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Index 28
cpfa Classification with Parallel Factor Analysis
Description
Fits Richard A. Harshman’s Parallel Factor Analysis-1 (Parafac) model or Parallel Factor Analysis-
2 (Parafac2) model to a three-way or four-way data array. Allows for different constraint options on
multiple tensor modes. Uses Parafac component weights from a single mode of this model as pre-
dictors to tune parameters for one or more classification methods via a k-fold cross-validation pro-
cedure. Predicts class labels and calculates multiple performance measures for binary or multiclass
classification over some number of replications with different train-test splits. Provides descriptive
statistics to pool output across replications.
Usage
cpfa(x, y, model = c("parafac”, "parafac2"), nfac = 1, nrep = 5, ratio = 0.8,
nfolds = 10, method = c(”PLR”, "SVM", "RF”, "NN", "RDA", "GBM"),
family = c("binomial”, "multinomial”), parameters = list(),
type.out = c("measures”, "descriptives”), foldid = NULL,
prior = NULL, cmode = NULL, seeds = NULL, plot.out = FALSE,
plot.measures = NULL, parallel = FALSE, cl = NULL, verbose = TRUE, ...)
Arguments
X A three-way or four-way data array. For Parafac2, can be a list of length K where
the k-th element is a matrix or three-way array associated with the k-th element.
Array or list must contain only real numbers. See note below.
y A vector containing at least two unique class labels. Should be a factor that
contains two or more levels . For binary case, ensure the order of factor levels
(left to right) is such that negative class is first and positive class is second.
model Character designating the Parafac model to use, either model = "parafac” to fit
the Parafac model or model = "parafac2” to fit the Parafac2 model.
nfac Number of components for each Parafac or Parafac2 model to fit. Default is
nfac=1.
nrep Number of replications to repeat the procedure. Default is nrep = 5.
ratio Split ratio for dividing data into train and test sets. Default is ratio = 9.8.
nfolds Numeric setting number of folds for k-fold cross-validation. Must be 2 or
greater. Default is nfolds = 10.
method Character vector indicating classification methods to use. Possible methods

include penalized logistic regression (PLR); support vector machine (SVM);
random forest (RF); feed-forward neural network (NN); regularized discrimi-
nant analysis (RDA); and gradient boosting machine (GBM). If none are se-
lected, default is to use all methods with method = c("PLR", "SVM", "RF",
"NN", "RDA", "GBM").
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family

parameters

Character value specifying binary classification (family = "binomial") or mul-
ticlass classification (family = "multinomial”). If not provided, number of
levels of input y is used, where two levels is binary, and where three or more
levels is multiclass.

List containing arguments related to classification methods. When specified,
must contain one or more of the following:

alpha Values for penalized logistic regression alpha parameter; default is alpha
=seq(@, 1, length = 6). Must be numeric and contain only real numbers
between 0 and 1, inclusive.

lambda Optional user-supplied lambda sequence for cv.glmnet for penalized
logistic regression. Default is NULL.

cost Values for support vector machine cost parameter; default is cost = c(1,
2,4, 8,16, 32, 64). Must be numeric and contain only real numbers
greater than or equal to zero.

gamma Values for support vector machine gamma parameter; default is gamma
=c(0,0.01,0.1, 1, 10, 100, 1000). Must be numeric and greater than
or equal to 0.

ntree Values for random forest number of trees parameter; default is ntree =
c(100, 200, 400, 600, 800, 1600, 3200). Must be numeric and contain
only integers greater than or equal to 1.

nodesize Values for random forest node size parameter; default is nodesize
=c(1, 2, 4, 8, 16, 32, 64). Must be numeric and contain only integers
greater than or equal to 1.

size Values for neural network size parameter; default is size = c(1, 2, 4, 8,
16, 32, 64). Must be numeric and contain only integers greater than or
equal to 0.

decay Values for neural network decay parameter; default is decay = c(@.001,
0.01,0.1, 1, 2, 4, 8, 16). Must be numeric and contain only real num-
bers.

rda.alpha Values for regularized discriminant analysis alpha parameter; default
is rda.alpha = seq(@, 0.999, length = 6). Must be numeric and contain
only real numbers between 0 (inclusive) and 1 (exclusive).

delta Values for regularized discriminant analysis delta parameter; default is
delta=c(0, 0.1, 1, 2, 3, 4). Must be numeric and contain only real
numbers greater than or equal to 0.

eta Values for gradient boosting machine eta parameter; defaultis eta = c(0.1,
0.3,0.5,0.7,0.9). Must be numeric and contain only real numbers
greater than 0 and less than 1.

max.depth Values for gradient boosting machine max.depth parameter; default
is max.depth =c(1, 2, 3, 4). Must be numeric and contain only integers
greater than or equal to 1.

subsample Values for gradient boosting machine subsample parameter; de-
fault is subsample =c(0.6, 0.7, 0.8, 0.9). Must be numeric and con-
tain only real numbers greater than 0 and less than or equal to 1.

nrounds Values for gradient boosting machine nrounds parameter; default is
nrounds = c(100, 200, 300, 500). Must be numeric and contain only in-
tegers greater than or equal to 1.
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type.out Type of output desired: type.out = "measures” gives array containing classifi-
cation performance measures for all replications while type.out = "descriptives”
gives list of descriptive statistics calculated across all replications for each per-
formance measure. Both options also provide the estimated training weights and
classification weights. Defaults to type.out = "descriptives”.

foldid Integer vector containing fold IDs for k-fold cross-validation. If not provided,
fold IDs are generated randomly for number of folds nfolds.

prior Prior probabilities of class membership. If unspecified, the class proportions
for input y are used. If specified, the probabilities should be in the order of the
factor levels of input y.

cmode Integer value of 1, 2, or 3 (or 4 if x is a four-way array) specifying the mode
whose component weights will be predictors for classification. Defaults to the
last mode of the inputted array (i.e., defaults to 3 for three-way array, and to 4
for four-way array). If model = "parafac2”, last mode will be used.

seeds Random seeds to be associated with each replication. Default is seeds = 1:nrep.

plot.out Logical indicating whether to output one or more box plots of classification
performance measures that are plotted across classification methods and number
of components.

plot.measures Character vector containing values that specify for plotting one or more of 11
possible classification performance measures. Only relevant when plot.out =
TRUE. Should contain one or more of the following labels: c("err"”, "acc”,
"tpr", "fpr", "tnr", "fnr", "ppv"”, "npv", "fdr", "fom”, "fs"). A box
plot will be created for each measure that is specified, summarizing output
across replications. Note that additional information about each label is avail-
able in the Details section of the help file for function cpm. Note also that there
are a few cases where the x-axis tick labels for a plot might not appear. This
issue will be resolved in a future update.

parallel Logical indicating if parallel computing should be implemented. If TRUE, the
package parallel is used for parallel computing. For all classification methods
except penalized logistic regression, the doParallel package is used as a wrap-
per. Defaults to FALSE, which implements sequential computing.

cl Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and c1 = NULL, then the cluster is defined as makeCluster (detectCores()).

verbose If TRUE, progress is printed.

