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dosearch-package Causal Effect Identification from Multiple Incomplete Data Sources

Description

Solves causal effect identifiability problems from arbitrary observational and experimental data
using a heuristic search. Allows for the presence of advanced data-generating mechanims. See
Tikka et al. (2021) <doi:10.18637/jss.v099.i05> for further details.

Author(s)

Santtu Tikka, Antti Hyttinen, Juha Karvanen

References

G. Aleksandrowicz, H. Chockler, J. Y. Halpern, and A. Ivrii. The computational complexity of
structure-based causality. Journal of Artificial Intelligence Research, 58:431–451, 2017.

J. D. Angrist, G. W. Imbens, and D. B. Rubin. Identification of causal effects using instrumental
variables. Journal of the American Statistical Association, 91(434):444–455, 1996.

Y. Barash and N. Friedman. Context-specific Bayesian clustering for gene expression data. Journal
of Computational Biology, 9(2):169–191, 2002.

E. Bareinboim and J. Pearl. Controlling selection bias in causal inference. In Proceedings of the
15th International Conference on Artificial Intelligence and Statistics, 22:100–108, 2012a.

E. Bareinboim and J. Pearl. Causal inference by surrogate experiments: z-identifiability. In Pro-
ceedings of the 28th Conference on Uncertainty in Artificial Intelligence, 113–120, 2012b.

E. Bareinboim and J. Pearl. A general algorithm for deciding transportability of experimental re-
sults. Journal of Causal Inference, 1:107–134, 2013.

E. Bareinboim and J. Pearl. Transportability from multiple environments with limited experiments:
Completeness results. In Proceedings of the 27th Annual Conference on Neural Information Pro-
cessing Systems, 280–288, 2014.

E. Bareinboim and J. Tian. Recovering causal effects from selection bias. In Proceedings of the
29th AAAI Conference on Artificial Intelligence, 3475–3481, 2015.

E. Bareinboim, J. Tian, and J. Pearl. Recovering from selection bias in causal and statistical in-
ference. In Proceedings of the 28th AAAI Conference on Neural Information Processing Systems,
2014.



dosearch-package 3

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence in Bayesian
networks. In Proceedings of the 12th International Conference on Uncertainty in Artificial Intelli-
gence, 115–123, 1996.

N. E. Breslow. Statistics in epidemiology: The case-control study. Journal of the American Statis-
tical Association, 91(433):14–28, 1996.

C. J. Butz, A. E. dos Santos, and J. S. Oliveira. Relevant path separation: A faster method for testing
independencies in Bayesian networks. In 8th International Conference on Probabilistic Graphical
Models, 74–85, 2016.

B. Chen, D. Kumor, and E. Bareinboim. Identification and model testing in linear structural equa-
tion models using auxiliary variables. In Proceedings of the 34th International Conference on
Machine Learning, 70:757–766, 2017.

G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief net-
works. Artificial Intelligence, 42(2):393–405, 1990.

J. Corander, A. Hyttinen, J. Kontinen, J. Pensar, and J. Vaananen. A logical approach to context-
specific independence. Annals of Pure and Applied Logic, 2019.

J. Correa and E. Bareinboim. Causal effect identification by adjustment under confounding and
selection biases. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017.

J. Correa, J. Tian, and E. Bareinboim. Generalized adjustment under confounding and selection
biases. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.

D. Danks, C. Glymour, and R. E. Tillman. Integrating locally learned causal structures with over-
lapping variables. In Advances in Neural Information Processing Systems, 1665–1672, 2009.

A. P. Dawid. Influence diagrams for causal modelling and inference. International Statistical Re-
view, 70(2):161–189, 2002.

D. Entner, P. Hoyer, and P. Spirtes. Data-driven covariate selection for nonparametric estimation of
causal effects. In Proceedings of the 16th International Conference on Artificial Intelligence and
Statistics, 31:256–264, 2013.

D. Galles and J. Pearl. Testing identifiability of causal effects. In Proceedings of the 11th Confer-
ence Annual Conference on Uncertainty in Artificial Intelligence, 185–195, 1995.

B. Georgi, J. Schultz, and A. Schliep. Context-specific independence mixture modelling for protein
families. In European Conference on Principles of Data Mining and Knowledge Discovery, 79–90,
2007.

