
Package ‘edeaR’
April 27, 2023

Type Package

Title Exploratory and Descriptive Event-Based Data Analysis

Version 0.9.4

Description Exploratory and descriptive analysis of event based data. Provides methods for describ-
ing and selecting process data, and for preparing event log data for process min-
ing. Builds on the S3-class for event logs implemented in the package 'bupaR'.

License MIT + file LICENSE

Depends R(>= 3.5.0)

Imports bupaR (>= 0.5.1), dplyr, data.table, ggplot2, ggthemes, glue,
tibble, shiny, miniUI, tidyr, shinyTime, lubridate, purrr,
stringr, rlang (>= 1.0.0), cli (>= 3.2.0), zoo, hms, lifecycle

Encoding UTF-8

RoxygenNote 7.2.3

URL https://bupar.net/, https://github.com/bupaverse/edeaR/,

https://bupaverse.github.io/edeaR/

Suggests knitr, eventdataR, rmarkdown, covr, testthat (>= 3.0.0)

VignetteBuilder knitr

BugReports https://github.com/bupaverse/edeaR/issues/

Config/testthat/edition 3

NeedsCompilation no

Author Gert Janssenswillen [aut, cre],
Gerard van Hulzen [ctb],
Marijke Swennen [ctb],
Ivan Esin [ctb],
Hasselt University [cph]

Maintainer Gert Janssenswillen <gert.janssenswillen@uhasselt.be>

Repository CRAN

Date/Publication 2023-04-27 08:33:06 UTC

1

https://bupar.net/
https://github.com/bupaverse/edeaR/
https://bupaverse.github.io/edeaR/
https://github.com/bupaverse/edeaR/issues/

2 R topics documented:

R topics documented:
activity_frequency . 3
activity_presence . 5
add_fixed_holiday . 8
add_floating_holiday . 8
add_holiday_periods . 9
augment . 9
calculate_queuing_length . 10
calculate_queuing_times . 11
change_day . 13
create_work_schedule . 13
end_activities . 14
filter_activity . 16
filter_activity_frequency . 17
filter_activity_instance . 19
filter_activity_presence . 21
filter_case . 23
filter_case_condition . 24
filter_endpoints . 26
filter_endpoints_condition . 27
filter_flow_time . 29
filter_idle_time . 31
filter_infrequent_flows . 33
filter_lifecycle . 34
filter_lifecycle_presence . 35
filter_precedence . 37
filter_precedence_condition . 40
filter_precedence_resource . 42
filter_processing_time . 44
filter_resource . 46
filter_resource_frequency . 47
filter_throughput_time . 49
filter_time_period . 51
filter_trace . 53
filter_trace_frequency . 54
filter_trace_length . 56
filter_trim . 58
filter_trim_lifecycle . 60
idle_time . 62
number_of_repetitions . 64
number_of_selfloops . 67
number_of_traces . 70
plot . 71
print.work_schedule . 73
processing_time . 73
redo_repetitions_referral_matrix . 76
redo_selfloops_referral_matrix . 77

activity_frequency 3

resource_frequency . 78
resource_involvement . 80
resource_specialisation . 82
size_of_repetitions . 85
size_of_selfloops . 87
start_activities . 89
throughput_time . 91
trace_coverage . 94
trace_length . 96

Index 99

activity_frequency Activity Frequency

Description

Provides summary statistics about the frequency of activity types at the level of log, traces, cases,
activity types.

Usage

activity_frequency(
log,
level = c("log", "trace", "activity", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
activity_frequency(
log,
level = c("log", "trace", "activity", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
activity_frequency(
log,
level = c("log", "trace", "activity", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,

4 activity_frequency

eventlog = deprecated()
)

S3 method for class 'activitylog'
activity_frequency(
log,
level = c("log", "trace", "activity", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_activitylog'
activity_frequency(
log,
level = c("log", "trace", "activity", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "trace", "case", or "activity". For more information, see vignette("metrics",
"edeaR") and ’Details’ below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• At log level, this metric shows the summary statistics of the frequency of activities throughout
the complete log.

activity_presence 5

• On case level, this metric shows the absolute and relative number of times the different activ-
ity types occur in each case. The absolute number shows the number of distinct activity types
that occur in each of the cases. The relative number is calculated based on the total activity
executions in the case.

• On trace level, this metric presents the absolute and relative number of times a specific ac-
tivity type occurs in each trace.

