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comperank-package comperank: Ranking and Rating Methods for Competition Results

Description

comperank provides tools for computing ranking and rating based on competition results. It is
tightly connected to its data infrastructure package comperes. Basic knowledge about creating valid
competition results and Head-to-Head expressions with comperes is needed in order to efficiently
use comperank.

Details

comperank leverages the tidyverse ecosystem of R packages. Among other things, it means that the
main output format is tibble.

comperank gets inspiration from the book "Who’s #1" by Langville and Meyer. It provides func-
tionality for the following rating algorithms:

• Algorithms with fixed Head-to-Head structure:

– Simplified Massey method with rate_massey() and rank_massey().
– Simplified Colley method with rate_colley() and rank_colley().

• Algorithms with variable Head-to-Head structure:

– Keener method with rate_keener() and rank_keener().
– Markov method with rate_markov() and rank_markov().
– Offense-Defense method with rate_od() and rank_od().

• Algorithms with iterative nature:

– General Iterative ratings with rate_iterative(), rank_iterative(), and add_iterative_ratings().
– Elo ratings with rate_elo(), rank_elo(), and add_elo_ratings().

comperank also offers data sets describing professional snooker in seasons 2016/2017 and 2017/2018.
See snooker_events, snooker_players, snooker_matches.

To learn more about comperank browse vignettes with browseVignettes(package = "comperank").

https://www.tidyverse.org/
https://www.amazon.com/Whos-1-Science-Rating-Ranking/dp/069116231X
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Author(s)

Maintainer: Evgeni Chasnovski <evgeni.chasnovski@gmail.com>

See Also

Useful links:

• https://github.com/echasnovski/comperank

• Report bugs at https://github.com/echasnovski/comperank/issues

colley Colley method

Description

Functions to compute rating and ranking using Colley method.

Usage

rate_colley(cr_data)

rank_colley(cr_data, keep_rating = FALSE, ties = c("average", "first",
"last", "random", "max", "min"), round_digits = 7)

Arguments

cr_data Competition results in format ready for as_longcr().
keep_rating Whether to keep rating column in ranking output.
ties Value for ties in round_rank().
round_digits Value for round_digits in round_rank().

Details

This rating method was initially designed for games between two players. There will be an error if
in cr_data there is a game not between two players. Convert input competition results manually or
with to_pairgames() from comperes package.

It is assumed that score is numeric and higher values are better for the player.

Computation is done based only on the games between players of interest (see Players). Note that
it isn’t necessary for all players of interest to be present in cr_data but it might be a good idea in
order to obtain plausible outcome rating.

The outline of the Colley method is as follows:

1. Compute Colley matrix: diagonal elements are equal to number of games played by certain
player plus 2, off-diagonal are equal to minus number of common games played. This matrix
will be the matrix of system of linear equations (SLE).

2. Compute right-hand side of SLE as 1 + 0.5*("number of player’s wins" - "number of player’s
losses").

3. Solve the SLE. The solution is the Colley rating.

https://github.com/echasnovski/comperank
https://github.com/echasnovski/comperank/issues
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Value

rate_colley() returns a tibble with columns player (player identifier) and rating_colley (Col-
ley rating). The mean rating should be 0.5. Bigger value indicates better player performance.

rank_colley() returns a tibble with columns player, rating_colley (if keep_rating = TRUE)
and ranking_colley (Colley ranking computed with round_rank()).

Players

comperank offers a possibility to handle certain set of players. It is done by having player column
(in longcr format) as factor with levels specifying all players of interest. In case of factor the result
is returned only for players from its levels. Otherwise - for all present players.

References

Wesley N. Colley (2002) Colley’s Bias Free College Football Ranking Method: The Colley Matrix
Explained. Available online at http://www.colleyrankings.com

Examples

rate_colley(ncaa2005)

rank_colley(ncaa2005)

rank_colley(ncaa2005, keep_rating = TRUE)

elo Elo method

Description

Functions to compute rating and ranking using Elo method.

Usage

rate_elo(cr_data, K = 30, ksi = 400, initial_ratings = 0)

rank_elo(cr_data, K = 30, ksi = 400, initial_ratings = 0,
keep_rating = FALSE, ties = c("average", "first", "last", "random", "max",
"min"), round_digits = 7)

add_elo_ratings(cr_data, K = 30, ksi = 400, initial_ratings = 0)

elo(rating1, score1, rating2, score2, K = 30, ksi = 400)

http://www.colleyrankings.com
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Arguments

cr_data Competition results in format ready for as_longcr().