S. Greenland, J. M. Robins, and J. Pearl. Confounding and collapsibility in causal inference. Sta-
tistical Science, 14(1):29–46, 1999.

J. Y. Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelligence Research, 12:317–
337, 2000.

Y. Huang and M. Valtorta. Pearl’s calculus of intervention is complete. In Proceedings of the 22nd
Conference on Uncertainty in Artificial Intelligence, 217–224, 2006.

A. Hyttinen, F. Eberhardt, and P. O. Hoyer. Causal discovery of linear cyclic models from multi-
ple experimental data sets with overlapping variables. In Proceedings of the 28th Conference on
Uncertainty in Artificial Intelligence, 387–396, 2012.

A. Hyttinen, F. Eberhardt, and M. Jarvisalo. Do-calculus when the true graph is unknown. In
Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, 395–404, 2015.



4 dosearch-package

A. Jaber, J. Zhang, and E. Bareinboim. Causal identification under Markov equivalence. In Pro-
ceedings of the 34th Conference on Uncertainty in Artificial Intelligence, 978–987, 2018.

J. Karvanen. Study design in causal models. Scandinavian Journal of Statistics, 42(2):361–377,
2015.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques, 2009.

S. L. Lauritzen. Causal inference from graphical models. In Complex Stochastic Systems, 67–107,
2000.

R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data, 1986.

M. H. Maathuis, M. Kalisch, and P. Buhlmann. Estimating high-dimensional intervention effects
from observational data. The Annals of Statistics, 37(6A):3133–3164, 2009.

D. Malinsky and P. Spirtes. Estimating bounds on causal effects in high-dimensional and possibly
confounded systems. International Journal of Approximate Reasoning, 88:371–384, 2017.

K. Mohan and J. Pearl. Graphical models for processing missing data. 2018. Forthcoming,
https://arxiv.org/abs/1801.03583.

K. Mohan, J. Pearl, and J. Tian. Graphical models for inference with missing data. In Advances in
Neural Information Systems, 26:1277–1285, 2013.

H. Nyman, J. Pensar, T. Koski, and J. Corander. Stratified graphical models-context-specific inde-
pendence in graphical models. Bayesian Analysis, 9(4):883–908, 2014.

J. M. Pena and M. Bendtsen. Causal effect identification in acyclic directed mixed graphs and gated
models. International Journal of Approximate Reasoning, 90:56–75, 2017.

J. Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

J. Pearl. Causality: Models, Reasoning, and Inference, 2009.

J. Pensar, H. J. Nyman, T. Koski, and J. Corander. Labeled directed acyclic graphs: a generaliza-
tion of context-specific independence in directed graphical models. Data Mining and Knowledge
Discovery, 29(2):503–533, 2015.

E. Perkovic, J. Textor, M. Kalisch, and M. Maathuis. A complete generalized adjustment criterion.
In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, 682–691, 2015.

J. Peters, J. M. Mooij, D. Janzing, and B. Scholkopf. Causal discovery with continuous additive
noise models. Journal of Machine Learning Research, 15:2009–2053, 2014.

S. E. Shimony. Explanation, irrelevance, and statistical independence. In Proceedings of the 9th
National conference on Artificial intelligence - Volume 1, 482–487, 1991.

I. Shpitser and J. Pearl. Identification of joint interventional distributions in recursive semi-Markovian
causal models. In Proceedings of the 21st National Conference on Artificial Intelligence – Volume
2, 1219–1226, 2006a.

I. Shpitser and J. Pearl. Identification of conditional interventional distributions. In Proceedings of
the 22nd Conference on Uncertainty in Artificial Intelligence, 437–444, 2006b.

I. Shpitser and J. Pearl. Complete identification methods for the causal hierarchy. Journal of Ma-
chine Learning Research, 9:1941–1979, 2008.

I. Shpitser, K. Mohan, and J. Pearl. Missing data as a causal and probabilistic problem. In Proceed-
ings of the 31st Conference on Uncertainty in Artificial Intelligence, 802–811, 2015.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search, 1993.



bivariate_missingness 5

S. Tikka and J. Karvanen. Identifying causal effects with the R package causaleffect. Journal of
Statistical Software, 76(12):1–30, 2017a.