Additional arguments to be passed to function parafac for fitting a Parafac
model or function parafac2 for fitting a Parafac2 model. Example: can impose
different constraints on different modes of the input array using the argument
const. See help file for function parafac or for function parafac?2 for addi-
tional details.

Details

Data are split into a training set and a testing set. After fitting a Parafac or Parafac2 model with
the training set using package multiway (see parafac or parafac2 in multiway for details), the
estimated classification mode weight matrix is passed to one or several of six classification meth-
ods. The methods include: penalized logistic regression (PLR); support vector machine (SVM);
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random forest (RF); feed-forward neural network (NN); regularized discriminant analysis (RDA);
and gradient boosting machine (GBM).

Package glmnet fits models for PLR. PLR tunes penalty parameter lambda while the elastic net
parameter alpha is set by the user (see the help file for function cv.glmnet in package glmnet).
For SVM, package e1071 is used with a radial basis kernel. Penalty parameter cost and radial basis
parameter gamma are used (see svm in package el071). For RF, package randomForest is used
and implements Breiman’s random forest algorithm. The number of predictors sampled at each
node split is set at the default of sqrt(R), where R is the number of Parafac or Parafac2 compo-
nents. Two tuning parameters allowed are ntree, the number of trees to be grown, and nodesize, the
minimum size of terminal nodes (see randomForest in package randomForest). For NN, package
nnet fits a single-hidden-layer, feed-forward neural network model. Penalty parameters size (i.e.,
number of hidden layer units) and decay (i.e., weight decay) are used (see nnet). For RDA, package
rda fits a shrunken centroids regularized discriminant analysis model. Tuning parameters include
rda.alpha, the shrinkage penalty for the within-class covariance matrix, and delta, the shrinkage
penalty of class centroids towards the overall dataset centroid. For GBM, package xgboost fits a
gradient boosting machine model. Four tuning parameters are allowed: (1) eta, the learning rate;
(2) max.depth, the maximum tree depth; (3) subsample, the fraction of samples per tree; and (4)
nrounds, the number of boosting trees to build.

For all six methods, k-fold cross-validation is implemented to tune classification parameters where
the number of folds is set by argument nfolds. Separately, the trained Parafac or Parafac2 model
is used to predict the classification mode’s component weights using the testing set data. The
predicted component weights and the optimized classification method are then used to predict class
labels. Finally, classification performance measures are calculated. The process is repeated over a
number of replications with different random splits of the input array and of the class labels at each
replication.

Value

Returns an object of class wrapcpfa either with a three-way array with classification performance
measures for each model and for each replication, or with a list containing matrices with descrip-
tive statistics for performance measures calculated across all replications. Specify type.out =
"measures” to output the array of performance measures. Specify type.out = "descriptives”
to output descriptive statistics across replications. In addition, for both options, the following are
also provided:

predweights List of predicted classification weights for each Parafac or Parafac2 model and
for each replication.

train.weights List of lists of training weights for each Parafac or Parafac2 model and for each
replication.

opt.tune List of optimal tuning parameters for classification methods for each Parafac or
Parafac2 model and for each replication.

mean.opt.tune Mean across all replications of optimal tuning parameters for classification meth-
ods for each Parafac or Parafac2 model.

X Three-way or four-way data array or list used in argument x.
nfac Number of components used to fit each Parafac or Parafac2 model.
model Character designating the Parafac model that was used, either model = "parafac”

for the Parafac model or model = "parafac2” for the Parafac2 model.
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method Classification methods used.
const Constraints used in fitting Parafac or Parafac2 models.
Note

If argument cmode is not null, input array x is reshaped with function aperm such that the cmode
dimension of x is ordered last. Estimated mode A and B (and mode C for a four-way array) weights
that are outputted as Aweights and Bweights (and Cweights) reflect this permutation. For example,
if x is a four-way array and cmode = 2, the original input modes 1, 2, 3, and 4 will correspond to
output modes 1, 3, 4, 2. Here, output A = input 1; B =3, and C =4 (i.e., the second mode specified
by cmode has been moved to the D mode/last mode). For model = "parafac2”, classification mode
is assumed to be the last mode (i.e., mode C for three-way array and mode D for four-way array).

In addition, note that the following combination of arguments will give an error: nfac =1, family
= "multinomial”, method = "PLR". The issue arises from providing glmnet: :cv.glmnet input x
a matrix with a single column. The issue is resolved for family = "binomial"” because a column
of Os is appended to the single column, but this solution does not appear to work for the multiclass
case. As such, this combination of arguments is not currently allowed. This issue will be resolved
in a future update.

Author(s)

Matthew A. Snodgress <snodg031@umn.edu>
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Examples

#iHHHHHHEHE Parafac2 example with 4-way array and multiclass response #it#t#Ht#Ht##H

# set seed and specify dimensions of a four-way tensor
set.seed(5)

mydim <- c(10, 11, 12, 100)

nf <- 3

# create correlation matrix between response and fourth mode's weights

rho.dd <- .35

rho.dy <- .75

cormat.values <- c(1, rho.dd, rho.dd, rho.dy, rho.dd, 1, rho.dd, rho.dy,
rho.dd, rho.dd, 1, rho.dy, rho.dy, rho.dy, rho.dy, 1)

cormat <- matrix(cormat.values, nrow = (nf + 1), ncol = (nf + 1))

# sample from a multivariate normal with specified correlation structure
ymean <- Dmean <- 2

mu <- as.matrix(c(Dmean, Dmean, Dmean, ymean))

eidecomp <- eigen(cormat, symmetric = TRUE)

L.sgrt <- diag(eidecomp$values”@.5)

cormat.sqrt <- eidecomp$vectors %x% L.sqrt %*% t(eidecomp$vectors)

Z <- matrix(rnorm(mydim[4] * (nf + 1)), nrow = mydim[4], ncol = (nf + 1))
Xw <- rep(1, mydim[4]) %*% t(mu) + Z %x% cormat.sqrt

Dmat <- Xw[, 1:nf]

# create a random four-way data tensor with D weights related to a response
Bmat <- matrix(runif(mydim[2] * nf), nrow = mydim[2], ncol = nf)
Cmat <- matrix(runif(mydim[3] * nf), nrow = mydim[3], ncol = nf)
nDd <- rep(c(10, 12, 14), length.out = mydim[4])
Gmat <- matrix(rnorm(nf * nf), nrow = nf)
Amat <- vector("list”, mydim[4])
X <- Xmat <- Emat <- Amat
for (Dd in 1:mydim[4]) {
Amat[[Dd]] <- matrix(nf * rnorm(nDd[Dd]), nrow = nDd[Dd], ncol = nf)



Amat[[Dd]] <- svd(Amat[[Dd]], nv = @)$u %*% Gmat

leftMat <- Amat[[Dd]] %*% diag(Dmat[Dd,])

Xmat[[Dd]] <- array(tcrossprod(leftMat, krprod(Cmat, Bmat)),
dim = c(nDA[Dd], mydim[2], mydim[3]))

Emat[[Dd]] <- array(rnorm(nDd[Dd] * mydim[2] * mydim[3]),
dim = c(nDd[Dd], mydim[2], mydim[3]))