K K-factor for Elo formula.

ksi Normalization coefficient for Elo formula.
initial_ratings

Initial ratings (see Iterative ratings).

keep_rating Whether to keep rating column in ranking output.

ties Value for ties in round_rank().

round_digits Value for round_digits in round_rank().

rating1 Rating of player1 before the game.

score1 Score of player1 in the game.

rating2 Rating of player2 before the game.

score2 Score of player2 in the game.

Details

rate_elo() and add_elo_ratings() are wrappers for rate_iterative() and add_iterative_ratings()
correspondingly. Rate function is based on Elo algorithm of updating ratings:

1. Probability of player1 (with rating r1) winning against player2 (with rating r2) is computed
based on rating difference and sigmoid function: P = 1 / (1 + 10^( (r2 - r1) / ksi ) ). ksi
defines the spread of ratings.

2. Result of the game from player1 perspective is computed based on rule: S = 1 (if score1 >
score2), S = 0.5 (if score1 == score2) and S = 0 (if score1 < score2).

3. Rating delta is computed: d = K * (S - P). The more the K the more the delta (with other being
equal).

4. New ratings are computed: r1_new = r1 + d, r2_new = r2 - d.

elo() function implements this algorithm. It is vectorized over all its arguments with standard R
recycling functionality. Note that not this function is used in rate_elo() and add_elo_ratings()
because of its not appropriate output format, but rather its non-vectorized reimplementation is.

Ratings are computed based only on games between players of interest (see Players) and NA values.

Value

rate_elo() returns a tibble with columns player (player identifier) and rating_elo (Elo ratings,
based on row order, by the end of competition results). Bigger value indicates better player
performance.

rank_elo() returns a tibble with columns player, rating_elo (if keep_rating = TRUE) and
ranking_elo (Elo ranking computed with round_rank()).

add_elo_ratings() returns a widecr form of cr_data with four rating columns added:

• rating1Before - Rating of player1 before the game.

• rating2Before - Rating of player2 before the game.
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• rating1After - Rating of player1 after the game.
• rating2After - Rating of player2 after the game.

elo() always returns a matrix with two columns containing ratings after the game. Rows represent
games, columns - players.

Players

comperank offers a possibility to handle certain set of players. It is done by having player column
(in longcr format) as factor with levels specifying all players of interest. In case of factor the result
is returned only for players from its levels. Otherwise - for all present players.

References

Wikipedia page for Elo rating system.

Examples

# Elo ratings
rate_elo(ncaa2005)

rank_elo(ncaa2005)

rank_elo(ncaa2005, keep_rating = TRUE)

add_elo_ratings(ncaa2005, initial_ratings = 100)

# Elo function
elo((0:12)*100, 1, 0, 0)
elo((0:12)*100, 1, 0, 0, K = 10)
elo((0:12)*10, 1, 0, 0, ksi = 40)

iterative Iterative rating method

Description

Functions to compute Iterative numeric ratings, i.e. which are recomputed after every game, and
corresponding rankings.

Usage

rate_iterative(cr_data, rate_fun, initial_ratings = 0)

rank_iterative(cr_data, rate_fun, initial_ratings = 0, keep_rating = FALSE,
type = "desc", ties = c("average", "first", "last", "random", "max",
"min"), round_digits = 7)

add_iterative_ratings(cr_data, rate_fun, initial_ratings = 0)

https://en.wikipedia.org/wiki/Elo_rating_system
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Arguments

cr_data Competition results in format ready for as_longcr().

rate_fun Rating function (see Details).

initial_ratings

Initial ratings (see Details).

keep_rating Whether to keep rating column in ranking output.

type Value for type in round_rank(): "desc" or "asc".

ties Value for ties in round_rank().

round_digits Value for round_digits in round_rank().

Details

Iterative ratings of group of players are recomputed after every game based on players’ game scores
and their ratings just before the game. Theoretically this kind of ratings can be non-numeric and be
computed on competition results with variable number of players but they rarely do. This package
provides functions for computing iterative numeric ratings for pairgames (competition results with
games only between two players). Error is thrown if cr_data is not pairgames.

Games in widecr form are arranged in increasing order of values in column game (if it is present)
and processed from first to last row.