• On activity level, this metric provides the absolute and relative frequency of a specific ac-
tivity in the complete log.

Methods (by class)

• activity_frequency(eventlog): Computes the activity frequency for an eventlog.

• activity_frequency(grouped_eventlog): Computes the activity frequency for a grouped_eventlog.

• activity_frequency(activitylog): Computes the activity frequency for an activitylog.

• activity_frequency(grouped_activitylog): Computes the activity frequency for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other metrics: activity_presence(), end_activities(), idle_time(), number_of_repetitions(),
number_of_selfloops(), number_of_traces(), processing_time(), resource_frequency(),
resource_involvement(), resource_specialisation(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

activity_presence Metric: Activity Presence

Description

Calculates for each activity type in what percentage of cases it is present.

Usage

activity_presence(
log,
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'eventlog'

6 activity_presence

activity_presence(
log,
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
activity_presence(
log,
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
activity_presence(
log,
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_activitylog'
activity_presence(
log,
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

activity_presence 7

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

eventlog [Deprecated]; please use log instead.

Details

An indication of variance can be the presence of the activities in the different cases. This metric
shows for each activity the absolute number of cases in which each activity occurs together with its
relative presence.

Methods (by class)

• activity_presence(eventlog): Compute activity presence for an eventlog.

• activity_presence(grouped_eventlog): Compute activity presence for a grouped_eventlog.

• activity_presence(activitylog): Compute activity presence for an activitylog.

• activity_presence(grouped_activitylog): Compute activity presence for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other metrics: activity_frequency(), end_activities(), idle_time(), number_of_repetitions(),
number_of_selfloops(), number_of_traces(), processing_time(), resource_frequency(),
resource_involvement(), resource_specialisation(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

Examples

Not run:
data <- data.frame(case = rep("A",5),
activity_id = c("A","B","C","D","E"),
activity_instance_id = 1:5,
lifecycle_id = rep("complete",5),
timestamp = 1:5,
resource = rep("resource 1", 5))

log <- bupaR::eventlog(data,case_id = "case",
activity_id = "activity_id",
activity_instance_id = "activity_instance_id",
lifecycle_id = "lifecycle_id",
timestamp = "timestamp",
resource_id = "resource")

activity_presence(log)

End(Not run)

8 add_floating_holiday

add_fixed_holiday Add fixed holiday to work schedule

Description

Add fixed holiday to work schedule

Usage

add_fixed_holiday(work_schedule, name, month, day)

Arguments

work_schedule Work schedule created with create_work_schedule

name Name of holiday

month Month in which fixed holiday takes place

day Day of fixed holiday

add_floating_holiday Add floating holiday to work schedule

Description

Add floating holiday to work schedule

Usage

add_floating_holiday(work_schedule, name, dates)

Arguments

work_schedule Work schedule created with create_work_schedule

name Name of holiday

dates Dates of floating holiday. Make sure to list all dates relevant to your time frame

add_holiday_periods 9

add_holiday_periods Add holiday period to work schedule

Description

Add holiday period to work schedule

Usage

add_holiday_periods(work_schedule, from, to)

Arguments

work_schedule Work schedule created with create_work_schedule

from Start of holiday period (included)

to End of holiday period (included)

augment Augment Log

Description

Augment log with results from metric computation.

Usage

augment(metric, log, columns, prefix = "")

S3 method for class 'log_metric'
augment(metric, log, columns, prefix = "")

S3 method for class 'case_metric'
augment(metric, log, columns, prefix = "")

S3 method for class 'activity_metric'
augment(metric, log, columns, prefix = "")

S3 method for class 'resource_metric'
augment(metric, log, columns, prefix = "")

S3 method for class 'resource_activity_metric'
augment(metric, log, columns, prefix = "")

S3 method for class 'trace_metric'
augment(metric, log, columns, prefix = "")

10 calculate_queuing_length

Arguments

metric Metric computed by edeaR
log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,

etc.) that was used to compute the metric.
columns character vector: Column names from the metric that you want to add to the

log. If missing, defaults to all columns.
prefix character: Prefix to be added to the newly added metric columns in the log.

Value

Object of class log or derivatives (grouped_log, eventlog, activitylog, etc.). Same class as the
log input.