X[[Dd]] <- Xmat[[Dd]] + Emat[[Dd]]

3

# create a multiclass response

stor <- matrix(rep(1, nrow(Xw)), nrow = nrow(Xw))

stor[which(Xw[, (nf + 1)] < (ymean - 0.4 *x sd(Xw[, (nf + 1)1)))] <= 2
stor[which(Xwl[, (nf + 1)1 > (ymean + 0.4 % sd(Xw[, (nf + 1)1)))] <- @
y <- factor(stor)

# initialize

alpha <- seq(@, 1, length = 2)

gamma <- c(0, 1)

cost <- ¢c(0.1, 5)

ntree <- c(200, 300)

nodesize <- c(1, 2)

size <- c(1, 2)

decay <- c(0, 1)

rda.alpha <- seq(@.1, 0.9, length = 2)

delta <- c(0.1, 2)

eta <- c(0.3, 0.7)

max.depth <- c(1, 2)

subsample <- c(0.75)

nrounds <- c(100)

method <- c("PLR", "SVM", "RF", "NN", "RDA", "GBM")

family <- "multinomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost, ntree = ntree,
nodesize = nodesize, size = size, decay = decay,
rda.alpha = rda.alpha, delta = delta, eta = eta,
max.depth = max.depth, subsample = subsample,
nrounds = nrounds)

model <- "parafac2”

nfolds <- 3

nstart <- 3

# constrain first mode weights to be orthogonal, fourth mode to be nonnegative
const <- c("orthog”, "uncons"”, "uncons”, "nonneg")

# fit Parafac2 model and use fourth mode weights to tune classification

# methods, to predict class labels, and to return classificaiton

# performance measures pooled across multiple train-test splits

output <- cpfa(x = X, y =y, model = model, nfac = nf, nrep = 2, ratio = 0.8,
nfolds = nfolds, method = method, family = family,
parameters = parameters, type.out = "descriptives”,
seeds = NULL, plot.out = TRUE, parallel = FALSE, const = const,
nstart = nstart)

# print performance measure means across train-test splits

cpfa
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output$descriptive$mean

cpm Classification Performance Measures

Description

Calculates multiple performance measures for binary or multiclass classification. Uses known class
labels and evaluates against predicted labels.

Usage
cpm(x, y, level = NULL, fbeta = NULL, prior = NULL)

Arguments

X Known class labels of class numeric, factor, or integer. If factor, converted to
class integer in the order of factor levels with integers beginning at O (i.e., for
binary classification, factor levels become 0 and 1; for multiclass, levels become
0,1, 2, etc.).

y Predicted class labels of class numeric, factor, or integer. If factor, converted to
class integer in the order of factor levels with integers beginning at 0 (i.e., for
binary classification, factor levels become 0 and 1; for multiclass, 0, 1, 2, etc.).

level Optional argument specifying possible class labels. For cases when x or y do
not contain all possible classes. Can be of class numeric, integer, or character.
Must contain two elements for binary classification, and contain three or more
elements for multiclass classification. If integer, integers should be ordered (e.g.,
binary with c(@, 1); or three-class with c(@, 1, 2)). Note: if both x and y
jointly contain only a single value (e.g., 1), must specify argument level in
order to identify classification as binary or multiclass.

fbeta Optional numeric argument specifying beta value for F-score. Defaults to fbeta
=1, providing an F1-score (i.e., the balanced harmonic mean between precision
and recall). Can be any real number.

prior Optional numeric argument specifying weights for classes. Currently only im-
plemented with multiclass problems. Defaults to prior = c(rep(1/1lev, 1llev)),
where 11ev is the number of classes, providing equal importance across classes.

Details

Selecting one class as a negative class and one class as a positive class, binary classification gen-
erates four possible outcomes: (1) negative cases classified as positives, called false positives (FP);
(2) negative cases classified as negatives, called true negatives (TN); (3) positive cases classified
as negatives, called false negatives (FN); and (4) positive cases classified as positives, called true
positives (TP).

Multiple evaluation measures are calculated using these four outcomes. Measures include: overall
error (ERR), also called fraction incorrect; overall accuracy (ACC), also called fraction correct;
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true positive rate (TPR), also called recall, hit rate, or sensitivity; false negative rate (FNR), also
called miss rate; false positive rate (FPR), also called fall-out; true negative rate (TNR), also called
specificity or selectivity; positive predictive value (PPV), also called precision; false discovery rate
(FDR); negative predictive value (NPV); false omission rate (FOR); and F-score (FS).

In multiclass classification, the four outcomes are possible for each individual class in macro-
averaging, and performance measures are averaged over classes. Macro-averaging gives equal im-
portance to all classes. For multiclass classification, calculated measures are currently only macro-
averaged. See the listed reference in this help file for additional details on micro-averaging.

For binary classification, this function assumes a negative class and a positive class (i.e., it contains
a reference group) and is ordered. Multiclass classification is currently assumed to be unordered.

Computational details:

ERR = (FP + FN) / (TP + TN + FP + EN).

ACC = (TP + TN) / (TP + TN + FP + FN), and ACC =1 - ERR.
TPR =TP /(TP + FN).

FNR =FN/ (FN + TP), and FNR =1 - TPR.

FPR =FP/ (FP + TN).

TNR =TN /(TN + FP), and TNR =1 - FPR.

PPV =TP/ (TP + FP).

FDR =FP/ (FP + TP), and FDR =1 - PPV.

NPV =TN/ (TN + FN).

FOR =FN/ (FN + TN), and FOR =1 - NPV.

FS = (1 + beta*2) * (PPV * TPR) / (((beta”2)*PPV) + TPR)).

All performance measures calculated are between 0 and 1, inclusive. For multiclass classification,
macro-averaged values are provided for each performance measure. Note that *beta’ in FS repre-
sents the relative weight such that recall (TPR) is beta times more important than precision (PPV).
See reference for more details.

Value

Returns list where first element is a full confusion matrix cm and where the second element is a
data frame containing performance measures. For multiclass classification, macro-averaged values
are provided (i.e., each measure is calculated for each class, then averaged over all classes; the
average is weighted by argument prior if provided). The second list element contains the following
performance measures:

cm A confusion matrix with counts for each of the possible outcomes.
err Overall error (ERR). Also called fraction incorrect.

acc Overall accuracy (ACC). Also called fraction correct.

tpr True positive rate (TPR). Also called recall, hit rate, or sensitivity.
fpr False positive rate (FPR). Also called fall-out.

tnr True negative rate (TNR). Also called specificity or selectivity.

fnr False negative rate (FNR). Also called miss rate.
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ppv Positive predictive value (PPV). Also called precision.

npv Negative predicted value (NPV).

fdr False discovery rate (FDR).

fom False omission rate (FOR).

fs F-score. Mean between TPR (recall) and PPV (precision) varying by importance

given to recall over precision (see Details section and argument fbeta).

Author(s)

Matthew Snodgress <snodg031@umn.edu>

References

Sokolova, M. and Lapalme, G. (2009). A systematic analysis of performance measures for classifi-
cation tasks. Information Processing and Management, 45(4), 427-437.

