankings : matrix with the preferencres for "Bano" "Roch" "McAl" "Nall"

Details

In the original version of the data, the ranking matrix contains NAs. Here, NAs are replaced with
the number 7, to indicate that all the non-stated preferences are in a tie at the last position (see
D’ Ambrosio and Heiser, 2016). For details about the data set see Gormley and Murphy, 2008.

Source

https://projecteuclid.org/journals/annals-of-applied-statistics/volume-2/issue-4/A-mixture-of-experts-
model-for-rank-data-with/10.1214/08-AOAS178.full?tab=ArticleLinkSupplemental

layouttree 11

References

Gormley, I.C., and Murphy, T.B. (2008). A mixture of experts model for rank data withapplications
in election studies. Annals of Applied Statistics 2(4): 1452-1477. DOI: 10.1214/08-A0AS178

D’Ambrosio, A., and Heiser W.J. (2016). A recursive partitioning method for the prediction of
preference rankings based upon Kemeny distances. Psychometrika, vol. 81 (3), pp.774-94. DOI:
10.1007/s11336-016-9505-1.

Examples

data(Irish)

layouttree Utility function

Description

A utility function completing the output of the function ranktree.

Usage

layouttree(Tree)
Arguments

Tree an object of the class "ranktree"
Value

an object of the class "ranktree" completing the output of the function ranktree

Author(s)

Antonio D’ Ambrosio <antdambr@unina.it>

12

nodepath

nodepath Path of a terminal node

Description

Given an object of the class "ranktree", it visualize the path leading to the terminal node

Usage

nodepath(termnode, Tree)

Arguments
termnode The terminal node of which the path has to be extracted
Tree An object of the class "ranktree"

Value

The path leading to the terminal node

Author(s)

Antonio D’ Ambrosio <antdambr@unina.it>

See Also

ranktree, treepaths, getsubtree

Examples

data(Irish)

#build the tree with default options

tree <- ranktree(Irish$rankings,Irish$predictors)

#get information about all the paths leading to terminal nodes
paths <- treepaths(tree)

#see the path for terminal node number 8
nodepath(termnode=8,tree)

plot.ranktree 13

plot.ranktree Plot tree-based structure or pruning sequence of ranktree

Description

Plot the tree coming from the ranktree or the pruning sequence of the ranktree

Usage

S3 method for class 'ranktree'
plot(

X,

plot.type = "tree",

dispclass = FALSE,

valtree = NULL,

taos = TRUE,
)
Arguments
X An object of the class "ranktree"
plot.type One among "tree" or "pruningseq"
dispclass Display the median ranking above terminal nodes. Default option: FALSE
valtree If plot.type="pruningseq", it shows the Tau_x rank correlation coefficient or the
error along the pruning sequence on the training set. If valtree is the output of the
function validatetree, it shows either the Tau_x rank correlation coefficient
or the error along the pruning sequence of also the decision tree (validated by
wither test set or cross-validation)
taos If plot.type="pruningseq", it plots the Tau_x rank correlation coefficient along
the pruning sequence. If taos=FALSE, it plots the error.
System reserved (No specific usage)
Value

the plot of either the tree or the pruning sequence

Author(s)

Antonio D’ Ambrosio <antdambr@unina.it>

See Also

ranktree, validatetree

14 predict.ranktree

Examples

data("Univranks")
tree <- ranktree(Univranks$rankings,Univranks$predictors,num=50)
plot(tree,dispclass=TRUE)

data(EVS)

EVS$rankings[is.na(EVS$rankings)] <- 3

set.seed(654)

training=sample(1911,1434)

tree <- ranktree(EVS$rankings[training,],EVS$predictors[training,],decrmin=0.001,num=50)
plot(tree,dispclass=TRUE)

#test set validation

vtreetest <- validatetree(tree, testX=EVS$predictors[-training,],EVS$rankings[-training,])
dtree <- getsubtree(tree,vtreetest$best_tau)

plot(dtree,dispclass=TRUE)

#tsee the global weigthted tau_X rank correlation coefficients
plot(tree,plot.type="pruningseq"”,valtree=vtreetest)