Methods (by class)

• augment(log_metric): Augment log metric
• augment(case_metric): Augment case metric
• augment(activity_metric): Augment activity metric
• augment(resource_metric): Augment resource metric
• augment(resource_activity_metric): Augment resource-activity metric
• augment(trace_metric): Augment trace metric

Examples

Not run:
sepsis %>%
throughput_time("case") %>%
augment(sepsis)

End(Not run)

calculate_queuing_length

Calculate queuing length

Description

[Experimental]

Usage

calculate_queuing_length(
queueing_times,
level = c("log", "activity", "resource"),
time_interval

)

calculate_queuing_times 11

Arguments

queueing_times Object of class queuing_times, returned by calculate_queuing_times.

level character (default "log"): Level of granularity for the analysis: "log", "activity",
"resource". For more information, see ’Details’ below.

time_interval The time interval after which the queue length should be calculated. For more
information, see ’Details’ below and the by argument of seq.Date.

Details

Argument level has the following options:

• At log level, this metric calculates the total number of activity instances that are queued at a
given moment in time.

• At resource level, this metric calculates the total number activity instances that are queued
for a given resource.

• On activity level, this metric calculates the total number of activity instances that are queue
for a given activity type.

Argument time_interval has the following options (see also the by argument of seq.Date):

• A numeric as number of days.

• An object of class difftime.

• A character string, which could be one of "day", "week", "month", "quarter", or "year".
The first day for which queue length is calculated, is the first timestamp found in the log.

See Also

calculate_queuing_times, seq.Date

calculate_queuing_times

Calculate queuing times

Description

[Experimental]

Usage

calculate_queuing_times(
log,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
eventlog = deprecated()

)

S3 method for class 'eventlog'

12 calculate_queuing_times

calculate_queuing_times(
log,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
eventlog = deprecated()

)

S3 method for class 'activitylog'
calculate_queuing_times(
log,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

units character (default "auto"): The time unit in which the throughput times should
be reported. Should be one of the following values: "auto" (default), "secs",
"mins", "hours", "days", "weeks". See also the units argument of difftime.

eventlog [Deprecated]; please use log instead.

Value

Returns a list of all the activity instances, with the time they started, and the time since they were
queued. Notice that this does not take into account any process model notion! The time since they
are queued is the completion time of the previous activity in the log.

Methods (by class)

• calculate_queuing_times(eventlog): Calculate queueing times for eventlog and grouped_eventlog.

• calculate_queuing_times(activitylog): Calculate queueing times for activitylog and
grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

difftime

change_day 13

change_day Adjust days in work schedule

Description

Adjust days in work schedule

Usage

change_day(work_schedule, day, start_time, end_time)

Arguments

work_schedule Work schedule created with create_work_schedule

day A numeric vector containing the days to be changed. 1 = monday.

start_time The new start time for selected days (hh:mm:ss)

end_time The new end time for selected days (hh:mm:ss)

create_work_schedule Create work schedule

Description

Create work schedule

Usage

create_work_schedule(start_time = "9:00:00", end_time = "17:00:00")

Arguments

start_time Character indicating the usual start time for workdays (hh:mm:ss)

end_time Character indicating the usual end time for workdays (hh:mm:ss)

14 end_activities

end_activities End activities

Description

Analyse the end activities in the process.

Usage

end_activities(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
end_activities(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
end_activities(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
end_activities(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

end_activities 15

S3 method for class 'grouped_activitylog'
end_activities(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "case", "activity", "resource", or "resource-activity". For more
information, see vignette("metrics", "edeaR") and ’Details’ below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• At log level, this metric shows the absolute and relative number of activities that are the last
activity in one or more of the cases.

• On case level, this metric provides an overview of the end activity of each case.

• On activity level, this metric calculates for each activity the absolute and relative number
of cases that end with this activity type. Similar to the start_activities metric, the relative
number is calculated as a portion of the number of cases, being the number of "opportunities"
that an activity could be the end activity. The cumulative sum is added to have an insight in
the number of activities that is required to cover a certain part of the total.

• At resource level, an overview of which resources execute the last activity per case is pro-
vided.

• On resource-activity level, this metric shows for each occurring resource-activity combi-
nation the absolute and relative number of times this resource executes this activity as an end
activity in a case.

16 filter_activity

Methods (by class)

• end_activities(eventlog): Computes the end activities for an eventlog.

• end_activities(grouped_eventlog): Computes the end activities for a grouped_eventlog.

• end_activities(activitylog): Computes the end activities for an activitylog.