Examples

#iHHHHHHHHE Parafac example with 3-way array and binary response #it#HttiH#it

# set seed and specify dimensions of a three-way tensor
set.seed(3)

mydim <- c(10, 11, 80@)

nf <- 3

# create correlation matrix between response and third mode's weights

rho.cc <- .35

rho.cy <- .75

cormat.values <- c(1, rho.cc, rho.cc, rho.cy, rho.cc, 1, rho.cc, rho.cy,
rho.cc, rho.cc, 1, rho.cy, rho.cy, rho.cy, rho.cy, 1)

cormat <- matrix(cormat.values, nrow = (nf + 1), ncol = (nf + 1))

# sample from a multivariate normal with specified correlation structure
ymean <- Cmean <- 2

mu <- as.matrix(c(Cmean, Cmean, Cmean, ymean))

eidecomp <- eigen(cormat, symmetric = TRUE)

L.sqrt <- diag(eidecomp$values”*@.5)

cormat.sqrt <- eidecomp$vectors %x% L.sqrt %*% t(eidecomp$vectors)

Z <- matrix(rnorm(mydim[3]*x(nf + 1)), nrow = mydim[3], ncol = (nf + 1))
Xw <- rep(1, mydim[3]) %*% t(mu) + Z %x% cormat.sqrt

Cmat <- Xw[, 1:nf]

# create a random three-way data tensor with C weights related to a response
Amat <- matrix(rnorm(mydim[1]*nf), nrow = mydim[1], ncol = nf)

Bmat <- matrix(runif(mydim[2]*nf), nrow = mydim[2], ncol = nf)

Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat))

Xmat <- array(Xmat, dim = mydim)

Emat <- array(rnorm(prod(mydim)), dim = mydim)

Emat <- nscale(Emat, @, ssnew = sumsq(Xmat))

X <- Xmat + Emat
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# create a binary response by dichotomizing at the specified response mean
y <- factor(as.numeric(Xw[ , (nf + 1)] > ymean))

# initialize

gamma <- c(0, 0.01)

cost <- c(1, 2)

method <- c("SVM")

family <- "binomial”

parameters <- list(gamma = gamma, cost = cost)
model <- "parafac”

nfolds <- 3

nstart <- 3

# constrain first mode weights to be orthogonal
const <- c("orthog"”, "uncons”, "uncons")

# fit Parafac models and use third mode to tune classification methods
tune.object <- tunecpfa(x = X, y =y, model = model, nfac = nf,
nfolds = nfolds, method = method, family = family,
parameters = parameters, parallel = FALSE,
const = const, nstart = nstart)

# create new data with Parafac structure and C weights related to response
mydim.new <- c(10, 11, 20)
Znew <- matrix(rnorm(mydim.new[3]*(nf + 1)),
nrow = mydim.new[3], ncol = (nf + 1))
Xwnew <- rep(1, mydim.new[3]) %x% t(mu) + Znew %*% cormat.sqrt
Cmatnew <- Xwnew[, 1:nf]
Xnew@ <- tcrossprod(Amat, krprod(Cmatnew, Bmat))
Xnewd <- array(Xnew@, dim = mydim.new)
Ematnew <- array(rnorm(prod(mydim.new)), dim = mydim.new)
Ematnew <- nscale(Ematnew, @, ssnew = sumsq(Xnew@))
Xnew <- Xnew@ + Ematnew

# create new random class labels for two levels
newlabel <- as.numeric(Xwnew[, (nf + 1)] > ymean)

# predict class labels
predict.labels <- predict(object = tune.object, newdata = Xnew,
type = "response”)

# calculate performance measures for predicted class labels
y.pred <- predict.labels[, 1]
evalmeasure <- cpm(x = newlabel, y = y.pred)

# print performance measures
evalmeasure

cpm.all

cpm.all Wrapper for Calculating Classification Performance Measures
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Description

Applies function cpm to multiple sets of class labels. Each set of class labels is evaluated against the
same set of predicted labels. Works with output from function predict. tunecpfa and calculates
classification performance measures for multiple classifiers or numbers of components.

Usage
cpm.all(x, y, ...)
Arguments

X A data frame where each column contains a set of known class labels of class
numeric, factor, or integer. If a set is of class factor, that set is converted to class
integer in the order of factor levels with integers beginning at O (i.e., for binary
classification, factor levels become 0 and 1; for multiclass, levels become O, 1,
2, etc.).

y Predicted class labels of class numeric, factor, or integer. If factor, converted to
class integer in order of factor levels with integers beginning at O (i.e., for binary
classification, factor levels become 0 and 1; for multiclass, 0, 1, 2, etc.).
Additional arguments to be passed to function cpm for calculating classification
performance measures.

Details

Wrapper function that applies function cpm to multiple sets of class labels and one set of predicted
labels. See help file for function cpm for additional details.

Value

Returns a list with the following two elements:

cm.list A list of confusion matrices, denoted cm, where each confusion matrix is asso-
ciated with one comparison.

cpms A data frame containing classification performance measures where each row
contains measures for one comparison.
Author(s)

Matthew Snodgress <snodg031@umn.edu>

References

Sokolova, M. and Lapalme, G. (2009). A systematic analysis of performance measures for classifi-
cation tasks. Information Processing and Management, 45(4), 427-437.
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Examples

#itHHHHHHE Parafac example with 3-way array and binary response #it##H##i

# set seed and specify dimensions of a three-way tensor
set.seed(3)

mydim <- c(10, 11, 80@)

nf <- 3

# create correlation matrix between response and third mode's weights

rho.cc <- .35

rho.cy <- .75

cormat.values <- c(1, rho.cc, rho.cc, rho.cy, rho.cc, 1, rho.cc, rho.cy,
rho.cc, rho.cc, 1, rho.cy, rho.cy, rho.cy, rho.cy, 1)

cormat <- matrix(cormat.values, nrow = (nf + 1), ncol = (nf + 1))

# sample from a multivariate normal with specified correlation structure
ymean <- Cmean <- 2

mu <- as.matrix(c(Cmean, Cmean, Cmean, ymean))

eidecomp <- eigen(cormat, symmetric = TRUE)

L.sqrt <- diag(eidecomp$values”@.5)

cormat.sqrt <- eidecomp$vectors %x% L.sqrt %*% t(eidecomp$vectors)

Z <- matrix(rnorm(mydim[3] * (nf + 1)), nrow = mydim[3], ncol = (nf + 1))
Xw <- rep(1, mydim[3]) %*% t(mu) + Z %*% cormat.sqrt

Cmat <- Xw[, 1:nf]

# create a random three-way data tensor with C weights related to a response
Amat <- matrix(rnorm(mydim[1] * nf), nrow = mydim[1], ncol = nf)

Bmat <- matrix(runif(mydim[2] * nf), nrow = mydim[2], ncol = nf)

Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat))

Xmat <- array(Xmat, dim = mydim)

Emat <- array(rnorm(prod(mydim)), dim = mydim)

Emat <- nscale(Emat, @, ssnew = sumsq(Xmat))

X <- Xmat + Emat

# create a binary response by dichotomizing at the specified response mean
y <- factor(as.numeric(Xw[ , (nf + 1)1 > ymean))

