
CONTRIBUTED RESEARCH ARTICLE 164

MDplot: Visualise Molecular Dynamics
by Christian Margreitter and Chris Oostenbrink

Abstract The MDplot package provides plotting functions to allow for automated visualisation of
molecular dynamics simulation output. It is especially useful in cases where the plot generation is
rather tedious due to complex file formats or when a large number of plots are generated. The graphs
that are supported range from those which are standard, such as RMSD/RMSF (root-mean-square
deviation and root-mean-square fluctuation, respectively) to less standard, such as thermodynamic
integration analysis and hydrogen bond monitoring over time. All told, they address many com-
monly used analyses. In this article, we set out the MDplot package’s functions, give examples of the
function calls, and show the associated plots. Plotting and data parsing is separated in all cases, i.e.
the respective functions can be used independently. Thus, data manipulation and the integration of
additional file formats is fairly easy. Currently, the loading functions support GROMOS, GROMACS,
and AMBER file formats. Moreover, we also provide a Bash interface that allows simple embedding of
MDplot into Bash scripts as the final analysis step.

Availability: The package can be obtained in the latest major version from CRAN (https://cran.r-
project.org/package=MDplot) or in the most recent version from the project’s GitHub page at
https://github.com/MDplot/MDplot, where feedback is also most welcome. MDplot is published
under the GPL-3 license.

Introduction

The amount of data produced by molecular dynamics (MD) engines (such as GROMOS (Schmid et al.,
2012; Eichenberger et al., 2011), GROMACS (Pronk et al., 2013), NAMD (Phillips et al., 2005), AMBER
(Cornell et al., 1995), and CHARMM (Brooks et al., 2009)) has been constantly increasing over recent
years. This is mainly due to more powerful and cheaper hardware. As a result of this, both the lengths
and sheer number of MD simulations (i.e. trajectories) have increased enormously. Even large sets
of simulations (e.g., in the context of drug design) are attainable nowadays; thus suggesting that the
processing of the resulting information is undertaken automatically.

In this respect, automated yet flexible visualisation of molecular dynamics data would be highly
advantageous: both in order to avoid repetitive tasks for the user and to yield the ultimately desired
result instantly (see Figure 1). Moreover, generating some of the graphs can be cumbersome. An
example would be the plotting of a time series of a clustering program or hydrogen bonds. Therefore,
these cases are predestined to be handled by a plotting library. There have been attempts made in
that direction, for example the package bio3d (Grant et al., 2006; Skjærven et al., 2014) (which allows
the trajectories to be processed in terms of principle component analysis (PCA), RMSD and RMSF
calculations), MDtraj (McGibbon et al., 2015), or Rknots (Comoglio and Rinaldi, 2012). However, to
the best of our knowledge, there is currently no R package available that offers the wide range of
plotting functions and engine-support that is provided by MDplot. R is the natural choice for this
undertaking because of both its power in data handling and its vast plotting abilities.

Figure 1: Shows the overall workflow typically applied in molecular dynamics simulations beginning
with a single PDB (Berman et al., 2000) structure as the input for the simulation and ending with the
graphical representation of the data obtained. For large amounts of data, generating figures might
become a tedious, highly repetitive task.

In the following sections we outline all of the plotting functions that are currently supported. For
each function, examples of the function calls based on the test data included in the package, the
resulting plots, the return values, and a table of arguments are detailed. The respective code samples
use the loading functions (reported below) to parse the input files located in folder ‘extdata’, which
allows immediate testing and provides format information to users. Currently, the package supports

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://cran.r-project.org/package=MDplot
https://cran.r-project.org/package=MDplot
https://github.com/MDplot/MDplot
https://CRAN.R-project.org/package=MDplot
https://CRAN.R-project.org/package=bio3d
https://CRAN.R-project.org/package=Rknots

CONTRIBUTED RESEARCH ARTICLE 165

GROMOS, GROMACS, and AMBER file formats as input.1 However, extensions in both format
support and plotting functionalities are planned.

Plotting functions

The package currently offers 14 distinct plotting functions (Table ??), which cover many of the graphs
that are commonly required. Although the focus of the package relies on the visualisation of data,
in addition to this values are calculated to characterise the underlying data when appropriate. For
example, TIcurve() calculates the thermodynamic integration free-energy values including error
estimates and the hysteresis between the integration curves. In many cases, the plotting functions
return useful information on the data used, e.g., range, mean and standard deviation of curves.

To provide simple access to these functions, they may be called from within a Bash script. Examples
are provided at the end of the manuscript.

Plot function Description

clusters() Summary of clustering over trajectories (RMSD based).
clusters_ts() Time series of cluster populations (RMSD based).
dssp() Secondary structure annotation plot (DSSP based).
dssp_ts() Time series of secondary structure elements (DSSP based).
hbond() Hydrogen bonds summary plot.
hbond_ts() Time series of hydrogen bonds.
noe() Nuclear-Overhauser-effect violation plot.
ramachandran() Dihedral angle plot.
rmsd() Root-mean-square deviation plot.
rmsd_average() Average root-mean-square deviation plot.
rmsf() Root-mean-square fluctuation plot.
TIcurve() Thermodynamic integration curves.
timeseries() General time series plot.
xrmsd() Cross-RMSD plot (heat-map of RMSD values).

Table 1: Lists all of the currently available plotting functions that have been implemented in MDplot.
Most functions accept a boolean parameter (barePlot), that indicates printing of the plotting area only,
i.e. stripped from any additional features such as axis labels.