• end_activities(grouped_activitylog): Computes the end activities for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

start_activities

Other metrics: activity_frequency(), activity_presence(), idle_time(), number_of_repetitions(),
number_of_selfloops(), number_of_traces(), processing_time(), resource_frequency(),
resource_involvement(), resource_specialisation(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

filter_activity Filter Activity

Description

Filters the log based on activities

Usage

filter_activity(log, activities, reverse = FALSE, eventlog = deprecated())

S3 method for class 'log'
filter_activity(log, activities, reverse = FALSE, eventlog = deprecated())

S3 method for class 'grouped_log'
filter_activity(log, activities, reverse = FALSE, eventlog = deprecated())

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

activities character vector: Containing one or more activity identifiers.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

filter_activity_frequency 17

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_activity(log): Filters activities for a log.

• filter_activity(grouped_log): Filters activities for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

vignette("filters", "edeaR")

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_case_condition(), filter_case(), filter_endpoints_condition(), filter_endpoints(),
filter_flow_time(), filter_idle_time(), filter_infrequent_flows(), filter_lifecycle_presence(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_activity_frequency

Filter Activity Frequency

Description

Filters the log based on frequency of activities.

Usage

filter_activity_frequency(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'log'
filter_activity_frequency(

18 filter_activity_frequency

log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_activity_frequency(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

percentage, interval

The target coverage of activity instances. Provide either percentage or interval.
percentage (numeric): A percentile of p will return the most common activity
types of the log, which account for at least p% of the activity instances.
interval (numeric vector of length 2): An activity frequency interval. Half
open interval can be created using NA.
For more information, see ’Details’ below.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Details

Filtering the log based on activity frequency can be done in two ways: using an interval of allowed
frequencies, or specify a coverage percentage:

• percentage: When filtering using a percentage p%, the filter will return p% of the activity
instances, starting from the activity labels with the highest frequency. The filter will retain
additional activity labels as long as the number of activity instances does not exceed the per-
centage threshold.

• interval: When filtering using an interval, activity labels will be retained when their absolute
frequency fall in this interval. The interval is specified using a numeric vector of length 2. Half
open intervals can be created by using NA, e.g., c(10, NA) will select activity labels which
occur 10 times or more.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

filter_activity_instance 19

Methods (by class)

• filter_activity_frequency(log): Filters activities for a log.

• filter_activity_frequency(grouped_log): Filters activities for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_instance(), filter_activity_presence(), filter_activity(),
filter_case_condition(), filter_case(), filter_endpoints_condition(), filter_endpoints(),
filter_flow_time(), filter_idle_time(), filter_infrequent_flows(), filter_lifecycle_presence(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_activity_instance

Filter Activity Instance

Description

Filters the log based on activity instance identifier. This method has an activity_instances
argument, to which a vector of identifiers can be given. The selection can be negated with the
reverse argument.

Usage

filter_activity_instance(
log,
activity_instances,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
filter_activity_instance(
log,
activity_instances,
reverse = FALSE,
eventlog = deprecated()

)

20 filter_activity_instance

S3 method for class 'grouped_eventlog'
filter_activity_instance(
log,
activity_instances,
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log eventlog: Object of class eventlog or derivatives (grouped_eventlog).

activity_instances

A vector of activity instance identifiers.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_activity_instance(eventlog): Filters activities for an eventlog.

• filter_activity_instance(grouped_eventlog): Filters activities for a grouped_eventlog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_presence(), filter_activity(),
filter_case_condition(), filter_case(), filter_endpoints_condition(), filter_endpoints(),
filter_flow_time(), filter_idle_time(), filter_infrequent_flows(), filter_lifecycle_presence(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_activity_presence 21

filter_activity_presence

Filter Activity Presence

Description

Filters cases based on the presence (or absence) of activities.

Usage

filter_activity_presence(
log,
activities = NULL,
method = c("all", "none", "one_of", "exact", "only"),
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'log'
filter_activity_presence(
log,
activities = NULL,
method = c("all", "none", "one_of", "exact", "only"),
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_activity_presence(
log,
activities = NULL,
method = c("all", "none", "one_of", "exact", "only"),
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

activities character vector: Containing one or more activity identifiers.

method character (default "all"): Filter method: "all" (default), "none", "one_of",
"exact", or "only". For more information, see Details below.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

22 filter_activity_presence

Details

This functions allows to filter cases that contain certain activities. It requires as input a vector
containing one or more activity labels and it has a method argument with following options:

• "all" means that all the specified activity labels must be present for a case to be selected.