# initialize

alpha <- seq(@, 1, length = 2)

gamma <- c(0, 0.01)

cost <- c(1, 2)

method <- c(”PLR”, "SVM")

family <- "binomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost)
model <- "parafac”

nfolds <- 3

nstart <- 3

# constrain first mode weights to be orthogonal
const <- c("orthog"”, "uncons"”, "uncons")

# fit Parafac models and use third mode to tune classification methods
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tune.object <- tunecpfa(x = X, y =y, model = model, nfac = nf,
nfolds = nfolds, method = method, family = family,
parameters = parameters, parallel = FALSE,
const = const, nstart = nstart)

# create new data with Parafac structure and C weights related to response
mydim.new <- c(10, 11, 20)
Znew <- matrix(rnorm(mydim.new[3] * (nf + 1)),
nrow = mydim.new[3], ncol = (nf + 1))
Xwnew <- rep(1, mydim.new[3]) %x% t(mu) + Znew %*% cormat.sqrt
Cmatnew <- Xwnew[, 1:nf]
Xnew@ <- tcrossprod(Amat, krprod(Cmatnew, Bmat))
Xnew® <- array(Xnew@, dim = mydim.new)
Ematnew <- array(rnorm(prod(mydim.new)), dim = mydim.new)
Ematnew <- nscale(Ematnew, @, ssnew = sumsq(Xnew@))
Xnew <- Xnew@ + Ematnew

# create new random class labels for two levels
newlabel <- as.numeric(Xwnew[, (nf + 1)] > ymean)

# predict class labels
predict.labels <- predict(object = tune.object, newdata = Xnew,

type = "response”)

# calculate performance measures for predicted class labels
evalmeasure <- cpm.all(x = predict.labels, y = newlabel)

# print performance measures

evalmeasure
predict.tunecpfa Predict Method for Tuning for Classification with Parallel Factor
Analysis
Description

Obtains predictions for class labels from a "tunecpfa’ model object obtained using function tunecpfa.

Usage

## S3 method for class 'tunecpfa'

predict(object, newdata = NULL, method = NULL,
type = c("response”, "prob"”, "classify.weights"),
threshold = NULL, ...)

Arguments

object A fit object of class ’tunecpfa’ produced by function tunecpfa.
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newdata An optional three-way or four-way data array used to predict Parafac or Parafac2
component weights using estimated Parafac or Parafac2 model component weights
from inputted object. For Parafac2, can be a list of length K where the k-th el-
ement is a matrix or three-way array associated with the k-th element. Array
or list must contain only real numbers. Dimensions must match dimensions of
original data for all modes except the classification mode. If omitted, the origi-
nal data are used.

method Character vector indicating classification methods to use. Possible methods in-
clude penalized logistic regression (PLR); support vector machine (SVM); ran-
dom forest (RF); feed-forward neural network (NN); regularized discriminant
analysis (RDA); and gradient boosting machine (GBM). If none selected, de-
fault is to use all methods.

type Character vector indicating type of prediction to return. Possible values in-
clude: (1) "response”, returning predicted class labels; (2) "prob”, returning
predicted class probabilities; or (3) "classify.weights”, returning predicted
component weights used in classification from Parafac models specified. De-
faults to "response”.

threshold For binary classification, value indicating prediction threshold over which obser-
vations are classified as the positive class. If not provided, calculates threshold
using class proportions in original data. For multiclass classification, threshold
is not currently implemented.

Currently ignored. Additional predict arguments.

Details

Predicts class labels for a binary or a multiclass outcome. Specifically, predicts component weights
for one mode of a Parallel Factor Analysis-1 (Parafac) model or a Parallel Factor Analysis-2 (Parafac2)
model using new data and previously estimated mode weights from original data. Passes predicted
component weights to one or several classification methods as new data for predicting class labels.

Tuning parameters optimized by k-fold cross-validation are used for each classification method (see
help for tunecpfa). If not supplied in argument threshold, prediction threshold for all classifi-
cation methods is calculated using proportions of class labels for original data in the binary case
(and the positive class proportion is set as the threshold). For multiclass case, class with highest
probability is chosen.

Value
Returns one of the following, depending on the choice for argument type:

type = "response”
A data frame containing predicted class labels or probabilities (binary case) for
each Parafac model and classification method selected (see argument type).
Number of columns is equal to number of methods times number of Parafac
models. Number of rows is equal to number of predicted observations.

type = "prob” A list containing predicted probabilities for each Parafac model and classifica-
tion method selected (see argument type). Only returned if original response
was multiclass (i.e., contained three or more class labels). The number of list
elements is equal to number of methods times the number of Parafac models.
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type = "classify.weights”
List containing predicted component weights for each Parafac or Parafac2 model.
Length is equal to number of Parafac models that were fit.

Author(s)

Matthew Snodgress <snodg031@umn.edu>

References

See help file for function tunecpfa for a list of references.

Examples

#iHHHHHHHHE Parafac2 example with 4-way array and multiclass response #it##Ht####H

# set seed and specify dimensions of a four-way tensor
set.seed(5)

mydim <- c(10, 11, 12, 90)

nf <- 3

# create correlation matrix between response and fourth mode's weights

rho.dd <- .35

rho.dy <- .75

cormat.values <- c(1, rho.dd, rho.dd, rho.dy, rho.dd, 1, rho.dd, rho.dy,
rho.dd, rho.dd, 1, rho.dy, rho.dy, rho.dy, rho.dy, 1)

cormat <- matrix(cormat.values, nrow = (nf + 1), ncol = (nf + 1))

# sample from a multivariate normal with specified correlation structure
ymean <- Dmean <- 2

mu <- as.matrix(c(Dmean, Dmean, Dmean, ymean))

eidecomp <- eigen(cormat, symmetric = TRUE)

L.sgrt <- diag(eidecomp$values”@.5)

cormat.sqrt <- eidecomp$vectors %*% L.sqrt %x% t(eidecomp$vectors)

Z <- matrix(rnorm(mydim[4] * (nf + 1)), nrow = mydim[4], ncol = (nf + 1))
Xw <- rep(1, mydim[4]) %*% t(mu) + Z %*% cormat.sqrt

Dmat <- Xw[, 1:nf]

# create a random four-way data tensor with D weights related to a response
Bmat <- matrix(runif(mydim[2] * nf), nrow = mydim[2], ncol = nf)
Cmat <- matrix(runif(mydim[3] * nf), nrow = mydim[3], ncol = nf)
nDd <- rep(c(10, 12, 14), length.out = mydim[4])
Gmat <- matrix(rnorm(nf x nf), nrow = nf)
Amat <- vector("list"”, mydim[4])
X <- Xmat <- Emat <- Amat
for (Dd in 1:mydim[4]) {
Amat[[Dd]] <- matrix(nf * rnorm(nDd[Dd]), nrow = nDd[Dd], ncol = nf)
Amat[[Dd]] <- svd(Amat[[Dd]], nv = @)$u %*% Gmat
leftMat <- Amat[[Dd]] %*% diag(Dmat[Dd, 1)
Xmat[[Dd]] <- array(tcrossprod(leftMat, krprod(Cmat, Bmat)),
dim = c(nDA[Dd], mydim[2], mydim[3]))
Emat[[Dd]] <- array(rnorm(nDd[Dd] * mydim[2] * mydim[3]),
dim = c(nDd[Dd], mydim[2], mydim[3]))
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X[[Dd]] <- Xmat[[Dd]] + Emat[[Dd]]
3