S. Tikka and J. Karvanen. Simplifying probabilistic expressions in causal inference. Journal of
Machine Learning Research, 18(36):1–30, 2017b.

S. Tikka and J. Karvanen. Enhancing identification of causal effects by pruning. Journal of Machine
Learning Research, 18(194):1–23, 2018.

S. Tikka and J. Karvanen. Surrogate outcomes and transportability. International Journal of Ap-
proximate Reasoning, 108:21–37, 2019.

S. Tikka, A. Hyttinen and J. Karvanen. Causal effect identification from multiple incomplete data
sources: a general search-based approach. Journal of Statistical Software, 99(5):1–40, 2021.

R. Tillman and P. Spirtes. Learning equivalence classes of acyclic models with latent and selection
variables from multiple datasets with overlapping variables. In Proceedings of the 14th Interna-
tional Conference on Artificial Intelligence and Statistics, 3–15, 2011.

S. Triantafillou and I. Tsamardinos. Constraint-based causal discovery from multiple interventions
over overlapping variable sets. Journal of Machine Learning Research, 16:2147–2205, 2015.

S. Triantafillou, I. Tsamardinos, and I. Tollis. Learning causal structure from overlapping variable
sets. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics,
860–867, 2010.

B. van der Zander and M. Liskiewicz. On searching for generalized instrumental variables. In
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 2016.

S. Visscher, P. Lucas, I. Flesch, and K. Schurink. Using temporal context-specific independence
information in the exploratory analysis of disease processes. In Conference on Artificial Intelligence
in Medicine in Europe, 87–96, 2007.

bivariate_missingness Systematic Analysis of Bivariate Missing Data Problems

Description

This data set contains the results of a systematic analysis of all missing data problems of two vari-
ables. Each problem is associated with a graph containing two vertices, X and Y , and their response
indicators, RX and RY .

Usage

data(bivariate_missingness)

Format

A data frame with 6144 rows and 8 variables:

graph the graph of the instance, see get_derivation for more details on the syntax

nedges number of edges in the graph (directed and bidirected)

arrowXtoY whether the graph contains an arrow from X to Y or not
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jointXY identifiability of the joint distribution of X and Y

marginX identifiability of the marginal distribution of X

marginY identifiability of the marginal distribution of Y

YcondX identifiability of the conditional distribution of Y given X

YdoX identifiability of the causal effect of X on Y

Source

Tikka et. al. (2019) <arXiv:1902.01073>

dosearch Identify a causal effect from arbitrary experiments and observations

Description

Identify a causal query from available data in a causal model described by a graph that is a
semi-Markovian DAG or a labeled directed acyclic graph (LDAG). For DAGs, special mechanisms
related to transportability of causal effects, recoverability from selection bias and identifiability
under missing data can also be included.

Usage

dosearch(data, query, graph,
transportability, selection_bias, missing_data,
control)

Arguments

data a character string describing the available distributions in the package syntax.
Alternatively, a list of character vectors. See ‘Details’.

query a character string describing the target distribution in the package syntax. Alter-
natively, a character vector. See ‘Details’.

graph a character string describing either a DAG or an LDAG in the package syntax.
Alternatively, an "igraph" graph as used in the "causaleffect" package or a DAG
constructed using the "dagitty" package. See ‘Details’.

transportability

a character string describing the transportability nodes of the model in the pack-
age syntax (for DAGs only). See ‘Details’.

selection_bias a character string describing the selection bias nodes of the model in the package
syntax (for DAGs only). See ‘Details’.

missing_data a character string describing the missing data mechanisms of the model in the
package syntax (for DAGs only). See ‘Details’.

control a list of control parameters. See ‘Details’.
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Details

data is used to list the available input distributions. When graph is a DAG the distributions should
be of the form

P (Ai|do(Bi), Ci).