NA values in column player are allowed. These players are treated as ’ghosts’: players of the same
rating as opponent before the game. ’Ghosts’ are not actual players so they don’t appear in the
output of rate_iterative(). For games between two ’ghosts’ ratings before and after the game
are set to 0.

The core of the rating system is rate_fun. It should take the following arguments:

• rating1 - Rating of player1 before the game.

• score1 - Score of player1 in the game.

• rating2 - Rating of player2 before the game.

• score2 - Score of player2 in the game.

rate_fun should return a numeric vector of length 2: first element being a rating of player1 after
the game, second - of player2.

Ratings are computed based only on games between players of interest (see Players) and NA values.

Initial ratings should be defined with argument initial_ratings. It can be:

• A single numeric value. In this case initial ratings for all players are set to this value.

• A named vector of ratings. All non-NA players, for which rating is computed, should be present
in its names (as character representation of players’ actual identifiers).

• A data frame with first column representing player and second - initial rating. It will be
converted to named vector with deframe() from tibble package.
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Value

rate_iterative() returns a tibble with columns player (player identifier) and rating_iterative
(Iterative ratings, based on row order, by the end of competition results). Interpretation of num-
bers depends on rating function rate_fun.

rank_iterative() returns a tibble with columns player, rating_iterative (if keep_rating
= TRUE) and ranking_iterative (Iterative ranking computed with round_rank() based on speci-
fied type).

add_iterative_ratings() returns a widecr form of cr_data with four rating columns added:

• rating1Before - Rating of player1 before the game.

• rating2Before - Rating of player2 before the game.

• rating1After - Rating of player1 after the game.

• rating2After - Rating of player2 after the game.

Players

comperank offers a possibility to handle certain set of players. It is done by having player column
(in longcr format) as factor with levels specifying all players of interest. In case of factor the result
is returned only for players from its levels. Otherwise - for all present players.

Examples

test_rate_fun <- function(rating1, score1, rating2, score2) {
c(rating1, rating2) + ((score1 >= score2) * 2 - 1) * c(1, -1)

}
set.seed(1002)
cr_data <- data.frame(

game = rep(1:10, each = 2),
player = rep(1:5, times = 4),
score = runif(20)

)
cr_data$player[c(6, 8)] <- NA

# Different settings of add_iterative_ratings
add_iterative_ratings(cr_data, test_rate_fun)

add_iterative_ratings(cr_data, test_rate_fun, initial_ratings = 10)

add_iterative_ratings(
cr_data, test_rate_fun,
initial_ratings = c("1" = 1, "2" = 2, "3" = 3, "4" = 4, "5" = 5)

)

add_iterative_ratings(
cr_data, test_rate_fun,
initial_ratings = data.frame(1:5, 0:4)

)

# Ratings and ranking at the end of competition results.
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rate_iterative(cr_data, test_rate_fun)

rank_iterative(cr_data, test_rate_fun, type = "desc")

rank_iterative(cr_data, test_rate_fun, type = "desc", keep_rating = TRUE)

keener Keener method

Description

Functions to compute rating and ranking using Keener method.

Usage

rate_keener(cr_data, ..., fill = 0, force_nonneg_h2h = TRUE,
skew_fun = skew_keener, normalize_fun = normalize_keener, eps = 0.001)

rank_keener(cr_data, ..., fill = 0, force_nonneg_h2h = TRUE,
skew_fun = skew_keener, normalize_fun = normalize_keener, eps = 0.001,
keep_rating = FALSE, ties = c("average", "first", "last", "random", "max",
"min"), round_digits = 7)

skew_keener(x)

normalize_keener(mat, cr_data)

Arguments

cr_data Competition results in format ready for as_longcr().

... Head-to-Head expression (see h2h_mat()).

fill A single value to use instead of NA for missing pairs.
force_nonneg_h2h

Whether to force nonnegative values in Head-to-Head matrix.

skew_fun Skew function.

normalize_fun Normalization function.

eps Coefficient for forcing irreducibility.

keep_rating Whether to keep rating column in ranking output.

ties Value for ties in round_rank().

round_digits Value for round_digits in round_rank().

x Argument for skew_keener().

mat Argument for normalize_keener().
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Details

Keener rating method is based on Head-to-Head matrix of the competition results. Therefore it can
be used for competitions with variable number of players. Its algorithm is as follows:

1. Compute Head-to-Head matrix of competition results based on Head-to-Head expression sup-
plied in ... (see h2h_mat() for technical details and section Design of Head-to-Head values
for design details). Head-to-Head values are computed based only on the games between
players of interest (see Players). Ensure that there are no NAs by using fill argument. If
force_nonneg_h2h is TRUE then the minimum value is subtracted (in case some Head-to-
Head value is strictly negative).