# create a multiclass response

stor <- matrix(rep(1, nrow(Xw)), nrow = nrow(Xw))

stor[which(Xw[, (nf + 1)] < (ymean - 0.4 * sd(Xw[, (nf + 1)1)))] <- 2
stor[which(Xwl, (nf + 1)1 > (ymean + 0.4 % sd(Xw[, (nf + 1)1)))] <- @
y <- factor(stor)

# initialize

rda.alpha <- seq(@.1, 0.9, length = 2)

delta <- c(0.1, 2)

eta <- c(0.3, 0.7)

max.depth <- c(1, 2)

subsample <- c(0.75)

nrounds <- c(100)

method <- c("RDA", "GBM")

family <- "multinomial”

parameters <- list(rda.alpha = rda.alpha, delta = delta, eta = eta,
max.depth = max.depth, subsample = subsample,
nrounds = nrounds)

model <- "parafac2”

nfolds <- 3

nstart <- 3

# constrain first mode weights to be orthogonal, fourth mode to be nonnegative
’
const <- c("orthog”, "uncons"”, "uncons”, "nonneg")

# fit Parafac2 model and use fourth mode to tune classification methods
tune.object <- tunecpfa(x = X, y =y, model = model, nfac = nf,
nfolds = nfolds, method = method, family = family,
parameters = parameters, parallel = FALSE,
const = const, nstart = nstart)

# create new data with Parafac2 structure and D weights related to response
mydim.new <- c(10, 11, 12, 10)
Znew <- matrix(rnorm(mydim.new[4] * (nf + 1)), nrow = mydim.new[4],
ncol = (nf + 1))
Xwnew <- rep(1, mydim.new[4]) %x% t(mu) + Znew %*% cormat.sqrt
Dmatnew <- Xwnew[, 1:nf]
Amat <- vector("”list”, mydim.new[4])
Xnew <- Xmat <- Emat <- Amat
for (Dd in 1:mydim.new[4]) {
Amat[[Dd]] <- matrix(nf * rnorm(nDd[Dd]), nrow = nDd[Dd], ncol = nf)
Amat[[Dd]] <- svd(Amat[[Dd]], nv = @)$u %*% Gmat
leftMat <- Amat[[Dd]] %x% diag(Dmatnew[Dd, 1)
Xmat[[Dd]] <- array(tcrossprod(leftMat, krprod(Cmat, Bmat)),
dim = c(nDA[Dd], mydim.new[2], mydim.new[3]))
Emat[[Dd]] <- array(rnorm(nDd[Dd] * mydim.new[2] *x mydim.new[3]),
dim = c¢(nDd[Dd], mydim.new[2], mydim.new[3]))
Xnew[[Dd]1] <- Xmat[[Dd]] + Emat[[Dd]]



print.tunecpfa 19

# create new random class labels for two levels

stor <- matrix(rep(1, nrow(Xwnew)), nrow = nrow(Xwnew))

stor[which(Xwnew[, (nf + 1)] < (ymean - 0.4 * sd(Xwnew[, (nf + 1)1)))] <- 2
stor[which(Xwnew[, (nf + 1)] > (ymean + 0.4 * sd(Xwnew[, (nf + 1)1)))] <- @
newlabels <- as.numeric(stor)

# predict class labels
predict.labels <- predict(object = tune.object, newdata = Xnew,

type = "response”)
# print predicted labels
predict.labels
print.tunecpfa Print Method for Tuning for Classification with Parallel Factor Anal-
ysis

Description

Prints summary of results from a ’tunecpfa’ model object obtained using function tunecpfa.

Usage
## S3 method for class 'tunecpfa'
print(x, ...)
Arguments
X A fit object of class ’tunecpfa’ from function tunecpfa.
Additional print arguments.
Details

Prints names of the models and methods used to create the input ’tunecpfa’ model object. Prints
misclassification error rates and estimation times in seconds.

Value

Returns a summary of the "tunecpfa’ model object.

Author(s)

Matthew Snodgress <snodg031 @umn.edu>

References

See help file for function tunecpfa for a list of references.
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Examples

#itHHHHHHE Parafac example with 3-way array and binary response #it##H##i

# set seed and specify dimensions of a three-way tensor
set.seed(3)

mydim <- c(10, 11, 80@)

nf <- 3

# create correlation matrix between response and third mode's weights

rho.cc <- .35

rho.cy <- .75

cormat.values <- c(1, rho.cc, rho.cc, rho.cy, rho.cc, 1, rho.cc, rho.cy,
rho.cc, rho.cc, 1, rho.cy, rho.cy, rho.cy, rho.cy, 1)

cormat <- matrix(cormat.values, nrow = (nf + 1), ncol = (nf + 1))

# sample from a multivariate normal with specified correlation structure
ymean <- Cmean <- 2

mu <- as.matrix(c(Cmean, Cmean, Cmean, ymean))

eidecomp <- eigen(cormat, symmetric = TRUE)

L.sqrt <- diag(eidecomp$values”@.5)

cormat.sqrt <- eidecomp$vectors %x% L.sqrt %*% t(eidecomp$vectors)

Z <- matrix(rnorm(mydim[3] * (nf + 1)), nrow = mydim[3], ncol = (nf + 1))
Xw <- rep(1, mydim[3]) %*% t(mu) + Z %*% cormat.sqrt

Cmat <- Xw[, 1:nf]

print.tunecpfa

# create a random three-way data tensor with C weights related to a response

nf)
nf)

Amat <- matrix(rnorm(mydim[1] * nf), nrow = mydim[1], ncol
Bmat <- matrix(runif(mydim[2] * nf), nrow = mydim[2], ncol
Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat))

Xmat <- array(Xmat, dim = mydim)

Emat <- array(rnorm(prod(mydim)), dim = mydim)

Emat <- nscale(Emat, @, ssnew = sumsq(Xmat))

X <- Xmat + Emat

# create a binary response by dichotomizing at the specified response mean

y <- factor(as.numeric(Xw[ , (nf + 1)1 > ymean))

# initialize

alpha <- seq(@, 1, length = 2)

gamma <- c(0, 0.01)

cost <- c(1, 2)

method <- c(”PLR”, "SVM")

family <- "multinomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost)
model <- "parafac”

nfolds <- 3

nstart <- 3

# constrain first mode weights to be orthogonal
const <- c("orthog"”, "uncons"”, "uncons")

# fit Parafac models and use third mode to tune classification methods
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tune.object <- tunecpfa(x = X, y =y, model = model, nfac = nf,
nfolds = nfolds, method = method, family = family,
parameters = parameters, parallel = FALSE,
const = const, nstart = nstart)

# print summary of output
print(tune.object)

tunecpfa Tuning for Classification with Parallel Factor Analysis

Description

Fits Richard A. Harshman’s Parallel Factor Analysis-1 (Parafac) model or Parallel Factor Analysis-
2 (Parafac2) model to a three-way or four-way data array. Allows for multiple constraint options
on tensor modes. Uses component weights from a single mode of the model as predictors to tune
parameters for one or more classification methods via a k-fold cross-validation procedure. Supports
binary and multiclass classification.