Individual variables within sets should be separated by a comma. For example, three input distribu-
tions

P (Z|do(X)), P (W,Y |do(Z,X)), P (W,Y,X|Z),

should be given as follows:

> data <- "
+ P(Z|do(X))
+ P(W,Y|do(Z,X))
+ P(W,Y,X|Z)
+"

The use of multiple do-operators is not permitted. Furthermore, when both conditioning variables
and a do-operator are present, every conditioning variable must either precede the do-operator or
follow it. When graph is an LDAG, the do-operation is represented by an intervention node, i.e.,

P (Y |do(X), Z) = P (Y |X,Z, IX = 1)

For example, in the case of the previous example in an LDAG, the three input distributions become:

> data <- "
+ P(Z|X,I_X = 1)
+ P(W,Y|Z,X,I_X=1,I_Z=1)
+ P(W,Y,X|Z)
+"

The intervention nodes IX and IZ must be explicitly defined in the graph along with the relevant
labels for the edges.

query is the target distribution of the search. It has the same syntax as data, but only a single
distribution should be given.

graph is a description of a directed acyclic graph where directed edges are denoted by -> and
bidirected arcs corresponding to unobserved confounders are denoted by <-> (or by --). As an
example, a DAG with two directed edges and one bidirected edge is constructed as follows:

> graph <- "
+ X -> Z
+ Z -> Y
+ X <-> Y
+"
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Some alternative formats for DAGs are supported as well. Graphs created using the igraph pack-
age in the causal.effect syntax can be used here. Similarly, DAGs created using dagitty are
supported.

LDAGs are constructed similarly with the addition of labels and with the omission bidirected edges
(latent variables must be explicitly defined). As an example, an LDAG with two labeled edges can
be constructed as follows:

> graph <- "
+ X -> Z : A = 0
+ Z -> Y : A = 1
+ A -> Z
+ A -> Y
+"

Here the labels indicate that the edge from X to Z vanishes when A has the value 0 and the edge
from Z to Y vanishes when A has the value 1. Multiple labels on the same edge should be separated
by a semi-colon.

transportability enumerates the nodes that should be understood as transportability nodes re-
sponsible for discrepancies between domains. Individual variables should be separated by a comma.
See e.g., Bareinboim and Pearl (2014) for details on transportability.

selection_bias enumerates the nodes that should be understood as selection bias nodes respon-
sible for bias in the input data sets. Individual variables should be separated by a comma. See e.g.,
Bareinboim and Pearl (2014) for details on selection bias recoverability.

missing_data enumerates the missingness mechanisms of the model. The syntax for a single
mechanism is M_X : X where MX is the mechanism for X . Individual mechanisms should be sep-
arated by a comma. Note that both MX and X must be present in the graph if the corresponding
mechanism is given as input. Proxy variables should not be included in the graph, since they are
automatically generated based on missing_data. By default, a warning is issued if a proxy variable
is present in an input distribution but its corresponding mechanism is not present in any input. See
e.g., Mohan, Pearl and Tian (2013) for details on missing data as a causal inference problem.

The control argument is a list that can supply any of the following components:

benchmark A logical value. If TRUE, the search time is recorded and returned (in milliseconds).
Defaults to FALSE.

benchmark_rules A logical value. If TRUE, the time taken by each individual inference rule is also
recorded in the benchmark (in milliseconds). Defaults to FALSE.

draw_derivation A logical value. If TRUE, a string representing the derivation steps as a DOT
graph is returned. The graph can be exported as an image for example by using the DOT
package. Defaults to FALSE.

draw_all A logical value. If TRUE and if draw_derivation = TRUE, the derivation will contain
every step taken by the search. If FALSE, only steps that resulted in an identifiable target are
returned. Defaults to FALSE.

formula A logical value. If TRUE, a string representing the identifiable query is returned when the
target query is identifiable. If FALSE, only a logical value is returned that takes the value TRUE
for an identifiable target and FALSE otherwise. Defaults to TRUE.
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heuristic A logical value. If TRUE, new distributions are expanded according to a search heuristic
(see Tikka et al. (2019) for details). Otherwise, distributions are expanded in the order in
which they were identified. Defaults to FALSE.

md_sym A single character describing the symbol to use for active missing data mechanisms. De-
faults to "1".

time_limit A numeric value giving a time limit for the search (in hours). Defaults to a negative
value that disables the limit.

verbose A logical value. If TRUE, diagnostic information is printed to the console during the
search. Defaults to FALSE.

warn A logical value. If TRUE, a warning is issued for possibly unintentionally misspecified but
syntactically correct input distributions.