The clusters() function

Molecular dynamics simulation trajectories can be considered to be a set of atom configurations along
the time axis. Clustering is a method, that can be applied in order to extract common structural features
from these. The configurations are classified and grouped together based on the root-mean-square
deviation (RMSD). These subsets of configurations around the cluster’s central member structure and
their relative occurrences allow for comparisons between different and within individual simulations.
clusters() allows to plot a summary of all of the (selected) clusters over a set of trajectories (Figure
2).

clusters(load_clusters("inst/extdata/clusters_example.txt.gz",
names=c("wild-type","mut1","mut2",

"mut3","mut4","mut5")),
clustersNumber=9,main="MDplot::clusters()",ylab="# configurations")

Return value: Returns an n×m-matrix with n being the number of input trajectories and m the number
of different clusters. Each element in the matrix holds the number of snapshots, in which the respective
cluster occurred in the respective trajectory.

1In this manuscript, the code samples use GROMOS input (since the default value of the loading functions’
parameter mdEngine is "GROMOS"). For information on how to load GROMACS or AMBER files, please have a look
at the manual pages of the respective loading functions.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 166

1 2 3 4 5 6 7 8 9

MDplot::clusters()

clusters

co

nf
ig

ur
at

io
ns

0
10

00
0

20
00

0
30

00
0

40
00

0

trajectories
wild−type
mut1
mut2
mut3
mut4
mut5

Figure 2: The clusters are plotted along the x-axis and the number of configurations for each trajectory
for every cluster on the y-axis. The number of clusters is limited in this example to nine with the
clustersNumber argument, which can be useful to omit scarcely populated clusters.

Argument name Default value Description

clusters none Matrix with clusters: trajectories are given in row-
wise, clusters in column-wise fashion as provided
by load_clusters(), the associated loading func-
tion.

clustersNumber NA When specified, only these first clusters are
shown.

legendTitle "trajectories" The title of the legend.
barePlot FALSE A Boolean indicating whether the plot is to be

made without any additional information or not.
... none Additional arguments.

Table 2: Arguments of the clusters() function.

The clusters_ts() function

In structural clustering, it is often instructive to have a look at the development over time rather
than the overall summary. This functionality is provided by clusters_ts(). In the top sub-plot the
overall distribution is given, while the time series is shown at the bottom. The clusters are sorted
beginning with the most populated one, in descending order. Selections can be made and clusters that
are not selected do also not appear in the time series plot (white areas). The time axis may be shown in
nanoseconds (see Figure 3 for an example).

clusters_ts(load_clusters_ts("inst/extdata/clusters_ts_example.txt.gz",
lengths=c(4000,4000,4000,4000,4000,4000),

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 167

names=c("wild-type","mut1","mut2",
"mut3","mut4","mut5")),

clustersNumber=7,main="MDplot::clusters_ts() example",
timeUnit="ns",snapshotsPerTimeInt=100)

Return value: Returns a summary (n + 1)× m-matrix with n being the number of input trajectories
and m the number of different clusters (which have been plotted). Each element in the matrix holds the
number of snapshots, in which the respective cluster occurred in the respective trajectory. In addition,
the first line is the overall summary counted over all trajectories.

MDplot::clusters_ts() example

po
pu

la
tio

ns

61
.1

 %

11
.7

 %

7.
4

%

5.
7

%

1.
8

%

1.
8

%

1.
5

%

1 2 3 4 5 6 7

10 20 30 40

wild−type

mut1

mut2

mut3

mut4

mut5

time [ns]

Figure 3: The plot shows a selection of the seven most populated clusters of six trajectories. Regions
that do not belong to one of the first seven clusters are shown in white.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 168

Argument name Default value Description

clustersDataTS none List of cluster information as provided by
load_clusters_ts(), the associated loading
function.

clustersNumber NA An integer specifying the number of clusters
that is to be plotted.

selectTraj NA Vector of indices of trajectories that are plotted
(as given in the input file).

selectTime NA Range of time in snapshots.
timeUnit NA Abbreviation of time unit.
snapshotsPerTimeInt 1000 Number of snapshots per time unit.
... none Additional arguments.

Table 3: Arguments of the clusters_ts() function.

The dssp() function

In terms of proteins the secondary structure can be annotated by the widely used program DSSP
(Definition of Secondary Structure of Proteins) (Kabsch and Sander, 1983). This algorithm uses the
backbone hydrogen bond pattern in order to assign secondary structure elements such as α-helices, β-
strands, and turns to protein sequences. The plotting function dssp() has three different visualisation
methods and plots the overall result over the trajectory and over the residues. The user can specify
selections of residues and which elements should be taken into consideration (Figure 4).

layout(matrix(1:3, nrow=1), widths=c(0.33,0.33,0.33))
dssp(load_dssp("inst/extdata/dssp_example.txt.gz"),

main="plotType=dots",showResidues=c(1,35))
dssp(load_dssp("inst/extdata/dssp_example.txt.gz"),

main="plotType=curves",plotType="curves",showResidues=c(1,35))
dssp(load_dssp("inst/extdata/dssp_example.txt.gz"),

main="plotType=bars",plotType="bars",showResidues=c(1,35))

Return value: Returns a matrix, where the first column is the residue-number and the remaining
ones denote secondary structure classes. Residues are given row-wise and values range from 0 to 100
percent.

5 10 15 20 25 30 35

0
20

40
60

80
10

0 plotType=dots

residues

oc
cu

re
nc

es
 [%

]

5 10 15 20 25 30 35

0
20

40
60

80
10

0 plotType=curves

residues

oc
cu

re
nc

es
 [%

]

plotType=bars

residues

oc
cu

re
nc

es
 [%

]

0
20

40
60

80
10

0

5 10 15 20 25 30 35

Figure 4: Example of dssp() with plotType set to "dots" (default), "curves" or "bars". Note that
the fractions do not necessarily sum up to a hundred percent, because some residues might not be
in defined secondary structure elements all the time. In this figure, there is no legend plotted due to
space limitations (see Figure 5 for a colour-code explanation).