2. Update raw Head-to-Head values (denoted as S) with the pair-normalization: a_ij = (S_ij + 1)
/ (S_ij + S_ji + 2). This step should make comparing different players more reasonable.

3. Skew Head-to-Head values with applying skew_fun to them. skew_fun should take nu-
meric vector as only argument. It should return skewed vector. The default skew function
is skew_keener(). This step should make abnormal results not very abnormal. To omit this
step supply skew_fun = NULL.

4. Normalize Head-to-Head values with normalize_fun using cr_data. normalize_fun should
take Head-to-Head matrix as the first argument and cr_data as second. It should return
normalized matrix. The default normalization is normalize_keener() which divides Head-
to-Head value of ’player1’-’player2’ matchup divided by the number of games played by
’player1’ (error is thrown if there are no games). This step should take into account possibly
not equal number of games played by players. To omit this step supply normalize_keener =
NULL.

5. Add small value to Head-to-Head matrix to ensure its irreducibility. If all values are strictly
positive then this step is omitted. In other case small value is computed as the smallest
non-zero Head-to-Head value multiplied by eps. This step is done to ensure applicability
of Perron-Frobenius theorem.

6. Compute Perron-Frobenius vector of the resultant matrix, i.e. the strictly positive real eigen-
vector (which values sum to 1) for eigenvalue (which is real) of the maximum absolute value.
This vector is Keener rating vector.

If using normalize_keener() in normalization step, ensure to analyze players which actually
played games (as division by a number of played games is made). If some player didn’t play
any game, en error is thrown.

Value

rate_keener() returns a tibble with columns player (player identifier) and rating_keener (Keener
rating). Sum of all ratings should be equal to 1. Bigger value indicates better player perfor-
mance.

rank_keener() returns a tibble with columns player, rating_keener (if keep_rating = TRUE)
and ranking_keener (Keener ranking computed with round_rank()).

skew_keener() returns skewed vector of the same length as x.

normalize_keener() returns normalized matrix with the same dimensions as mat.
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Design of Head-to-Head values

Head-to-Head values in these functions are assumed to follow the property which can be equiva-
lently described in two ways:

• In terms of matrix format: the more Head-to-Head value in row i and column j the better
player from row i performed than player from column j.

• In terms of long format: the more Head-to-Head value the better player1 performed than
player2.

This design is chosen because in most competitions the goal is to score more points and not less.
Also it allows for more smooth use of h2h_funs from comperes package.

Players

comperank offers a possibility to handle certain set of players. It is done by having player column
(in longcr format) as factor with levels specifying all players of interest. In case of factor the result
is returned only for players from its levels. Otherwise - for all present players.

References

James P. Keener (1993) The Perron-Frobenius theorem and the ranking of football teams. SIAM
Review, 35(1):80–93, 1993.

Examples

rate_keener(ncaa2005, sum(score1))

rank_keener(ncaa2005, sum(score1))

rank_keener(ncaa2005, sum(score1), keep_rating = TRUE)

# Impact of skewing
rate_keener(ncaa2005, sum(score1), skew_fun = NULL)

# Impact of normalization.
rate_keener(ncaa2005[-(1:2), ], sum(score1))

rate_keener(ncaa2005[-(1:2), ], sum(score1), normalize_fun = NULL)

markov Markov method

Description

Functions to compute rating and ranking using Markov method.
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Usage

rate_markov(cr_data, ..., fill = list(), stoch_modify = teleport(0.15),
weights = 1, force_nonneg_h2h = TRUE)

rank_markov(cr_data, ..., fill = list(), stoch_modify = teleport(0.15),
weights = 1, force_nonneg_h2h = TRUE, keep_rating = FALSE,
ties = c("average", "first", "last", "random", "max", "min"),
round_digits = 7)

Arguments

cr_data Competition results in format ready for as_longcr().

... Name-value pairs of Head-to-Head functions (see h2h_long()).

fill A named list that for each Head-to-Head function supplies a single value to use
instead of NA for missing pairs (see h2h_long()).

stoch_modify A single function to modify column-stochastic matrix or a list of them (see
Stochastic matrix modifiers).

weights Weights for different stochastic matrices.
force_nonneg_h2h

Whether to force nonnegative values in Head-to-Head matrix.

keep_rating Whether to keep rating column in ranking output.

ties Value for ties in round_rank().

round_digits Value for round_digits in round_rank().