• "none" means that they are not allowed to be present.

• "one_of" means that at least one of them must be present.

• "exact" means that only exactly these activities can be present (although multiple times and
in random orderings).

• "only" means that only (a set of) these activities are allowed to be present.

When only one activity label is supplied, note that methods "all" and "one_of" will be identical.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_activity_presence(log): Filters activities for a log.

• filter_activity_presence(grouped_log): Filters activities for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity(),
filter_case_condition(), filter_case(), filter_endpoints_condition(), filter_endpoints(),
filter_flow_time(), filter_idle_time(), filter_infrequent_flows(), filter_lifecycle_presence(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_case 23

filter_case Filter Case

Description

Filters the log based on case identifier. This method has a cases argument, to which a vector of
identifiers can be given. The selection can be negated with the reverse argument.

Usage

filter_case(log, cases, reverse = FALSE, eventlog = deprecated())

S3 method for class 'log'
filter_case(log, cases, reverse = FALSE, eventlog = deprecated())

S3 method for class 'grouped_log'
filter_case(log, cases, reverse = FALSE, eventlog = deprecated())

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

cases character vector: A vector of cases identifiers.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_case(log): Filters cases for a log.

• filter_case(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

24 filter_case_condition

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_endpoints_condition(), filter_endpoints(),
filter_flow_time(), filter_idle_time(), filter_infrequent_flows(), filter_lifecycle_presence(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_case_condition Filter Case Condition

Description

Filters cases using a condition. Only keeps cases if the condition is valid for at least one event.

Usage

filter_case_condition(
log,
...,
condition = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'log'
filter_case_condition(
log,
...,
condition = deprecated(),
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_case_condition(
log,
...,
condition = deprecated(),
reverse = FALSE,
eventlog = deprecated()

)

filter_case_condition 25

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

... data-masking: Expressions that return a logical value, and are defined in terms
of the variables in log. If multiple expressions are included, they are combined
with the & operator. Only rows for which all conditions evaluate to TRUE are
kept. For more information, see filter.

condition [Deprecated]; please use data-masking expressions instead.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_case_condition(log): Filters cases for a log.

• filter_case_condition(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

filter

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case(), filter_endpoints_condition(), filter_endpoints(),
filter_flow_time(), filter_idle_time(), filter_infrequent_flows(), filter_lifecycle_presence(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

26 filter_endpoints

filter_endpoints Filter Start and End Activities

Description

Filters the log based on a provided set of start and end activities

The filter_endpoints method filters cases based on the first and last activity label. It can be used
in two ways: by specifying vectors with allowed start activities and/or allowed end activities, or by
specifying a percentile. In the latter case, the percentile value will be used as a cut off. For example,
when set to 0.9, it will select the most common endpoint pairs which together cover at least 90%
of the cases, and filter the log accordingly.

Usage

filter_endpoints(
log,
start_activities = NULL,
end_activities = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'log'
filter_endpoints(
log,
start_activities = NULL,
end_activities = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_endpoints(
log,
start_activities = NULL,
end_activities = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

filter_endpoints_condition 27

start_activities, end_activities

character vector (default NULL): A vector of activity identifiers, or NULL.

percentage numeric (default NULL): A percentage p to be used as percentile cut off. When
this is used, the most common endpoint-pairs will be selected until at least the
p% of the cases are selected.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_endpoints(log): Filters cases for a log.

• filter_endpoints(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_flow_time(), filter_idle_time(), filter_infrequent_flows(), filter_lifecycle_presence(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_endpoints_condition

Filter Start and End Conditions

Description

Filters cases where the first and/or last activity adhere to the specified conditions.

28 filter_endpoints_condition

Usage

filter_endpoints_condition(
log,
start_condition = NULL,
end_condition = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
filter_endpoints_condition(
log,
start_condition = NULL,
end_condition = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_endpoints_condition(
log,
start_condition = NULL,
end_condition = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
filter_endpoints_condition(
log,
start_condition = NULL,
end_condition = NULL,
reverse = FALSE,
eventlog = deprecated()

)

filter_endpoints_conditions(
log,
start_condition = NULL,
end_condition = NULL,
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

filter_flow_time 29

start_condition, end_condition

A logical condition.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_endpoints_condition(eventlog): Filters cases for an eventlog.