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 169

Argument name Default value Description

dsspData none Table containing information on the secondary
structure elements. Can be generated by function
load_dssp().

printLegend FALSE If TRUE, a legend is printed on the right hand side
of the plot.

useOwnLegend FALSE If FALSE, the names of the secondary structure ele-
ments are considered to be in default order.

elementNames NA Vector of names for the secondary structure ele-
ments.

colours NA A vector of colours that can be specified to replace
the default ones.

showValues NA A vector of boundaries for the values.
showResidues NA A vector of boundaries for the residues.
plotType "dots" Either "dots", "curves", or "bars".
selectedElements NA A vector of names of the elements selected.
barePlot FALSE Boolean, indicating whether the plot is to be made

without any additional information.
... none Additional arguments.

Table 4: Arguments of the dssp() function.

The dssp_ts() function

The secondary structure information as described for the function dssp() can also be visualised along
the time axis using function dssp_ts() (Figure 5). The time can be annotated in snapshots or time
units (e.g., nanoseconds).

dssp_ts(load_dssp_ts("inst/extdata/dssp_ts_example"),printLegend=TRUE,
main="MDplot::dssp_ts()",timeUnit="ns",
snapshotsPerTime=1000)

Argument name Default value Description

tsData none List of lists, which are composed of a name
(string) and a values table (x ... snap-
shots, y ... residues). Can be generated by
load_dssp_ts().

printLegend TRUE If TRUE, a legend is printed on the right hand
side of the plot.

timeBoundaries NA A vector of boundaries for the time in snap-
shots.

residueBoundaries NA A vector of boundaries for the residues.
timeUnit NA If set, the snapshots are transformed into

the respective time (depending on parameter
snapshotsPerTime).

snapshotsPerTimeInt 1000 Number of snapshots per respective timeUnit.
barePlot FALSE A Boolean indicating whether the plot is to be

made without any additional information.
... none Additional arguments.

Table 5: Arguments of the dssp_ts() function.

The hbond() function

In the context of biomolecules, hydrogen bonds are of particular importance. These bonds take place
between a donor, a hydrogen, and an acceptor atom. This function plots the summary output of

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 170

0 5 10 15 20 25

20
40

60
80

10
0

MDplot::dssp_ts()

time [ns]

re
si

du
e

nu
m

be
r

3−Helix
4−Helix
5−Helix
Bend
Beta−Bridge
Beta−Strand
Turn

Figure 5: Example showing all of the defined secondary structure elements per residue over time.
Note, that for this example plot a sparse data set was used to reduce the size of the data file (hence the
large white areas in the middle).

hydrogen bond calculations and allows selection of donor and acceptor residues. Occurrence over the
whole trajectory is indicated by a colour scale. Note, that in case multiple hydrogen bond interactions
between two particular residues take place (conveyed by different sets of atoms), the interaction with
prevalence will be used for colour-coding (and by default, this interaction is marked with a black
circle, see below). An example is given in Figure 6.

hbond(load_hbond("inst/extdata/hbond_example.txt.gz"),
main="MDplot::hbond()",donorRange=c(0,65))

Return value: Returns a table containing the information used for plotting in columns as follows:

• resDonor Residue number (donor).

• resAcceptor Residue number (acceptor).

• percentage Percentage, that has been used for colour-coding.

• numberInteractions Number of hydrogen bond interactions taking place between the specified
donor and acceptor residues.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 171

50 55 60 65

0
50

10
0

15
0

20
0

25
0

MDplot::hbond()

Donor [residue number]

A
cc

ep
to

r
[r

es
id

ue
 n

um
be

r]

[%]

0

25

50

75

100

Figure 6: The acceptor residues are plotted on the x-axis whilst the donors are shown on the y-axis.
The different colours indicate the occurrences throughout the whole trajectory.

Argument name Default value Description

hbonds none Table containing the hydrogen bond
information in columns "hbondID",
"resDonor", "resDonorName", "resAc-
ceptor", "resAcceptorName", "atom-
Donor", "atomDonorName", "atomH",
"atomAcceptor", "atomAcceptor-
Name", "percentage" (automatically
generated by function load_hbond()).

plotMethod "residue-wise" Allows to set the detail of hydrogen
bond information displayed. Options
are: "residue-wise".

acceptorRange NA A vector specifying the range of accep-
tor residues.

donorRange NA A vector specifying the range of donor
residues.

printLegend TRUE A Boolean enabling the legend.
showMultipleInteractions TRUE If TRUE, this option causes multiple in-

teractions between the same residues
as being represented by a black circle
around the coloured dot.

barePlot FALSE A Boolean indicating whether the plot
is to be made without any additional
information.

... none Additional arguments.

Table 6: Arguments of the hbond() function.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 172

The hbond_ts() function

The time series of hydrogen bond occurrences can be visualised using the function hbond_ts(), which
plots them either according to their identifiers or in a human readable form in three- or one-letter
code (the participating atoms can be shown as well) on the y-axis and the time on the x-axis. If the
GROMOS input format is used, this function requires two different files: the summary of the hbond
program and the time series file. The occurrence of a hydrogen bond is represented by a black bar and
the occurrence summary can be added on the right hand side as a sub-plot (Figure 7). In addition to
the time series file, depending on the MD engine format used, an additional summary file might also
be necessary (see the documentation of the function load_hbond_ts() for further information).

hbond_ts(timeseries=load_hbond_ts("inst/extdata/hbond_ts_example.txt.gz"),
summary=load_hbond("inst/extdata/hbond_example.txt.gz"),
main="MDplot::hbond_ts()",acceptorRange=c(22,75),
hbondIndices=list(c(0,24)),plotOccurences=TRUE,timeUnit="ns",
snapshotsPerTimeInt=100,printNames=TRUE,namesToSingle=TRUE,
printAtoms=TRUE)

Return value: Returns an n× 2-matrix, with the first column being the list of hydrogen bond identifiers
plotted and the second one the occurrence (in percent) over the selected time range.