Value

An object of class dosearch which is a list with the following components by default. See the op-
tions of control for how to obtain a graphical representation of the derivation or how to benchmark
the search.

identifiable A logical value that attains the value TRUE is the target quantity is identifiable and
FALSE otherwise.

formula A character string describing a formula for an identifiable query or an empty character
vector for an unidentifiable effect.

Author(s)

Santtu Tikka

References

S. Tikka, A. Hyttinen and J. Karvanen. Causal effect identification from multiple incomplete data
sources: a general search-based approach. Journal of Statistical Software, 99(5):1–40, 2021.

Examples

## Simple back-door formula
data1 <- "P(x,y,z)"
query1 <- "P(y|do(x))"
graph1 <- "

x -> y
z -> x
z -> y

"
dosearch(data1, query1, graph1)

## Simple front-door formula
data2 <- "P(x,y,z)"
query2 <- "P(y|do(x))"
graph2 <- "

x -> z
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z -> y
x <-> y

"
dosearch(data2, query2, graph2)

## Graph input using 'igraph' in the 'causaleffect' syntax
if (requireNamespace("igraph", quietly = TRUE)) {

g_igraph <- igraph::graph.formula(x -+ z, z -+ y, x -+ y, y -+ x)
g_igraph <- igraph::set.edge.attribute(g_igraph, "description", 3:4, "U")
dosearch(data2, query2, g_igraph)

}

## Graph input with 'dagitty'
if (requireNamespace("dagitty", quietly = TRUE)) {

g_dagitty <- dagitty::dagitty("dag{x -> z -> y; x <-> y}")
dosearch(data2, query2, g_dagitty)

}

## Alternative distribution input style using lists and vectors:
## Each element of the list describes a single distribution
## Each element is a character vector that describes the role
## of each variable in the distribution as follows:
## For a variable V and a distribution P(A|do(B),C) we have
## V = 0, if V is in A
## V = 1, if V is in B
## V = 2, if V is in C
data_alt <- list(

c(x = 0, y = 0, z = 0) # = P(x,y,z)
)
query_alt <- c(x = 1, y = 0) # = P(y|do(x))
dosearch(data_alt, query_alt, graph2)

## Additional examples
## Not run:

## Multiple input distributions (both observational and interventional)
data3 <- "

p(z_2,x_2|do(x_1))
p(z_1|x_2,do(x_1,y))
p(x_1|w_1,do(x_2))
p(y|z_1,z_2,x_1,do(x_2))
p(w|y,x_1,do(x_2))

"
query3 <- "p(y,x_1|w,do(x_2))"
graph3 <- "

x_1 -> z_2
x_1 -> z_1
x_2 -> z_1
x_2 -> z_2
z_1 -> y
z_2 -> y
x_1 -> w
x_2 -> w
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z_1 -> w
z_2 -> w

"
dosearch(data3, query3, graph3)

## Selection bias
data4 <- "

p(x,y,z_1,z_2|s)
p(z_1,z_2)

"
query4 <- "p(y|do(x))"
graph4 <- "

x -> z_1
z_1 -> z_2
x -> y
y -- z_2
z_2 -> s

"
dosearch(data4, query4, graph4, selection_bias = "s")

## Transportability
data5 <- "

p(x,y,z_1,z_2)
p(x,y,z_1|s_1,s_2,do(z_2))
p(x,y,z_2|s_3,do(z_1))

"
query5 <- "p(y|do(x))"
graph5 <- "

z_1 -> x
x -> z_2
z_2 -> y
z_1 <-> x
z_1 <-> z_2
z_1 <-> y
t_1 -> z_1
t_2 -> z_2
t_3 -> y

"
dosearch(data5, query5, graph5, transportability = "t_1, t_2, t_3")

## Missing data
## Proxy variables are denoted by an asterisk (*)
data6 <- "

p(x*,y*,z*,m_x,m_y,m_z)
"
query6 <- "p(x,y,z)"
graph6 <- "

z -> x
x -> y
x -> m_z
y -> m_z
y -> m_x
z <-> y
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"
dosearch(data6, query6, graph6, missing_data = "m_x : x, m_y : y, m_z : z")