Usage

tunecpfa(x, y, model = c("parafac”, "parafac2"”), nfac = 1, nfolds = 10,
me.thod = c(IIPLRIIy IISVMII, HRFII, IINNH’ 1IRDA1I, IIGBMII),

family = c("binomial”, "multinomial”), parameters = list(),
foldid = NULL, prior = NULL, cmode = NULL, parallel = FALSE,
cl = NULL, verbose = TRUE, ...)
Arguments
X For Parafac or Parafac2, a three-way or four-way data array. For Parafac2, can be
alist of length K where the k-th element is a matrix or three-way array associated
with the k-th element. Array or list must contain real numbers. See note below.
y A vector containing at least two unique class labels. Should be a factor that
contains two or more levels . For binary case, ensure the order of factor levels
(left to right) is such that negative class is first and positive class is second.
model Character designating the Parafac model to use, either model = "parafac” to fit
the Parafac model or model = "parafac2” to fit the Parafac2 model.
nfac Number of components for each Parafac or Parafac2 model to fit. Default is
nfac=1.
nfolds Numeric setting number of folds for k-fold cross-validation. Must be 2 or
greater. Default is nfolds = 10.
method Character vector indicating classification methods to use. Possible methods in-

clude penalized logistic regression (PLR); support vector machine (SVM); ran-
dom forest (RF); feed-forward neural network (NN); regularized discriminant
analysis (RDA); and gradient boosting machine (GBM). If none selected, de-
fault is to use all methods.
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family

parameters

tunecpfa

Character value specifying binary classification (family = "binomial") or mul-
ticlass classification (family = "multinomial”). If not provided, number of
levels of input y is used, where two levels is binary, and where three or more
levels is multiclass.

List containing arguments related to classification methods. When specified,
must contain one or more of the following:

alpha Values for penalized logistic regression alpha parameter; default is alpha
=seq(@, 1, length = 6). Must be numeric and contain only real numbers
between 0 and 1, inclusive.

lambda Optional user-supplied lambda sequence for cv.glmnet for penalized
logistic regression. Default is NULL.

cost Values for support vector machine cost parameter; default is cost = c(1,
2,4, 8,16, 32, 64). Must be numeric and contain only real numbers
greater than or equal to zero.

gamma Values for support vector machine gamma parameter; default is gamma
=c(0,0.01,0.1, 1, 10, 100, 1000). Must be numeric and greater than
or equal to 0.

ntree Values for random forest number of trees parameter; default is ntree =
c(100, 200, 400, 600, 800, 1600, 3200). Must be numeric and contain
only integers greater than or equal to 1.

nodesize Values for random forest node size parameter; default is nodesize
=c(1, 2, 4, 8, 16, 32, 64). Must be numeric and contain only integers
greater than or equal to 1.

size Values for neural network size parameter; default is size = c(1, 2, 4, 8,
16, 32, 64). Must be numeric and contain only integers greater than or
equal to 0.

decay Values for neural network decay parameter; default is decay = c(@.001,
0.01,0.1, 1, 2, 4, 8, 16). Must be numeric and contain only real num-
bers.

rda.alpha Values for regularized discriminant analysis alpha parameter; default
is rda.alpha = seq(@, 0.999, length = 6). Must be numeric and contain
only real numbers between 0 (inclusive) and 1 (exclusive).

delta Values for regularized discriminant analysis delta parameter; default is
delta=c(0, 0.1, 1, 2, 3, 4). Must be numeric and contain only real
numbers greater than or equal to 0.

eta Values for gradient boosting machine eta parameter; defaultis eta = c(0.1,
0.3,0.5,0.7,0.9). Must be numeric and contain only real numbers
greater than 0 and less than 1.

max.depth Values for gradient boosting machine max.depth parameter; default
is max.depth =c(1, 2, 3, 4). Must be numeric and contain only integers
greater than or equal to 1.

subsample Values for gradient boosting machine subsample parameter; de-
fault is subsample =c(0.6, 0.7, 0.8, 0.9). Must be numeric and con-
tain only real numbers greater than 0 and less than or equal to 1.

nrounds Values for gradient boosting machine nrounds parameter; default is
nrounds = c(100, 200, 300, 500). Must be numeric and contain only in-
tegers greater than or equal to 1.
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foldid Vector containing fold IDs for k-fold cross-validation. Can be of class integer,
numeric, or data frame. Should contain integers from 1 through the number of
folds. If not provided, fold IDs are generated randomly for observations using 1
through the number of folds nfolds.

prior Prior probabilities of class membership. If unspecified, the class proportions
for input y are used. If specified, the probabilities should be in the order of the
factor levels of input y.

cmode Integer value of 1, 2, or 3 (or 4 if x is a four-way array) specifying the mode
whose component weights will be predictors for classification. Defaults to the
last mode of the inputted array (i.e., defaults to 3 for three-way array, and to 4
for four-way array). If model = "parafac2”, last mode will be used.

parallel Logical indicating if parallel computing should be implemented. If TRUE, the
package parallel is used for parallel computing. For all classification methods
except penalized logistic regression, the doParallel package is used as a wrap-
per. Defaults to FALSE, which implements sequential computing.

cl Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and cl = NULL, then the cluster is defined as makeCluster (detectCores()).

verbose If TRUE, progress is printed.

Additional arguments to be passed to function parafac for fitting a Parafac
model or function parafac? for fitting a Parafac2 model. Example: can impose
different constraints on different modes of the input array using the argument
const. See help file for function parafac or for function parafac?2 for addi-
tional details.

Details

After fitting a Parafac or Parafac2 model with package multiway (see parafac or parafac2 in
multiway for details), the estimated classification mode weight matrix is passed to one or several of
six classification methods—including penalized logistic regression (PLR); support vector machine
(SVM); random forest (RF); feed-forward neural network (NN); regularized discriminant analysis
(RDA); and gradient boosting machine (GBM).

Package glmnet fits models for PLR. PLR tunes penalty parameter lambda while the elastic net
parameter alpha is set by the user (see the help file for function cv.glmnet in package glmnet).
For SVM, package €1071 is used with a radial basis kernel. Penalty parameter cost and radial basis
parameter gamma are used (see svm in package e1071). For RF, package randomForest is used
and implements Breiman’s random forest algorithm. The number of predictors sampled at each
node split is set at the default of sqrt(R), where R is the number of Parafac or Parafac2 compo-
nents. Two tuning parameters allowed are ntree, the number of trees to be grown, and nodesize, the
minimum size of terminal nodes (see randomForest in package randomForest). For NN, package
nnet fits a single-hidden-layer, feed-forward neural network model. Penalty parameters size (i.e.,
number of hidden layer units) and decay (i.e., weight decay) are used (see nnet). For RDA, package
rda fits a shrunken centroids regularized discriminant analysis model. Tuning parameters include
rda.alpha, the shrinkage penalty for the within-class covariance matrix, and delta, the shrinkage
penalty of class centroids towards the overall dataset centroid. For GBM, package xgboost fits a
gradient boosting machine model. Four tuning parameters are allowed: (1) eta, the learning rate;
(2) max.depth, the maximum tree depth; (3) subsample, the fraction of samples per tree; and (4)
nrounds, the number of boosting trees to build.
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For all six methods, k-fold cross-validation is implemented to tune classification parameters where
the number of folds is set by argument nfolds.