MDplot::hbond_ts()

time [ns]
0 20 40 60 80

R50:N −> Y46:O

R50:N −> K47:O

R50:NE −> Y46:O

R50:NH1 −> E70:OE1

R50:NH1 −> E70:OE2

R50:NH1 −> A67:O

R50:NH1 −> E70:OE2

R50:NH1 −> E70:O

R50:NH2 −> E70:OE1

R50:NH2 −> Y46:O

R50:NH2 −> K47:N

D51:N −> D51:OD1

D51:N −> D51:OD2

D51:N −> K47:O

D51:N −> A48:O

D51:N −> L49:O

L52:N −> R50:O

L52:N −> D51:N

L52:N −> A48:O

L52:N −> L49:O

K53:N −> D51:O

K53:NZ −> D51:O

0 20 40 60 80 100
occurence [%]

Figure 7: Example figure generated by hbond_ts() for both an identifier and acceptor residues’
selection. The labels for the hydrogen bonds may be printed as identifiers or with names composed of
residue names (in single- or three-letter code) and those of the participating atoms.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 173

Argument name Default value Description

timeseries none Table containing the time series information
(e.g., produced by load_hbond_ts()).

summary none Table containing the summary information
(e.g., produced by load_hbond()).

acceptorRange NA A vector of acceptor residues.
donorRange NA A vector of donor residues.
plotOccurences FALSE Specifies whether the overall summary should

be plotted on the right hand side.
scalingFactorPlot NA Used to manually set the scaling factor (if nec-

essary).
printNames FALSE Enables human readable names rather than the

hydrogen bond identifiers.
namesToSingle FALSE If printNames is TRUE, this flag instructs one-

letter codes instead of three-letter ones.
printAtoms FALSE Enables atom names in hydrogen bond identi-

fication on the y-axis.
timeUnit NA Specifies the time unit on the x-axis.
snapshotsPerTimeInt 1000 Specifies how many snapshots make up one

time unit (see above).
timeRange NA A vector specifying a certain time range.
hbondIndices NA A list containing vectors to select hydrogen

bonds by their identifiers.
barePlot FALSE A Boolean indicating whether the plot is to be

made without any additional information.
... none Additional arguments.

Table 7: Arguments of the hbond_ts() function.

The noe() function

The nuclear-Overhauser-effect is one of the most important measures of structure validity in the
context of molecular dynamics simulations. These interactions are transmitted through space and arise
from spin-spin coupling, which can be measured by nuclear magnetic resonance (NMR) spectroscopy.
These measurements provide pivotal distance restrains which should be matched on average during
molecular dynamics simulations of the same system and can hence be used for parameter validation.
The plotting function noe() allows to visualise the number of distance restrain violations and their
respective spatial deviation. As shown in Figure 8, multiple replicates or different protein systems are
supported simultaneously. Note that negative violations are not considered.

noe(load_noe(files=c("inst/extdata/noe_example_1.txt.gz",
"inst/extdata/noe_example_2.txt.gz")),

main="MDplot::noe()")

Return value: Returns a matrix, in which the first column holds the bin boundaries used and the
following columns represent either the percentage or absolute numbers of the violations per bin,
depending on the specification.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 174

MDplot::noe()

0
5

10
15

20

0.
02

5

0.
07

5

0.
12

5

0.
17

5

0.
22

5

0.
27

5

0.
32

5

0.
37

5

0.
42

5

0.
47

5

0.
52

5

0.
57

5

0.
62

5

noe violations

fr
ac

tio
n

vi
ol

at
io

ns
 [%

]

Figure 8: Example plot showing two different replicates of a protein simulation (they share the same
molecule, but have different initial velocities). Note, that the maximum value (x-axis) over all replicates
is used for the plot. The sum over all violations from left to right is shown by an additional curve on
top. The number of violations may be given as fractions (in %), as shown above, or absolute numbers
(flag printPercentages either TRUE or FALSE).

Argument name Default value Description

noeData none Input matrix. Generated by function load_noe().
printPercentages TRUE If TRUE, the violations will be reported in a relative

manner (percent) rather than absolute numbers.
colours NA Vector of colours to be used for the bars.
lineTypes NA If plotSumCurves is TRUE, this vector might be used

to specify the types of curves plotted.
names NA Vector to name the input columns (legend).
plotSumCurves TRUE If TRUE, the violations are summed up from left to

right to show the overall behaviour.
maxYAxis NA Can be used to manually set the y-axis of the plot.
printLegend FALSE A Boolean indicating if legend is to be plotted.
... none Additional arguments.

Table 8: Arguments of the noe() function.