Details

Markov ratings are based on players ’voting’ for other players being better. Algorithm is as follows:

1. ’Voting’ is done with Head-to-Head values supplied in ... (see h2h_mat() for technical details
and section Design of Head-to-Head values for design details). Take special care of Head-
to-Head values for self plays (when player1 equals player2). Note that Head-to-Head values
should be non-negative. Use force_nonneg_h2h = TRUE to force that by subtracting minimum
Head-to-Head value (in case some Head-to-Head value is strictly negative).

2. Head-to-Head values are transformed into matrix which is normalized to be column-stochastic
(sum of every column should be equal to 1) Markov matrix S. Note that all missing values are
converted into 0. To specify other value use fill argument.

3. S is modified with stoch_modify to deal with possible problems behind S, such as reducibility
and rows with all 0.

4. Stationary vector is computed based on S as probability transition matrix of Markov chain pro-
cess (transition probabilities from state i are elements from column i). The result is declared
as Markov ratings.

Considering common values and structure of stochastic matrices one can naturally combine differ-
ent ’votings’ in one stochastic matrix:

1. Long format of Head-to-Head values is computed using ... (which in this case should be
several expressions for Head-to-Head functions).
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2. Each set of Head-to-Head values is transformed into matrix which is normalized to column-
stochastic.

3. Each stochastic matrix is modified with respective modifier which is stored in stoch_modify
(which can be a list of functions).

4. The resulting stochastic matrix is computed as weighted average of modified stochastic matri-
ces.

For Head-to-Head functions in ... (considered as list) and argument stoch_modify general R
recycling rule is applied. If stoch_modify is a function it is transformed to list with one function.

weights is recycled to the maximum length of two mentioned recycled elements and then is nor-
malized to sum to 1.

Ratings are computed based only on games between players of interest (see Players).

Value

rate_markov() returns a tibble with columns player (player identifier) and rating_markov (Markov
rating). The sum of all ratings should be equal to 1. Bigger value indicates better player perfor-
mance.

rank_markov returns a tibble with columns player, rating_markov (if keep_rating = TRUE)
and ranking_markov (Markov ranking computed with round_rank()).

Design of Head-to-Head values

Head-to-Head values in these functions are assumed to follow the property which can be equiva-
lently described in two ways:

• In terms of matrix format: the more Head-to-Head value in row i and column j the better
player from row i performed than player from column j.

• In terms of long format: the more Head-to-Head value the better player1 performed than
player2.

This design is chosen because in most competitions the goal is to score more points and not less.
Also it allows for more smooth use of h2h_funs from comperes package.

Players

comperank offers a possibility to handle certain set of players. It is done by having player column
(in longcr format) as factor with levels specifying all players of interest. In case of factor the result
is returned only for players from its levels. Otherwise - for all present players.

References

Wikipedia page for Markov chain.

https://en.wikipedia.org/wiki/Markov_chain
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Examples

rate_markov(
cr_data = ncaa2005,
# player2 "votes" for player1 if player1 won
comperes::num_wins(score1, score2, half_for_draw = FALSE),
stoch_modify = vote_equal

)

rank_markov(
cr_data = ncaa2005,
comperes::num_wins(score1, score2, half_for_draw = FALSE),
stoch_modify = vote_equal

)

rank_markov(
cr_data = ncaa2005,
comperes::num_wins(score1, score2, half_for_draw = FALSE),
stoch_modify = vote_equal,
keep_rating = TRUE

)

# Combine multiple stochastic matrices and
# use inappropriate `fill` which misrepresents reality
rate_markov(

cr_data = ncaa2005[-(1:2), ],
win = comperes::num_wins(score1, score2, half_for_draw = FALSE),
# player2 "votes" for player1 proportionally to the amount player1 scored
# more in direct confrontations
score_diff = max(mean(score1 - score2), 0),
fill = list(win = 0.5, score_diff = 10),
stoch_modify = list(vote_equal, teleport(0.15)),
weights = c(0.8, 0.2)

)

massey Massey method

Description

Functions to compute rating and ranking using Massey method.