#see the error rates

plot(tree,plot.type="pruningseq"”,valtree=vtreetest, taos=FALSE)

predict.ranktree Predict the median rankings for new observations

Description

Predict the median rankings in a tree-based structure built with ranktree for new observations

Usage
S3 method for class 'ranktree'’
predict(object, newx, ...)
Arguments
object An object of the class "ranktree"
newx A dataframe of the same nature of the predictor dataframe with which the tree

has been built

System reserved (No specific usage)

Value

A list containing:

rankings the fit in terms of rankings
orderings the fit in terms of orderings
info dataframe containing the terminal nodes in which the new x fall down, then the new x and the fit (in terms of rz

print.cca 15

Author(s)

Antonio D’ Ambrosio <antdambr@unina.it>

See Also

ranktree validatetree

Examples

data(EVS)

EVS$rankings[is.na(EVS$rankings)] <- 3

set.seed(654)

training=sample(1911,1434)

tree <- ranktree(EVS$rankings[training,],EVS$predictors[training,],decrmin=0.001,num=50)
#use the function predict ro predict rankings for new predictors

rankfit <- predict(tree,newx=EVS$predictors[-training,])

#fit in terms of rankings

rankfit$rankings

#fit in terms of orderings

rankfit$orderings

information about the fit (terminal node, predictor and fit (in terms of rankings))
rankfit$info

print.cca S3 methods for cca

Description

Print methods for objects of class cca

Usage
S3 method for class 'cca'
print(x, ...)
Arguments
X An object of the class "cca"
not used
Value

print a brief summary of the CCA

16 ranktree
print.ranktree S3 methods for ranktree
Description
Print methods for objects of class ranktree
Usage
S3 method for class 'ranktree'’
print(x, ...)
Arguments
X An object of the class "ranktree"
not used
Value
print a brief summary of the prediction tree
Examples
data("Univranks")
tree <- ranktree(Univranks$rankings,Univranks$predictors,num=50)
tree
ranktree Recursive partitioning method for the prediction of preference rank-
ings based upon Kemeny distances
Description

Recursive partitioning method for the prediction of preference rankings based upon Kemeny dis-

tances.

Usage

ranktree(Y, X, prunplot = FALSE, control = ranktreecontrol(...),

ranktree

Arguments

Y

X
prunplot

control

Details

17

A n by m data matrix, in which there are n judges and m objects to be judged.
Each row is a ranking of the objects which are represented by the columns.

A dataframe containing the predictor, that must have n rows.
prunplot=TRUE returns the plot of the pruning sequence. Default value: FALSE

a list of options that control details of the ranktree algorithm governed by the
function ranktreecontrol. The options govern the minimum size within node
to split (the default value is 0.1*n, where n is the total sample size), the bound
on the decrease in impurity, (default, 0.01), the algorithm chosen to compute
the median ranking (default, "quick"), and other options related to the consrank
algorithm, which is called by ranktree

arguments passed bypassing ranktreecontrol

The user can use any algorithm implemented in the consrank function from the ConsRank pack-
age. All algorithms allow the user to set the option ’full=TRUE’ if the median ranking(s) must be
searched in the restricted space of permutations instead of in the unconstrained universe of rankings
of n items including all possible ties. The output consists in a object of the class "ranktree". It

contains:

node

control
numnodes

the predictors: it must be a dataframe
the response variable: the matrix of the rankings
a list containing teh tree-based structure:

number node number
terminal logical: TRUE is terminal node

father node number of the current node

idfather id of the father node of the current node

sample size within node
impurity at node

wimpur weighted impurity at node
idatnode id of the observations within node

median ranking within node in terms of orderings
median ranking within node in terms of rankings

mclass eventual multiple median rankings

Tau_x rank correlation coefficient at node
weighted Tau_x rank correlation coefficient at node
error at node

werror weighted error at node

varsplit variables generating split

varsplitid id of variables generating split

cutspli splitting point

children children nodes generated by current node
idchildren id of children nodes generated by current node

other info about node
parameters used to build the tree
number of nodes of the tree