• filter_endpoints_condition(grouped_log): Filters cases for a grouped_log.

• filter_endpoints_condition(activitylog): Filters cases for an activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints(), filter_flow_time(),
filter_idle_time(), filter_infrequent_flows(), filter_lifecycle_presence(), filter_lifecycle(),
filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_flow_time Filter directly follows with time interval

Description

Filter cases where the activity from is followed by activity to within a certain time interval.

Usage

filter_flow_time(
log,
from,
to,
interval,
reverse = FALSE,

30 filter_flow_time

units = c("secs", "mins", "hours", "days", "weeks")
)

S3 method for class 'log'
filter_flow_time(
log,
from,
to,
interval,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks")

)

S3 method for class 'grouped_log'
filter_flow_time(
log,
from,
to,
interval,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks")

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

from, to character vector of length 1: The antecendent and consequent to filter on. Both
are character vectors containing exactly one activity identifier.

interval numeric vector of length 2: A duration interval. Half open interval can be
created using NA.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

units character (default "secs"): The time unit in which the processing times should
be reported. Should be one of the following values: "secs" (default), "mins",
"hours", "days", "weeks". See also the units argument of difftime().

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_flow_time(log): Filters on flow time for a bupaR::log.

• filter_flow_time(grouped_log): Filters on flow time for a bupaR::grouped_log.

filter_idle_time 31

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

processing_time(),difftime()

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_idle_time(), filter_infrequent_flows(), filter_lifecycle_presence(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_idle_time Filter Idle Time

Description

Filters cases based on their idle_time.

This filter can be used by using an interval or by using a percentage. The percentage will
always start with the cases with the lowest idle time first and stop including cases when the specified
percentile is reached. On the other hand, an absolute interval can be defined instead to filter cases
which have an idle time in this interval. The time units in which this interval is defined can be
supplied with the units argument.

Usage

filter_idle_time(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks")

)

S3 method for class 'log'
filter_idle_time(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks")

)

32 filter_idle_time

S3 method for class 'grouped_log'
filter_idle_time(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks")

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

interval, percentage

Provide either interval or percentage.
interval (numeric vector of length 2): A duration interval. Half open interval
can be created using NA.
percentage (numeric): A percentage to be used for relative filtering.

reverse logical (default FALSE): Indicating whether the selection should be reversed.
units character (default "secs"): The time unit in which the processing times should

be reported. Should be one of the following values: "secs" (default), "mins",
"hours", "days", "weeks". See also the units argument of difftime().

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_idle_time(log): Filters cases for a log.
• filter_idle_time(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

idle_time(),difftime()

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_infrequent_flows(), filter_lifecycle_presence(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_infrequent_flows 33

filter_infrequent_flows

Filter Infrequent Flows

Description

[Experimental]
Filter cases based on infrequent flows.

Usage

filter_infrequent_flows(log, min_n = 2, eventlog = deprecated())

S3 method for class 'eventlog'
filter_infrequent_flows(log, min_n = 2, eventlog = deprecated())

S3 method for class 'grouped_eventlog'
filter_infrequent_flows(log, min_n = 2, eventlog = deprecated())

S3 method for class 'activitylog'
filter_infrequent_flows(log, min_n = 2, eventlog = deprecated())

S3 method for class 'grouped_activitylog'
filter_infrequent_flows(log, min_n = 2, eventlog = deprecated())

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

min_n numeric (default 2): Cases containing a flow that occurs less than min_n times
are discarded.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_infrequent_flows(eventlog): Filters infrequent flows for an eventlog.

• filter_infrequent_flows(grouped_eventlog): Filters infrequent flows for a grouped_eventlog.

• filter_infrequent_flows(activitylog): Filters infrequent flows for an activitylog.

• filter_infrequent_flows(grouped_activitylog): Filters infrequent flows for a grouped_activitylog.

34 filter_lifecycle

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_lifecycle_presence(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_lifecycle Filter Life Cycle

Description

Filters the log based on the life cycle identifier.

Usage

filter_lifecycle(
log,
lifecycles,
reverse = FALSE,
lifecycle = deprecated(),
eventlog = deprecated()

)

S3 method for class 'eventlog'
filter_lifecycle(
log,
lifecycles,
reverse = FALSE,
lifecycle = deprecated(),
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
filter_lifecycle(
log,
lifecycles,
reverse = FALSE,
lifecycle = deprecated(),
eventlog = deprecated()

)

filter_lifecycle_presence 35

Arguments

log eventlog: Object of class eventlog or derivatives (grouped_eventlog).

lifecycles character vector: A vector of life cycle identifiers.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

lifecycle [Deprecated]; please use lifecycles instead.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_lifecycle(eventlog): Filters based on life cycle identifiers for an eventlog.