Usage

rate_massey(cr_data)

rank_massey(cr_data, keep_rating = FALSE, ties = c("average", "first",
"last", "random", "max", "min"), round_digits = 7)
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Arguments

cr_data Competition results in format ready for as_longcr().

keep_rating Whether to keep rating column in ranking output.

ties Value for ties in round_rank().

round_digits Value for round_digits in round_rank().

Details

This rating method was initially designed for games between two players. There will be an error if
in cr_data there is a game not between two players. Convert input competition results manually or
with to_pairgames() from comperes package.

It is assumed that score is numeric and higher values are better for the player.

Computation is done based only on the games between players of interest (see Players). Note that
all those players should be present in cr_data because otherwise there will be an error during
solving linear system described below. Message is given if there are players absent in cr_data.

The outline of Massey rating method is as follows:

1. Compute Massey matrix: diagonal elements are equal to number of games played by certain
player, off-diagonal are equal to minus number of common games played. This matrix will be
the matrix of system of linear equations (SLE).

2. Compute right-hand side of SLE as cumulative score differences of players, i.e. sum of all
scores for the player minus sum of all scores against the player.

3. Make adjustment for solvability of SLE. Modify the last row of Massey matrix so that all its
cells are equal to 1. Also change the last cell in right-hand side to 0. This adjustment ensures
that sum of all outcome ratings will be 0.

4. Solve the SLE. The solution is the Massey rating.

Value

rate_massey() returns a tibble with columns player (player identifier) and rating_massey (Massey
rating). The sum of all ratings should be equal to 0. Bigger value indicates better player perfor-
mance.

rank_massey() returns a tibble with columns player, rating_massey (if keep_rating = TRUE)
and ranking_massey (Massey ranking computed with round_rank()).

Players

comperank offers a possibility to handle certain set of players. It is done by having player column
(in longcr format) as factor with levels specifying all players of interest. In case of factor the result
is returned only for players from its levels. Otherwise - for all present players.

References

Kenneth Massey (1997) Statistical models applied to the rating of sports teams. Bachelor’s thesis,
Bluefield College.
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Examples

rate_massey(ncaa2005)

rank_massey(ncaa2005)

rank_massey(ncaa2005, keep_rating = TRUE)

offense-defense Offense-Defense method

Description

Functions to compute rating and ranking using Offense-Defense method.

Usage

rate_od(cr_data, ..., force_nonneg_h2h = TRUE, eps = 0.001, tol = 1e-04,
max_iterations = 100)

rank_od(cr_data, ..., force_nonneg_h2h = TRUE, eps = 0.001, tol = 1e-04,
max_iterations = 100, keep_rating = FALSE, ties = c("average", "first",
"last", "random", "max", "min"), round_digits = 7)

Arguments

cr_data Competition results in format ready for as_longcr().

... Head-to-Head expression (see h2h_mat()).
force_nonneg_h2h

Whether to force nonnegative values in Head-to-Head matrix.

eps Coefficient for total support.

tol Tolerance value for iterative algorithm.

max_iterations Maximum number of iterations for iterative algorithm.

keep_rating Whether to keep rating columns in ranking output.

ties Value for ties in round_rank().

round_digits Value for round_digits in round_rank().

Details

Offense-Defense (OD) rating is designed for games in which player’s goal is to make higher score
than opponent(s). To describe competition results Head-to-Head matrix is computed using ... (see
h2h_mat() for technical details and section Design of Head-to-Head values for design details). For
pairs of players without common games Head-to-Head value is computed to 0 (not NA). Note that
values should be non-negative and non-NA. This can be ensured with setting force_nonneg_h2h
to TRUE.
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For player which can achieve high Head-to-Head value (even against the player with strong defense)
it is said that he/she has strong offense which results into high offensive rating. For player which
can force their opponents into achieving low Head-to-Head value (even if they have strong offense)
it is said that he/she has strong defense which results into low defensive rating.

Offensive and defensive ratings describe different skills of players. In order to fully rate players,
OD ratings are computed: offensive ratings divided by defensive. The more OD rating the better
player performance.

Algorithm for OD ratings is as follows:

1. Compute Head-to-Head matrix using ....

2. Add small value to Head-to-Head matrix to ensure convergence of the iterative algorithm in
the next step. If all values are strictly positive then this step is omitted. In other case small
value is computed as the smallest non-zero Head-to-Head value multiplied by eps.