18 ranktree

tsynt list containing the synthesis of the tree:
children list containing all information about leaves
parents list containing all information about parent nodes
geneaoly data frame containing information about all nodes
idgenealogy data frame containing information about all nodes in terms of nodes id
idparents id of the parents of all the nodes
goodness goodness -and badness- of fit measures of the tree: Tau_X, error, impurity
nomin information about nature of the predictors
alpha alpha parameter for pruning sequence
pruneinfo list containing information about the pruning sequence:
prunelist information about the pruning
tau tau_X rank correlation coefficient of each subtree
error error of each subtree
termnodes number of terminal nodes of each subtree
subtrees list of each subtree created with the cost-complexity pruning procedure
Value

An object of the class ranktree. See details for detailed information.

Author(s)

Antonio D’ Ambrosio <antdambr@unina.it>

References

D’Ambrosio, A., and Heiser W.J. (2016). A recursive partitioning method for the prediction of
preference rankings based upon Kemeny distances. Psychometrika, vol. 81 (3), pp.774-94.

See Also

ranktreecontrol, plot.ranktree, summary.ranktree, getsubtree, validatetree, treepaths,
nodepath

Examples

data("Univranks")
tree <- ranktree(Univranks$rankings,Univranks$predictors,num=50)

data(Irish)
#build the tree with default options
tree <- ranktree(Irish$rankings,Irish$predictors)

#plot the tree
plot(tree,dispclass=TRUE)

#tvisualize information
summary (tree)

ranktreecontrol

#get information about the paths leading to terminal nodes (all the paths)
infopaths <- treepaths(tree)

#the terminal nodes
infopaths$leaves

#sample size within each terminal node
infopaths$size

#visualize the path of the second leave (terminal node number 8)
infopaths$paths[[2]]

#alternatively

nodepath(termnode=8,tree)

set.seed(132) #for reproducibility
#validation of the tree via v-fold cross-validation (default value of V=5)
vtree <- validatetree(tree,method="cv")

#extract the "best” tree
dtree <- getsubtree(tree,vtree$best_tau)

summary (dtree)

#plot the validated tree
plot(dtree,dispclass=TRUE)

#predicted rankings
rankfit <- predict(dtree,newx=Irish$predictors)

#fit of rankings
rankfit$rankings

#fit in terms of orderings
rankfit$orderings

#all info about the fit (id og the leaf, predictor values, and fit)
rankfit$orderings

19

ranktreecontrol Utility function

Description

Utility function to use to set the control arguments of ranktree

ranktreecontrol

The maximum number of observations in a node to be split: default, 10% of the

The algorithm used to compute the median ranking. One among"BB", "quick"
Specifies if the median ranking must be searched in the universe of rankings
including all the possible ties. Default: FALSE

Number of iterations for "fast" and "decor" algorithms. itermax=10 is the default
(for "decor" only) the number of population individuals. np=15 is the default
(for"decor" only) generations limit, maximum number of consecutive genera-
tions without improvement. gl=100 is the default option.

(for"decor" only) the scaling rate for mutation. Must be in [0,1]. ff=0.4 is the

(for"decor" only) the crossover range. Must be in [0,1]. cr=0.9 is the default

(for "BB" only) proc=TRUE allows the branch and bound algorithm to work
in difficult cases, i.e. when the number of objects is larger than 15 or 25.

If PS=TRUE, on the screen some information about how many branches are
processed are displayed. Default value: FALSE

20
Usage
ranktreecontrol (
num = NULL,
decrmin = 0.01,
algorithm = "quick”,
full = FALSE,
itermax = 10,
np = 15,
gl = 100,
ff = 0.4,
cr =0.9,
proc = FALSE,
ps = FALSE
)
Arguments
num
sample size
decrmin Minimum decrease in impurity
algorithm
(default), "fast" and "decor"
full
itermax
option.
np
option.
gl
ff
default option.
cr
option.
proc
proc=FALSE is the default option
ps
Value
A list containing all the control parameters
Author(s)