Value

Returns an object of class tunecpfa with the following elements:

opt.model List containing optimal model for tuned classification methods for each Parafac
or Parafac2 model that was fit.

opt.param Data frame containing optimal parameters for tuned classification methods.

kcv.error Data frame containing KCV misclassification error for optimal parameters for

tuned classification methods.

est.time Data frame containing times for fitting Parafac or Parafac2 model and for tuning
classification methods.

method Numeric indicating classification methods used. Value of ’1’ indicates "PLR’;
value of ’2’ indicates 'SVM’; value of ’3’ indicates 'RF’; value of ’4’ indicates
’NN’; value of ’5’ indicates 'RDA’; and value of 6’ indicates "GBM’.

X Three-way or four-way array used. If a list was used with model = "parafac2”,
returns list of matrices or three-way arrays used.

y Factor containing class labels used. Note that output y is recoded such that the
input labels of y are converted to numeric integers from 0 through the number
of levels, which are then applied as labels for output y.

Aweights List containing estimated A weights for each Parafac or Parafac2 model that was
fit.

Bweights List containing estimated B weights for each Parafac or Parafac2 model that was
fit.

Cweights List containing estimated C weights for each Parafac or Parafac2 model that was

fit. Null if inputted argument x was a three-way array.

Phi If model = "parafac2”, alist containing estimated Phi from the Parafac2 model.
Phi is the common cross product matrix shared by all levels of the last mode (see
help file for function parafac2 in package multiway for additional details).
NULL if model = "parafac”.

const Constraints used in fitting Parafac or Parafac2 models. If argument const was
not inputted, no constraints will be used.

cmode Integer value of 1, 2, or 3 (or 4 if x is a four-way array) specifying mode whose
component weights were predictors for classification.

family Character value specifying whether classification was binary (family = "binomial")
or multiclass (family = "multinomial”).

xdim Numeric value specifying number of levels for each mode of input x. If model
= "parafac2”, number of levels for first mode is designated as NA because the
number of levels can differ across levels of the last mode.

1xdim Numeric value specifying number of modes of input x.

train.weights List containing classification component weights for each fit Parafac or Parafac2
model, for possibly different numbers of components. The weights used to train
classifiers.
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Note

For fitting the Parafac model, if argument cmode is not null, input array x is reshaped with function
aperm such that the cmode dimension of x is ordered last. Estimated mode A and B (and mode C
for a four-way array) weights that are outputted as Aweights and Bweights (and Cweights) reflect
this permutation. For example, if x is a four-way array and cmode = 2, the original input modes 1,
2, 3, and 4 will correspond to output modes 1, 3, 4, 2. Here, output A =input 1; B=3,and C =4
(i.e., the second mode specified by cmode has been moved to the D mode/last mode). For model =
"parafac2”, classification mode is assumed to be the last mode (i.e., mode C for three-way array
and mode D for four-way array).

In addition, note that the following combination of arguments will give an error: nfac =1, family
= "multinomial”, method = "PLR". The issue arises from providing glmnet: :cv.glmnet input x
a matrix with a single column. The issue is resolved for family = "binomial” because a column
of Os is appended to the single column, but this solution does not appear to work for the multiclass
case. As such, this combination of arguments is not currently allowed. This issue will be resolved
in a future update.

Author(s)

Matthew A. Snodgress <snodg031@umn.edu>
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Examples

#iHHHHHH#H Parafac example with 3-way array and binary response #it#i#t##t####

# set seed and specify dimensions of a three-way tensor
set.seed(3)

mydim <- c(10, 11, 80)

nf <- 3

# create correlation matrix between response and third mode's weights

rho.cc <- .35

rho.cy <- .75

cormat.values <- c¢(1, rho.cc, rho.cc, rho.cy, rho.cc, 1, rho.cc, rho.cy,
rho.cc, rho.cc, 1, rho.cy, rho.cy, rho.cy, rho.cy, 1)

cormat <- matrix(cormat.values, nrow = (nf + 1), ncol = (nf + 1))

# sample from a multivariate normal with specified correlation structure
ymean <- Cmean <- 2

mu <- as.matrix(c(Cmean, Cmean, Cmean, ymean))

eidecomp <- eigen(cormat, symmetric = TRUE)

L.sqrt <- diag(eidecomp$values”*@.5)

cormat.sqrt <- eidecomp$vectors %*% L.sqrt %x% t(eidecomp$vectors)

Z <- matrix(rnorm(mydim[3] x (nf + 1)), nrow = mydim[3], ncol = (nf + 1))
Xw <= rep(1, mydim[3]) %x% t(mu) + Z %*% cormat.sqrt

Cmat <- Xw[, 1:nf]

# create a random three-way data tensor with C weights related to a response
Amat <- matrix(rnorm(mydim[1] * nf), nrow = mydim[1], ncol = nf)

Bmat <- matrix(runif(mydim[2] * nf), nrow = mydim[2], ncol = nf)

Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat))

Xmat <- array(Xmat, dim = mydim)

Emat <- array(rnorm(prod(mydim)), dim = mydim)

Emat <- nscale(Emat, @, ssnew = sumsq(Xmat))

X <- Xmat + Emat

# create a binary response by dichotomizing at the specified response mean
y <- factor(as.numeric(Xw[ , (nf + 1)1 > ymean))
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# initialize

alpha <- seq(@, 1, length = 2)

gamma <- c(0, 0.01)

cost <- c(1, 2)

ntree <- c(100, 200)

nodesize <- c(1, 2)

size <- c(1, 2)

decay <- c(0, 1)

rda.alpha <- c(0.1, 0.6)

delta <- c(0.1, 2)

eta <- c(0.3, 0.7)

max.depth <- c(1, 2)

subsample <- ¢(0.75)

nrounds <- c(100)

method <- c("PLR", "SVM", "RF", "NN”, "RDA", "GBM")

family <- "binomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost, ntree = ntree,
nodesize = nodesize, size = size, decay = decay,
rda.alpha = rda.alpha, delta = delta, eta = eta,
max.depth = max.depth, subsample = subsample,
nrounds = nrounds)

model <- "parafac”

nfolds <- 3

nstart <- 3

# constrain first mode weights to be orthogonal
const <- c("orthog"”, "uncons"”, "uncons")

# fit Parafac models and use third mode to tune classification methods
tune.object <- tunecpfa(x = X, y =y, model = model, nfac = nf,
nfolds = nfolds, method = method, family = family,
parameters = parameters, parallel = FALSE,
const = const, nstart = nstart)

# print tuning object
tune.object
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