3. Perform iterative fixed point search with the following recurrent formula: def_{k+1} = t(A)
%*% inv(A %*% inv(def_{k})) where def_{k} is a vector of defensive ratings at iteration k,
A is a perturbed Head-to-Head matrix, inv(x) = 1 / x. Iterative search stops if at least one of
two conditions is met:

• sum(abs(def_{k+1} / def_{k} - 1)) < tol.
• Number of iterations exceeds maximum number of iterations max_iterations.

4. Compute offensive ratings: off = A %*% inv(def).

5. Compute OD ratings: od = off / def.

Ratings are computed based only on games between players of interest (see Players). However,
be careful with OD ratings for players with no games: they will have weak offense (because they
"scored" 0 in all games) but strong defense (because all their opponents also "scored" 0 in all
common games). Therefore accounting for missing players might be not a very good idea.

Value

rate_od() returns a tibble with the following columns:

• player - player identifier.

• rating_off - offensive rating of player. Bigger value indicates better player performance.

• rating_def - defensive rating of player. Smaller value indicates better player performance.

• rating_od - Offense-Defense rating of player. Bigger value indicates better player perfor-
mance.

rank_od() returns a tibble of the similar structure as rate_od():

• player - player identifier.

• rating_off, rating_def, rating_od - ratings (if keep_rating = TRUE).

• ranking_off, ranking_def, ranking_od - rankings computed with round_rank().
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Design of Head-to-Head values

Head-to-Head values in these functions are assumed to follow the property which can be equiva-
lently described in two ways:

• In terms of matrix format: the more Head-to-Head value in row i and column j the better
player from row i performed than player from column j.

• In terms of long format: the more Head-to-Head value the better player1 performed than
player2.

This design is chosen because in most competitions the goal is to score more points and not less.
Also it allows for more smooth use of h2h_funs from comperes package.

Players

comperank offers a possibility to handle certain set of players. It is done by having player column
(in longcr format) as factor with levels specifying all players of interest. In case of factor the result
is returned only for players from its levels. Otherwise - for all present players.

References

Amy N. Langville, Carl D. Meyer (2012) Who’s #1?: The science of rating and ranking.

Philip A. Knight (2008) The Sinkhorn-Knopp algorithm: Convergence and applications.. SIAM
Journal of Matrix Analysis, 30(1):261–275, 2008 (For stopping rule of iterative algorithm).

Examples

rate_od(ncaa2005, mean(score1))

rank_od(ncaa2005, mean(score1))

rank_od(ncaa2005, mean(score1), keep_rating = TRUE)

# Account for self play
rate_od(ncaa2005, if(player1[1] == player2[1]) 0 else mean(score1))

rating-ranking Definition of Rating and Ranking

Description

• Rating - List (in the ordinary sense) of numerical values, one for each player, or the numerical
value itself. Its interpretation depends on rating method: either bigger value indicates better
player performance or otherwise.

• Ranking - Rank-ordered list (in the ordinary sense) of players: rank 1 indicates player with
best performance.
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round_rank Rank vector after rounding

Description

Function for ranking vector after rounding.

Usage

round_rank(x, type = "desc", na.last = TRUE, ties = c("average", "first",
"last", "random", "max", "min"), round_digits = 7)

Arguments

x A numeric, complex, character or logical vector.

type Type of ranking: "desc" or "asc" (see Details).

na.last For controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed; if "keep" they are kept
with rank NA.

ties A character string specifying how ties are treated (see Details). Can be abbrevi-
ated.

round_digits Value of digits for round().

Details

This is basically a wrapper around rank() in which x is pre-modified by rounding to specific num-
ber of digits round_digits.

type can have two values: "desc" for ranking in descending order (rank 1 is given to the biggest
value in x) and "asc" (rank 1 is given to the smallest value in x). Any other value will cause error.

Value

A numeric vector of the same length as x with names copied from x (unless na.last = NA, when
missing values are removed). The vector is of integer type unless x is a long vector or ties =
"average" when it is of double type (whether or not there are any ties).

Examples

round_rank(10:1, type = "desc")
round_rank(10:1, type = "asc")

set.seed(334)
x <- 10^(-10) * runif(10)
round_rank(x)
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snooker_events Snooker events

Description

Data set describing snooker events in seasons 2016/2017 and 2017/2018.

Usage

snooker_events

Format

A tibble with one row per event and the following columns:

• id <int> : Event identifier in snooker.org database (used in eventId column of snooker_matches).

• season <int> : Season identifier (by the year of season start).

• name <chr> : Event name.