Antonio D’ Ambrosio <antdambr@unina.it>

suminary.cca

See Also

ranktree

21

summary.cca S3 methods for ranktree

Description

Summary methods for objects of class cca

Usage
S3 method for class 'cca'
summary (object, ...)
Arguments
object An object of the class "cca"
not used
Value

it shows the summary of the prediction tree

summary.ranktree S3 methods for ranktree

Description

Summary methods for objects of class ranktree

Usage
S3 method for class 'ranktree'’
summary(object, ...)
Arguments
object An object of the class "ranktree"
not used
Value

it shows the summary of the prediction tree

22 treepaths

Examples

data("Univranks")
tree <- ranktree(Univranks$rankings,Univranks$predictors,num=50)
summary (tree)

treepaths Path of a terminal node

Description

Given an object of the class "ranktree", it extracts the paths of all terminal nodes

Usage

treepaths(Tree)

Arguments

Tree An object of the class "ranktree"

Value

A list containing:

leaves the number of the terminal nodes
size the sample size within each terminal nodes
paths a list containing all the paths

Author(s)

Antonio D’ Ambrosio <antdambr@unina.it>

See Also

ranktree, nodepath, getsubtree

Examples

data(Irish)

#build the tree with default options

tree <- ranktree(Irish$rankings,Irish$predictors)

#get information about all the paths leading to terminal nodes
paths <- treepaths(tree)

#

#the terminal nodes

Univranks 23

paths$leaves

#

#sample size within each terminal node

paths$size

#

#visualize the path of the second leave (terminal node number 8)
paths$paths[[2]]

Univranks University rankings dataset.

Description

University rankings dataset was analysed by Dittrich, Hatzinger and Katzenbeisser (1998) to inves-
tigate paired comparison data concerning European universities and student’s characteristics with
the goal to show that university rankings are different for different groups of students. Here both
raw data (with paired comparisons) and the version with rankings are preesented (see details). A
survey of 303 students studying at the Vienna University of Economics was carried out to examine
the student’s preference of six universities, namely London, Paris, Milan, St. Gallen, Barcelona
and Stockholm. The data set contains 23 variables. The first 15 digits in each row indicate the
preferences of a student. For a given comparison, responses were coded by 1 if the first preference
was preferred, by 2 if the second university was preferred, and by 3 if universities are tied. All rows
containing missing ranked Universities were skipped.

Usage

data("Univranks")

Format

The format is: List of 3

$ rawdata: ’data.frame’: 212 obs. of 23 variables: the first 15 are the paired comparisons coded as
follows: (1: the first is preferred to the second; 2: the second is preferred to the fisrt; 3 tied)

$ LP : comparison of London to Paris

$ LM : comparison of London to Milan

$ PM : comparison of London to Milan

$ LSg : comparison of London to St. Gallen
$ PSg : comparison of Paris to St. Gallen

$ MSg : comparison of Milan to St. Gallen
$ LB : comparison of London to Barcelona
$ PB : comparison of Paris to Barcelona

$ MB : comparison of Milan to Barcelona

24 Univranks

$ SgB : comparison of St. Gallen to Barcelona
$ LSt : comparison of London to Stockholm

$ PSt : comparison of Paris to Stockholm

$ MSt : comparison of Milan to Stockholm

$ SgSt: comparison of St. Gallen to Stockholm
$ BSt : comparison of Barcelona to Stockholm

non

$ Stud: Factor w/ 2 levels "commerce","other"

$ Eng : Factor w/ 2 levels "good","poor
$ Fra : Factor w/ 2 levels "good","poor"
$ Spa : Factor w/ 2 levels "good","poor"

$ Ita : Factor w/ 2 levels "good","poor"

non

$ Wor : Factor w/ 2 levels "no","yes"

$ Deg : Factor w/ 2 levels "no","yes"
$ Sex : Factor w/ 2 levels "female","male"
$ predictors:’data.frame’: 212 obs. of 8 variables(the last 8 variables of the "rawdata" dataframe

$ rankings : matrix of preference rankings. The columns are: "L" (London), "P" (Paris), "M"
(Milan), "Sg" (St. Gallen), "B" (Barcerlona), "St" (Stockholm)

Details

To obtain the preference rankings from the paired comparisons the procedure has been the follow-
ing: the first row of the raw datais [1 321211211121 12]. London is preferred to Paris,
St. Gallen, Barcelona Stockholm (LP, LM, LSg, LB and LSt are always equal to 1), and there is
no preference between London and Milan (they are tied); Milan is preferred to Paris (PM = 2),
St. Gallen, Barcelona and Stockholm; and so on. The first ordering is then <L M Sg St B P>
corresponding to a ranking [1,5,1,2,4,3], where the columns indicate L P M Sg B St.