• filter_lifecycle(grouped_eventlog): Filters based on life cycle identifiers a grouped_eventlog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

lifecycle_id

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_processing_time(), filter_resource_frequency(), filter_resource(),
filter_throughput_time(), filter_time_period(), filter_trace_frequency(), filter_trace_length(),
filter_trace(), filter_trim_lifecycle(), filter_trim()

filter_lifecycle_presence

Filter Life Cycle Presence

Description

Filters activity instances based on the presence (or absence) of life cycles.

36 filter_lifecycle_presence

Usage

filter_lifecycle_presence(
log,
lifecycles,
method = c("all", "none", "one_of", "exact", "only"),
reverse = FALSE,
lifecycle = deprecated(),
eventlog = deprecated()

)

S3 method for class 'eventlog'
filter_lifecycle_presence(
log,
lifecycles,
method = c("all", "none", "one_of", "exact", "only"),
reverse = FALSE,
lifecycle = deprecated(),
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
filter_lifecycle_presence(
log,
lifecycles,
method = c("all", "none", "one_of", "exact", "only"),
reverse = FALSE,
lifecycle = deprecated(),
eventlog = deprecated()

)

Arguments

log eventlog: Object of class eventlog or derivatives (grouped_eventlog).
lifecycles character vector: A vector of life cycle identifiers.
method character (default "all"): Filter method: "all" (default), "none", "one_of",

"exact", or "only". For more information, see Details below.
reverse logical (default FALSE): Indicating whether the selection should be reversed.
lifecycle [Deprecated]; please use lifecycles instead.
eventlog [Deprecated]; please use log instead.

Details

This function allows to filter activity instances that (do not) contain certain life cycle identifiers. It
requires as input a vector containing one or more life cycle labels and it has a method argument
with following options:

• "all" means that all the specified life cycle labels must be present for an activity instance to
be selected.

filter_precedence 37

• "none" means that they are not allowed to be present.

• "one_of" means that at least one of them must be present.

• "exact" means that only exactly these life cycle labels can be present (although multiple
times and in random orderings).

• "only" means that only (a set of) these life cycle labels are allowed to be present.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_lifecycle_presence(eventlog): Filters activity instances on the presence of life
cycle labels for an eventlog.

• filter_lifecycle_presence(grouped_eventlog): Filters activity instances on the pres-
ence of life cycle labels for a grouped_eventlog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

lifecycle_id

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_precedence Filter Precedence Relations

Description

Filters cases based on the precedence relations between two sets of activities.

38 filter_precedence

Usage

filter_precedence(
log,
antecedents,
consequents,
precedence_type = c("directly_follows", "eventually_follows"),
filter_method = c("all", "one_of", "none"),
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'log'
filter_precedence(
log,
antecedents,
consequents,
precedence_type = c("directly_follows", "eventually_follows"),
filter_method = c("all", "one_of", "none"),
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_precedence(
log,
antecedents,
consequents,
precedence_type = c("directly_follows", "eventually_follows"),
filter_method = c("all", "one_of", "none"),
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

antecedents, consequents

character vector: The set of antecendent and consequent activities. Both are
character vectors containing at least one activity identifier. All pairs of an-
tecedents and consequents are turned into seperate precedence rules.

precedence_type

character (default "directly_follows"): When "directly_follows", the
consequent activity should happen immediately after the antecedent activities.
When "eventually_follows", other events are allowed to happen in between.

filter_method character (default "all"): When "all", only cases where all the relations are
valid are preserved.
When "one_of", all the cases where at least one of the conditions hold, are

filter_precedence 39

preserved.
When "none", none of the relations are allowed.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Details

In order to extract a subset of an event log which conforms with a set of precedence rules, one
can use the filter_precedence method. There are two types of precendence relations which can
be tested: activities that should directly follow ("directly_follows") each other, or activities
that should eventually follow ("eventually_follows") each other. The type can be set with the
precedence_type argument.

Further, the filter requires a vector of one or more antecedents (containing activity labels), and
one or more consequents.