The ramachandran() function

This graph type (Ramachandran et al., 1963) is often used to show the sampling of the φ/ψ protein
backbone dihedral angles in order to assign propensities of secondary structure elements to the protein
of interest (so-called Ramachandran plots). These plots can provide crucial insight into energy barriers
arising as required, for example, in the context of parameter validation (Margreitter and Oostenbrink,
2016). The function ramachandran() offers a 2D (Figure 9) and 3D (Figure 10) variant with the former
offering the possibility to print user-defined secondary structure regions as well. The number of bins
for the two axes and the colours used for the legend can be specified by the user.

ramachandran(load_ramachandran("inst/extdata/ramachandran_example.txt.gz"),
heatFun="log",plotType="sparse",xBins=90,yBins=90,
main="ramachandran() (plotType=sparse)",
plotContour=TRUE)

ramachandran(load_ramachandran("inst/extdata/ramachandran_example.txt.gz"),
heatFun="norm",plotType="fancy",xBins=90,yBins=90,

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 175

main="ramachandran() (plotType=fancy)",
printLegend=TRUE)

Return value: Returns a list of binned dihedral angle occurrences.

ramachandran() (plotType=sparse)

−135 −90 −45 0 45 90 135

−
13

5
−

90
−

45
0

45
90

13
5

φ [°]

ψ
 [°

]

Figure 9: Two-dimensional plot version "sparse" of the ramachandran() function with enabled
contour plotting. The number of bins can be specified for both dimensions independently.

Figure 10: Three-dimensional example of the ramachandran() function. In addition to the colour, the
height (z-axis) also represents the number of dihedrals per bin.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 176

Argument name Default value Description

dihedrals none Matrix with angles (two columns). Generated by
function load_ramachandran().

xBins 150 Number of bins used to plot (x-axis).
yBins 150 Number of bins used to plot (y-axis).
heatFun "norm" Function selector for calculation of the colour. The

possibilities are either: "norm" for linear calculation
or "log" for logarithmic calculation.

structureAreas c() List of areas, which are plotted as black lines.
plotType "sparse" Type of plot to be used, either "sparse" (default, us-

ing function hist2d()), "comic" (own binning, sup-
ports very few datapoints), or "fancy" (3D, using
function persp()).

printLegend FALSE A Boolean specifying whether a heat legend is to be
plotted or not.

plotContour FALSE A Boolean specifying whether a contour should be
added or not.

barePlot FALSE A Boolean indicating whether the plot is to be made
without any additional information.

... none Additional arguments.

Table 9: Arguments of the ramachandran() function.

The rmsd() function

The atom-positional root-mean-square deviation (RMSD) is one of the most commonly used plot types
in the field of biophysical simulations. In the context of atom configurations, it is a measure for the
positional divergence of one or multiple atoms. The input requires a list of alternating vectors of time
indices and RMSD values. Multiple data sets can be plotted, given in separate input files. Figure 11
shows an example for two trajectories.

rmsd(load_rmsd(c("inst/extdata/rmsd_example_1.txt.gz",
"inst/extdata/rmsd_example_2.txt.gz")),

printLegend=TRUE,names=c("WT","mut"),main="MDplot::rmsd()")

Return value: Returns a list of lists, where each sub-list represents a RMSD curve and contains the
components:

• minValue The minimum value over the whole time range.

• maxValue The maximum value over the whole time range.

• meanValue The mean value calculated over the whole time range.

• sd The standard deviation calculated over the whole time range.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 177

Figure 11: This plot shows the RMSD curves for two different trajectories. The time is given in
nanoseconds, which requires a properly set factor parameter.

Argument name Default value Description

rmsdData none List of (alternating) indices and RMSD value vec-
tors, as produced by load_rmsd().

printLegend TRUE A Boolean which triggers the plotting of the legend.
factor 1000 A number specifying how many snapshots are

within one timeUnit.
timeUnit "ns" Specifies the time unit.
rmsdUnit "nm" Specifies the RMSD unit.
colours NA A vector of colours used for plotting.
names NA A vector holding the names of the trajectories.
legendPosition "bottomright" Indicates the position of the legend: either

"bottomright", "bottomleft", "topleft", or
"topright".

barePlot FALSE A Boolean indicating whether the plot is to be made
without any additional information.

... none Additional arguments.

Table 10: Arguments of the rmsd() function.

The rmsd_average() function

Nowadays, for many molecular systems multiple replicates of simulations are performed in order
to enhance the sampling of the phase space. However, since the amount of analysis data grows
accordingly, a joint representation of the results may be desirable. For the case of backbone-atom and
other RMSD plots, the MDplot package supports average plotting. Instead of plotting every curve
individually, the mean and the minimum and maximum values of all trajectories at a given time point
is plotted. Thus, the spread of multiple simulations is represented as a ’corridor’ over time.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 178

rmsd_average(rmsdInput=list(load_rmsd("inst/extdata/rmsd_example_1.txt.gz"),
load_rmsd("inst/extdata/rmsd_example_2.txt.gz")),

maxYAxis=0.375,main="MDplot::rmsd_average()")

Return value: Returns an n × 4-matrix, with the rows representing different snapshots and the
columns the respective values as follows:

• snapshot Index of the snapshot.

• minimum The minimum RMSD value over all input sources at a given time.

• mean The mean RMSD value over all input sources at a given time.

• maximum The maximum RMSD value over all input sources at a given time.

0.
0

0.
1

0.
2

0.
3

MDplot::rmsd_average()

0 5 10 15 20 25 30 35

time [ns]

R
M

S
D

 [n
m

]

Figure 12: In black, the mean RMSD value at a given timepoint and in grey the respective minimum
and maximum values are given. In this example, two rather similar curves have been used.

Argument name Default value Description

rmsdInput none List of snapshot and RMSD value pairs, as,
for example, provided by loading function
load_rmsd().

levelFactor NA If there are many datapoints, this parameter
may be used to use only the levelFactorth
datapoints to obtain a clean graph.

snapshotsPerTimeInt 1000 Number, specifying how many snapshots are
comprising one timeUnit.

timeUnit "ns" Specifies the time unit.
rmsdUnit "nm" Specifies the RMSD unit.
maxYAxis NA Can be used to manually set the y-axis of the

plot.
barePlot FALSE A Boolean indicating whether the plot is to be

made without any additional information.
... none Additional arguments.