• startDate <dttm> : Start date of event.

• endDate <dttm> : End date of event.

• sponsor <chr> : Event sponsor name.

• type <chr> : Event type ("Invitational", "Qualifying", or "Ranking").

• venue <chr> : Venue name event was played.

• city <chr> : City name event was played.

• country <chr> : Country name event was played.

Details

Data is taken from snooker.org (http://www.snooker.org/) API.

This data set has information about events that have all following qualities:

• It has "Invitational", "Qualifying", or "Ranking" type.

• It describes traditional snooker (not 6 Red or Power Snooker) between individual players (not
teams).

• Both genders can take part (not only men or women).

• Players of all ages can take part (not only seniors or under 21).

• It is not "Shoot-Out" as those events are treated differently in snooker.org database.

See Also

Snooker players, snooker matches
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snooker_matches Snooker matches

Description

Data set describing snooker matches in seasons 2016/2017 and 2017/2018.

Usage

snooker_matches

Format

A tibble with one row per match and the following columns:

• id <int> : Match identifier in snooker.org database.

• eventId <int> : Match’s event identifier (taken from id column of snooker_events)

• round <int> : Round number of event in which match was played. Usually event’s structure
is organized in rounds: sets of matches with roughly "the same importance". Usually the more
round number the "more important" matches are played. However, there are many exceptions.

• player1Id <int> : Identifier of first player in match (taken from id column of snooker_players).

• score1 <int> : Number of won frames (individual games) by first player.

• walkover1 <lgl> : Whether the win of first player was scored by the technical reasons.

• player2Id <int> : Identifier of second player in match (taken from id column of snooker_players).

• score2 <int> : Number of won frames (individual games) by second player.

• walkover2 <lgl> : Whether the win of second player was scored by the technical reasons.

• winnerId <int> : Identifier of match’s winner (taken from either player1Id or player2Id
columns).

• startDate <dttm> : Time at which match started.

• endDate <dttm> : Time at which match ended.

• scheduledDate <dttm> : Time at which match was scheduled to start.

• frameScores <chr> : Scores of players in frames. Usually is missing, present only for impor-
tant matches.

Details

Data is taken from snooker.org (http://www.snooker.org/) API.

Matches are present only for tracked snooker events.

See Also

Snooker events, snooker players
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snooker_players Snooker players

Description

Data set describing snooker players in seasons 2016/2017 and 2017/2018.

Usage

snooker_players

Format

A tibble with one row per player and the following columns:

• id <int> : Player identifier in snooker.org database (used in player1Id, player2Id and
winnerId columns of snooker_matches).

• name <chr> : Player full name.

• nationality <chr> : Player nationality.

• sex <chr> : Player gender ("F" for female, "M" for male, and "Unknown").

• born <dttm> : Player date of birth.

• status <chr> : Player status in season 2017/2018 ("pro" for professional, "ama" for amateur).

Details

Data is taken from snooker.org (http://www.snooker.org/) API.

Data is present only for players who played at least one game in tracked snooker events in seasons
2016/2017 and 2017/2018.

See Also

Snooker events, snooker matches

stoch-modifiers Stochastic matrix modifiers

Description

Functions for stochastic matrix modifications.
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Usage

teleport(teleport_prob = 0.15)

vote_equal(stoch)

vote_self(stoch)

Arguments

teleport_prob Probability of ’teleportation’.

stoch Input stochastic matrix.

Details

Modification logic behind teleport() assumes that at each step of Markov chain (described by
column-stochastic matrix) the decision is made whether to change state according to stochastic ma-
trix or to ’teleport’ to any state with equal probability. Probability of ’teleport’ is teleport_prob.
This modification is useful because it ensures irreducibility of stochastic matrix (with teleport_prob
in (0; 1)). Note that in order to obtain modifier one should call function teleport() with some
parameter.

vote_equal() and vote_self() modify columns with elements only equal to 0. The former fills
them with 1/nrow(stoch) and the latter changes only the respective diagonal element to 1. This is
equivalent to jump to any state with equal probability and to stay in the current state respectively.

Value

teleport() returns a modifier function.

vote_equal() and vote_self() are modifier functions and return modified version of input stochas-
tic matrix.

Examples

input_stoch <- matrix(c(0, 0.3,
0, 0.7),

ncol = 2, byrow = TRUE)
teleport(0.15)(input_stoch)

vote_equal(input_stoch)

vote_self(input_stoch)
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