Source

http://www.blackwellpublishers.co.uk/rss

References

Dittrich, R., Hatzinger, R., and Katzenbeisser, W. (1998). Modelling the effect of subject-specific
covariates in paired comparison studies with an application to university rankings. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 47(4), 511-525. DOI: 10.1111/1467-
9876.00125

D’ Ambrosio, A. (2008). Tree based methods for data editing and preference rankings. Ph.D. thesis,
University of Naples Federico II. https://www.doi.org/10.6092/UNINA/FEDOA/2746

Examples

data(Univranks)

https://www.doi.org/10.6092/UNINA/FEDOA/2746

validatetree

25

validatetree

Validation of the tree for preference rankings

Description

Validation of the tree either with a test set procedure or with v-fold cross validation

Usage

validatetree(
Tree,
testX
testY

NULL,
NULL,

method = "test"”,

V =5,

plotting = TRUE

Arguments

Tree
testX
testY
method

\
plotting

Value

A list containing:

tau
error
termnodes
best_tau
best_error
validation

#’

Author(s)

An object of the class "ranktree" coming form te function ranktree
The data frame containing the test set (predictors)

The matrix ontaining the test set (response)

One between "test" (default) or "cv"

The cross-validation parameter. Default V=5

With the defaul option plotting=TRUE, the pruning sequence plot is visualized

the Tau_x rank correlation coefficient of the sequence of the trees
the error of the sequence of the trees

the number of terminal nodes of the sequence of the trees

the best tree in terms of Tau_x rank correlation coefficient

the best tree in terms of error (it is the same)

information about the validation procedure

Antonio D’ Ambrosio <antdambr@unina.it>

26 validatetree

Examples

data(EVS)

EVS$rankings[is.na(EVS$rankings)] <- 3

set.seed(654)

training=sample(1911,1434)

tree <- ranktree(EVS$rankings[training,],EVS$predictors[training,],decrmin=0.001,num=50)
#test set validation

vtreetest <- validatetree(tree, testX=EVS$predictors[-training,],EVS$rankings[-training,])
#cross-validation

vtreecv <- validatetree(tree,method="cv",V=10)

Index

* Adjusted
cca, 2
+x Concordance
cca, 2
* Degree
cca, 2
x Index
cca, 2
+x Normalized
cca, 2
* Preference
cca, 2
ranktree, 16
*x Recursive
ranktree, 16
* Soft
cca, 2
* Tree-based
plot.ranktree, 13
ranktree, 16
* clustering
cca, 2
+ datasets
EVS, 5
Irish, 10
Univranks, 23
+* method
ranktree, 16
* of
cca, 2
* partitioning
ranktree, 16
* pruning
plot.ranktree, 13
* rankings
cca, 2
ranktree, 16
* sequence
plot.ranktree, 13

27

* structure
plot.ranktree, 13

cca,2,5,7
ccacontrol, 4

EVS, 5
fuzzyconcordance, 6
getsubtree, 9, 12, 22
Irish, 10
layouttree, 11
nodepath, 12, 22

plot.ranktree, 13
predict.ranktree, 14
print.cca, 15
print.ranktree, 16

ranktree, 12, 13, 15,16, 21, 22

ranktreecontrol, 19

summary.cca, 21
summary.ranktree, 21

treepaths, 12,22
Univranks, 23

validatetree, 13, 15,25

	cca
	ccacontrol
	EVS
	fuzzyconcordance
	getsubtree
	Irish
	layouttree
	nodepath
	plot.ranktree
	predict.ranktree
	print.cca
	print.ranktree
	ranktree
	ranktreecontrol
	summary.cca
	summary.ranktree
	treepaths
	Univranks
	validatetree
	Index