Table 11: Arguments of the rmsd_average() function.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 179

The rmsf() function

The atom-positional root-mean-square fluctuation (RMSF) represents the degree of positional variation
of a given atom over time. The input requires one column with all residues or atoms and a second one
holding RMSF values. Figure 13 shows, as an example, the RMSF of the first 75 atoms, calculated for
two independent simulations.

rmsf(load_rmsf(c("inst/extdata/rmsf_example_1.txt.gz",
"inst/extdata/rmsf_example_2.txt.gz")),

printLegend=TRUE,names=c("WT","mut"),range=c(1,75),
main="MDplot::rmsf()")

Return value: A list of vectors, alternately holding atom indices and their respective values.

Figure 13: Plot showing two different RMSF curves.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 180

Argument name Default value Description

rmsfData none List of (alternating) atom numbers and RMSF val-
ues, as, for example, produced by load_rmsf().

printLegend TRUE A Boolean controlling the plotting of the legend.
rmsfUnit "nm" Specifies the RMSF unit.
colours NA A vector of colours used for plot.
residuewise FALSE A Boolean specifying whether atoms or residues are

plotted on the x-axis.
atomsPerResidue NA If residuewise is TRUE, this parameter can be used

to specify the number of atoms per residue for plot-
ting.

names NA A vector of the names of the trajectories.
range NA Range of atoms.
legendPosition "topright" Indicates position of legend: either "bottomright",

"bottomleft", "topleft", or "topright".
barePlot FALSE A Boolean indicating whether the plot is to be made

without any additional information.
... none Additional arguments.

Table 12: Arguments of the rmsf() function.

The TIcurve() function

For calculations of the free energy difference occurring when transforming one chemical compound
into another (alchemical changes) or for estimates of free energy changes upon binding, thermody-
namic integration (Kirkwood, 1935) is one of the most trusted and applied approaches. The derivative
of the Hamiltonian, as a function of a coupling parameter λ, is calculated over a series of λ state points
(typically around 15). The integral of this curve is equivalent to the change in free energy (Figure 14).
The function TIcurve() performs the integration and, if the data for both the forward and backward
processes are provided, the hysteresis between them.

TIcurve(load_TIcurve(c("inst/extdata/TIcurve_fb_forward_example.txt.gz",
"inst/extdata/TIcurve_fb_backward_example.txt.gz")),

invertedBackwards=TRUE, main="MDplot::TIcurve()")

Return value: Returns a list with the following components:

• lambdapoints A list containing a (at least) n × 3-matrix for every data input series.

• integrationresults A matrix containing one row of "deltaG" and "error" columns from the
integration for every data input series.

• hysteresis If two (i.e. forward and backward) data input series are provided, the resulting
hysteresis is reported (and set to be NA otherwise).

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 181

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20

MDplot::TIcurve()

λ

<∂H
∂λ>

[kJ/mol]

MDplot::TIcurve()

∆Gforw = −3.6 +/− 0.9 [kJ/mol]
∆Gback = −3.8 +/− 0.8 [kJ/mol]

hysteresis = 0.2 [kJ/mol]

Figure 14: A forward and backward thermodynamic integration curve with the resulting hysteresis
between them (precision as permitted by the error).

Argument name Default value Description

lambdas none List of matrices (automatically generated by
load_TIcurve()) holding the thermodynamic in-
tegration information.

invertedBackwards FALSE If a forward and backward TI are provided and
the lambda points are enumerated reversely (i.e.
0.3 of one TI is equivalent to 0.7 of the other), this
flag can be set to be TRUE in order to automatically
mirror the values appropriately.

energyUnit "kJ/mol" Defines the energy unit used for the plot.
printValues TRUE If TRUE, the free energy values are printed.
printErrors TRUE A Boolean indicating whether error bars are to be

plotted.
errorBarThreshold 0 If the error at a given lambda point is below this

threshold, it is not plotted.
barePlot FALSE A Boolean indicating whether the plot is to be

made without any additional information.
... none Additional arguments.

Table 13: Arguments of the TIcurve() function.

The timeseries() function

This function provides a general interface for any time series given as a time-value pair (Figure 15).

timeseries(load_timeseries(c("inst/extdata/timeseries_example_1.txt.gz",
"inst/extdata/timeseries_example_2.txt.gz")),

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 182

main="MDplot::timeseries()",
names=c("fluc1","fluc2"),
snapshotsPerTimeInt=100)

Return value: Returns a list of lists, each of the latter holding for every data input series:

• minValue The minimum value over the whole set.

• maxValue The maximum value over the whole set.

• meanValue The mean value over the whole set.

• sd The standard deviation over the whole set.

−
40

0
−

50
0

−
60

0
−

70
0

−
80

0
−

90
0

MDplot::timeseries()

2 4 6 8 10

time [ns]

Legend

fluc1
fluc2

Figure 15: Shows time series with parameter snapshotsPerTimeInt set in a way such, that the proper
time in nanoseconds is plotted. In addition, the legend has been moved to the bottom-right position.

Argument name Default value Description

tsData none List of (alternating) indices and response val-
ues, as produced by load_timeseries().

printLegend TRUE Parameter enabling the plotting of the legend.
snapshotsPerTimeInt 1000 Number specifying how many snapshots

make up one timeUnit.
timeUnit "ns" Specifies the time unit.
valueName NA Name of response variable.
valueUnit NA Specifies the response variable’s unit.
colours NA A vector of colours used for plotting.
names NA A vector of names of the trajectories.
legendPosition "bottomright" Indicates position of legend: either

"bottomright", "bottomleft", "topleft", or
"topright".

barePlot FALSE A Boolean indicating whether the plot is to be
made without any additional information.

... none Additional arguments.