## An LDAG
data7 <- "P(X,Y,Z)"
query7 <- "P(Y|X,I_X=1)"
graph7 <- "

X -> Y : Z = 1
Z -> Y
Z -> X : I_X = 1
I_X -> X
H -> X : I_X = 1
H -> Z
Q -> Z
Q -> Y : Z = 0

"
dosearch(data7, query7, graph7)

## A more complicated LDAG
## with multiple assignments for the edge X -> Z

data8 <- "P(X,Y,Z,A,W)"
query8 <- "P(Y|X,I_X=1)"
graph8 <- "

I_X -> X
I_Z -> Z
A -> W
Z -> Y
A -> Z
X -> Z : I_Z = 1; A = 1
X -> Y : A = 0
W -> X : I_X = 1
W -> Y : A = 0
A -> Y
U -> X : I_X = 1
U -> Y : A = 1

"
dosearch(data8, query8, graph8)

## Export the DOT diagram of the derivation as an SVG file
## to the working directory via the DOT package.
## By default, only the identifying part is plotted.
## PostScript format is also supported.
if (requireNamespace("DOT", quietly = TRUE)) {

d <- get_derivation(data1, query1, graph1,
control = list(draw_derivation = TRUE))

DOT::dot(d$derivation, "derivation.svg")
}

## End(Not run)
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get_benchmark Benchmark a specific run of the search

Description

Returns the benchmarking information of an object of class "dosearch".

Usage

get_benchmark(x, run_again = FALSE, include_rules = FALSE)

Arguments

x an object of class "dosearch".

run_again a logical value. If TRUE, run the search again to obtain the benchmarking infor-
mation if it was not requested in the function call that produced x.

include_rules A logical value. If TRUE, also benchmark the time taken by each inference rule
separately.

Value

A list with one or two elements. The first is always a numeric value of the total time taken by the
search in milliseconds. The second is a numeric vector of the time taken by each inference rule (in
the internal C++ implementation) of the search in milliseconds if include_rules = TRUE.

Author(s)

Santtu Tikka

Examples

data <- "P(x,y,z)"
query <- "P(y|do(x))"
graph <- "

x -> y
z -> x
z -> y

"
x <- dosearch(data, query, graph, control = list(benchmark = FALSE))
get_benchmark(x, run_again = TRUE)
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get_derivation Retrieve the derivation of a causal query

Description

Returns the derivation of causal query of an object of class "dosearch".

Usage

get_derivation(x, run_again = FALSE, draw_all = FALSE)

Arguments

x an object of class "dosearch".

run_again a logical value. If TRUE, run the search again to obtain a derivation for the query
if one was not requested in the function call that produced x.

draw_all a logical value. If TRUE, the derivation will contain every step taken by the
search. If FALSE, only steps that resulted in identification are returned.

Author(s)

Santtu Tikka

Examples

data <- "P(x,y,z)"
query <- "P(y|do(x))"
graph <- "

x -> y
z -> x
z -> y

"
x <- dosearch(data, query, graph, control = list(draw_derivation = FALSE))
get_derivation(x, run_again = TRUE)

get_formula Retrieve the identifying formula of a causal query

Description

Returns the identifying formula describing a causal query of an object of class "dosearch".

Usage

get_formula(x, run_again = FALSE)
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Arguments

x an object of class "dosearch".

run_again a logical value. If TRUE, run the search again to obtain a formula for the query if
one was not requested in the function call that produced x.

Value

A character string representing the query in terms of the input data.

Author(s)

Santtu Tikka

Examples

data <- "P(x,y,z)"
query <- "P(y|do(x))"
graph <- "

x -> y
z -> x
z -> y

"
x <- dosearch(data, query, graph, control = list(formula = FALSE))
get_formula(x, run_again = TRUE)

is_identifiable Query whether the target distribution was identifiable or not

Description

Returns the a logical value describing the identifiability of a causal query of an object of class
"dosearch".

Usage

is_identifiable(x)

Arguments

x an object of class "dosearch".

Value

A logical value. If TRUE, the target distribution is identifiable from the available inputs.

Author(s)

Santtu Tikka
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Examples

data <- "P(x,y,z)"
query <- "P(y|do(x))"
graph <- "

x -> y
z -> x
z -> y

"
x <- dosearch(data, query, graph)
is_identifiable(x)
# TRUE
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