Table 14: Arguments of the timeseries() function.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 183

The xrmsd() function

This function generates a plot which shows a heat-map of the atom positional root-mean-square
differences between snapshots (figure 16). The structures are listed on the x- and y-axes. The heat-map
shows the difference between one structure and another using a coloured bin. The legend is adapted
in accordance to the size of the values.

xrmsd(load_xrmsd("inst/extdata/xrmsd_example.txt.gz"),
printLegend=TRUE,main="MDplot::xrmsd()")

0 50 100 150

50
10

0
15

0
20

0

MDplot::xrmsd()

conformation

co
nf

or
m

at
io

n

Legend [nm]

0

0.08

0.16

0.24

0.32

Figure 16: An example xrmsd() plot showing only the upper half because of the mirroring of the
values.

Argument name Default value Description

xrmsdValues none Input matrix (three rows: x-values, y-values,
RMSD-values). Can be generated by function
load_xrmsd().

printLegend TRUE If TRUE, a legend is printed on the right hand side.
xaxisRange NA A vector of boundaries for the x-snapshots.
yaxisRange NA A vector of boundaries for the y-snapshots.
colours NA User-specified vector of colours to be used for plot-

ting.
rmsdUnit "nm" Specifies in which unit the RMSD values are given.
barPlot FALSE A Boolean indicating whether the plot is to be made

without any additional information.
... none Additional arguments.

Table 15: Arguments of the xrmsd() function.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 184

Additional functions and the Bash interface

Given that the plotting functions expect input to be stored in a defined data structure, the step of
loading and parsing data from the text input files has been implemented in separate loading functions.
Currently, they support GROMOS, GROMACS, and AMBER file formats and further developments
are planned to cover additional ones as well.

In order to allow for direct calls from Bash scripts, users might use the Rscript interface located
in the folder ‘bash’ which serves as a wrapper shell. Pictures in the file formats PNG, TIFF, or PDF
can be used provided that the users’ R installation supports them. If help=TRUE is set, all the other
options are ignored and a full list of options for every command is printed. In general, the names of
the arguments of the functions are the same for calls by script. The syntax for these calls is Rscript
MDplot_bash.R {function name} [argument1=...] [argument2=...], which can be combined with
Bash variables (see below). The file path can be given in an absolute manner or relative to the Rscript
folder path. The package holds a file called ‘bash/test.sh’ which contains several examples.

#!/bin/bash
clusters
Rscript MDplot_bash.R clusters files=../extdata/clusters_example.txt.gz \

title="Cluster analysis" size=900,900 \
outformat=tiff outfile=clusters.tiff \
clustersNumber=7 \
names=WT,varA,varB,varC2,varD3,varE4

xrmsd
Rscript MDplot_bash.R xrmsd files=../extdata/xrmsd_example.txt.gz title="XRMSD" \

size=1100,900 outformat=pdf outfile=XRMSD.pdf \
xaxisRange=75,145

ramachandran
Rscript MDplot_bash.R ramachandran files=../extdata/ramachandran_example.txt.gz \

title="Ramachandran plot" size=1400,1400 resolution=175 \
outformat=tiff outfile=ramachandran.tiff angleColumns=1,2 \
bins=75,75 heatFun=norm printLegend=TRUE plotType=fancy

The loading functions

In order to ease data preparation, loading functions have been devised which are currently able to load
the output of standard GROMOS, GROMACS, and AMBER analysis tools and store these data such,
that they can be interpreted by the MDplot plotting functions.2 Loading functions are named after
their associated plotting function with 'load_' as prefix. For other molecular dynamics engines than
the aforementioned ones, the user has to specify how their output should be read. However, in case
other file formats are requested we appreciate suggestions, requests, and contributions (to be made on
our GitHub page). For detailed descriptions of the data structures used, we refer to the manual pages
of the loading functions and the respective examples. For storage reasons the example input files have
been compressed using gzip with R being able to load both compressed and uncompressed files.

Conclusions

In this paper we have presented the package MDplot and described its application in the context
of molecular dynamics simulation analysis. Automated figure generation is likely to aid in the
understanding of results at the first glance and may be used in presentations and publications.
Planned extensions include both the integration of new functionalities such as a DISICL (secondary
structure classification (Nagy and Oostenbrink, 2014a,b)) as well as the provision of loading interfaces
for additional molecular dynamics engines. Further developments will be published on the projects’
GitHub page and on CRAN.

2Functions load_timeseries() and load_TIcurve() do not require engine-specific loading and function noe()
is only available for GROMOS because no input files for the other engines could be retrieved.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 185

Acknowledgements

The authors would like to thank Prof. Friedrich Leisch for his useful comments and guidance in the
package development process, Markus Fleck for providing GROMACS analysis files, Silvia Bonomo
for her help in dealing with AMBER, Sophie Krecht for her assistance in typesetting, and Jamie
McDonald for critical reading of the manuscript.

Funding

This work was supported by the European Research Council (ERC; grant number 260408), the Austrian
Science Fund (FWF; grant number P 25056) and the Vienna Science and Technology Fund (WWTF;
grant number LS08-QM03).

Bibliography

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E.
Bourne. The Protein Data Bank. Nucleic Acids Research, 28(1):235, 2000. [p164]

B. R. Brooks, C. L. Brooks, A. D. MacKerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis,
C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao,
M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post,
J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and
M. Karplus. CHARMM: The Biomolecular Simulation Program. Journal of Computational Chemistry,
30(10):1545–1614, 2009. ISSN 0192-8651. URL https://doi.org/10.1002/jcc.21287. [p164]

F. Comoglio and M. Rinaldi. Rknots: Topological analysis of knotted biopolymers with R. Bioinformatics,
28(10):1400, 2012. [p164]

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox,
J. W. Caldwell, and P. A. Kollman. A Second Generation Force Field for the Simulation of Proteins,
Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society, 117(19):5179–5197,
1995. ISSN 0002-7863. URL https://doi.org/10.1021/ja00124a002. [p164]

A. P. Eichenberger, J. R. Allison, J. Dolenc, D. P. Geerke, B. A. C. Horta, K. Meier, C. Oostenbrink,
N. Schmid, D. Steiner, D. Wang, and W. F. van Gunsteren. GROMOS++ Software for the Analysis of
Biomolecular Simulation Trajectories. Journal of Chemical Theory and Computation, 7(10):3379–3390,
2011. ISSN 1549-9618. URL https://doi.org/10.1021/ct2003622. [p164]

B. J. Grant, A. P. C. Rodrigues, K. M. ElSawy, J. A. McCammon, and L. S. D. Caves. Bio3d: An R
package for the comparative analysis of protein structures. Bioinformatics, 22(21):2695–2696, 2006.
ISSN 1367-4803, 1460-2059. [p164]

W. Kabsch and C. Sander. Dictionary of protein secondary structure: Pattern recognition of hydrogen-
bonded and geometrical features. Biopolymers, 22(12):2577–2637, 1983. ISSN 1097-0282. URL
https://doi.org/10.1002/bip.360221211. [p168]

J. G. Kirkwood. Statistical mechanics of fluid mixtures. Journal of Chemical Physics, pages 300–313, 1935.
[p180]

C. Margreitter and C. Oostenbrink. Optimization of Protein Backbone Dihedral Angles by Means of
Hamiltonian Reweighting. Journal of Chemical Information and Modeling, 56(9):1823–1834, 2016. URL
https://doi.org/10.1021/acs.jcim.6b00399. [p174]

R. T. McGibbon, K. A. Beauchamp, M. P. Harrigan, C. Klein, J. M. Swails, C. X. Hernández, C. R.
Schwantes, L.-P. Wang, T. J. Lane, and V. S. Pande. MDTraj: A Modern Open Library for the
Analysis of Molecular Dynamics Trajectories. Biophysical Journal, 109(8):1528 – 1532, 2015. URL
https://doi.org/10.1016/j.bpj.2015.08.015. [p164]

G. Nagy and C. Oostenbrink. Dihedral-Based Segment Identification and Classification of Biopolymers
II: Polynucleotides. Journal of Chemical Information and Modeling, 54(1):278–288, 2014a. URL https:
//doi.org/10.1021/ci400542n. [p184]

G. Nagy and C. Oostenbrink. Dihedral-based segment identification and classification of biopolymers
I: Proteins. Journal of Chemical Information and Modeling, 54(1):266–277, 2014b. ISSN 1549-960X. URL
https://doi.org/10.1021/ci400541d. [p184]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://doi.org/10.1002/jcc.21287
https://doi.org/10.1021/ja00124a002
https://doi.org/10.1021/ct2003622
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1021/acs.jcim.6b00399
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1021/ci400542n
https://doi.org/10.1021/ci400542n
https://doi.org/10.1021/ci400541d

CONTRIBUTED RESEARCH ARTICLE 186

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé,
and K. Schulten. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26
(16):1781–1802, 2005. ISSN 1096-987X. URL https://doi.org/10.1002/jcc.20289. [p164]

S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson,
D. van der Spoel, B. Hess, and E. Lindahl. GROMACS 4.5: a high-throughput and highly parallel
open source molecular simulation toolkit. Bioinformatics, 29(7):845–854, 2013. ISSN 1367-4803,
1460-2059. [p164]

G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stereochemistry of polypeptide chain
configurations. Journal of Molecular Biology, 7:95–99, 1963. ISSN 0022-2836. [p174]

N. Schmid, C. D. Christ, M. Christen, A. P. Eichenberger, and W. F. van Gunsteren. Architecture,
implementation and parallelisation of the GROMOS software for biomolecular simulation. Computer
Physics Communications, 183(4):890–903, 2012. ISSN 0010-4655. URL https://doi.org/10.1016/j.
cpc.2011.12.014. [p164]

L. Skjærven, X.-Q. Yao, G. Scarabelli, and B. J. Grant. Integrating protein structural dynamics and
evolutionary analysis with Bio3D. BMC Bioinformatics, 15(1), 2014. URL https://doi.org/10.1186/
s12859-014-0399-6. [p164]

Christian Margreitter
Institute of Molecular Modeling and Simulation
University of Natural Resources and Life Sciences (BOKU)
Austria
christian.margreitter@gmail.com

Chris Oostenbrink
Institute of Molecular Modeling and Simulation
University of Natural Resources and Life Sciences (BOKU)
Austria
chris.oostenbrink@boku.ac.at

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://doi.org/10.1002/jcc.20289
https://doi.org/10.1016/j.cpc.2011.12.014
https://doi.org/10.1016/j.cpc.2011.12.014
https://doi.org/10.1186/s12859-014-0399-6
https://doi.org/10.1186/s12859-014-0399-6
mailto:christian.margreitter@gmail.com
mailto:chris.oostenbrink@boku.ac.at

	MDplot: Visualise Molecular Dynamics
	Introduction
	Plotting functions
	The clusters() function
	The clusters_ts() function
	The dssp() function
	The dssp_ts() function
	The hbond() function
	The hbond_ts() function
	The noe() function
	The ramachandran() function
	The rmsd() function
	The rmsd_average() function
	The rmsf() function
	The TIcurve() function
	The timeseries() function
	The xrmsd() function

	Additional functions and the Bash interface
	The loading functions

	Conclusions
	Acknowledgements
	Funding