Finally, a filter_method argument can be set. This argument is relevant when there is more
than one antecedent or consequent. In such a case, you can specify that all possible precedence
combinations must be present ("all"), at least one of them ("one_of"), or none ("none").

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_precedence(log): Filters cases for a log.

• filter_precedence(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

40 filter_precedence_condition

Examples

eventdataR::patients %>%
filter_precedence(antecedents = "Triage and Assessment",

consequents = "Blood test",
precedence_type = "directly_follows") %>%

bupaR::traces()

eventdataR::patients %>%
filter_precedence(antecedents = "Triage and Assessment",

consequents = c("Blood test", "X-Ray", "MRI SCAN"),
precedence_type = "eventually_follows",
filter_method = "one_of") %>%

bupaR::traces()

filter_precedence_condition

Filter Precedence Relations

Description

Filters cases based on the precedence relations between two sets of activities. For more information,
see filter_precedence.

Usage

filter_precedence_condition(
log,
antecedent_condition,
consequent_condition,
precedence_type = c("directly_follows", "eventually_follows"),
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'log'
filter_precedence_condition(
log,
antecedent_condition,
consequent_condition,
precedence_type = c("directly_follows", "eventually_follows"),
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_precedence_condition(

filter_precedence_condition 41

log,
antecedent_condition,
consequent_condition,
precedence_type = c("directly_follows", "eventually_follows"),
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

antecedent_condition, consequent_condition

The antecendent and consequent conditions.
precedence_type

character (default "directly_follows"): When "directly_follows", the
consequent activity should happen immediately after the antecedent activities.
When "eventually_follows", other events are allowed to happen in between.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_precedence_condition(log): Filters cases for a log.

• filter_precedence_condition(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_resource(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

42 filter_precedence_resource

filter_precedence_resource

Filter Precedence Relations with Identical Resources

Description

Filters cases based on the precedence relations between two sets of activities, where both antecen-
dent and consequent have to be executed by the same resource.

Usage

filter_precedence_resource(
log,
antecedents,
consequents,
precedence_type = c("directly_follows", "eventually_follows"),
filter_method = c("all", "one_of", "none"),
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
filter_precedence_resource(
log,
antecedents,
consequents,
precedence_type = c("directly_follows", "eventually_follows"),
filter_method = c("all", "one_of", "none"),
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
filter_precedence_resource(
log,
antecedents,
consequents,
precedence_type = c("directly_follows", "eventually_follows"),
filter_method = c("all", "one_of", "none"),
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_precedence_resource(
log,
antecedents,

filter_precedence_resource 43

consequents,
precedence_type = c("directly_follows", "eventually_follows"),
filter_method = c("all", "one_of", "none"),
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

antecedents, consequents

character vector: The set of antecendent and consequent activities. Both are
character vectors containing at least one activity identifier. All pairs of an-
tecedents and consequents are turned into seperate precedence rules.

precedence_type

character (default "directly_follows"): When "directly_follows", the
consequent activity should happen immediately after the antecedent activities.
When "eventually_follows", other events are allowed to happen in between.

filter_method character (default "all"): When "all", only cases where all the relations are
valid are preserved.
When "one_of", all the cases where at least one of the conditions hold, are
preserved.
When "none", none of the relations are allowed.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_precedence_resource(eventlog): Filters cases for an eventlog.

• filter_precedence_resource(activitylog): Filters cases for an activitylog.

• filter_precedence_resource(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

44 filter_processing_time

See Also

filter_precedence()

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence(),
filter_processing_time(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_processing_time

Filter Processing Time

Description

Filters cases based on their processing_time.

This filter can be used by using an interval or by using a percentage. The percentage will always
start with the shortest cases first and stop including cases when the specified percentile is reached.
On the other hand, an absolute interval can be defined instead to filter cases which have a processing
time in this interval. The time units in which this interval is defined can be supplied with the units
argument.

Usage

filter_processing_time(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks"),
eventlog = deprecated()

)

S3 method for class 'log'
filter_processing_time(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks"),
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_processing_time(

filter_processing_time 45

log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks"),
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

interval, percentage

Provide either interval or percentage.
interval (numeric vector of length 2): A duration interval. Half open interval
can be created using NA.
percentage (numeric): A percentage to be used for relative filtering.

reverse logical (default FALSE): Indicating whether the selection should be reversed.
units character (default "secs"): The time unit in which the processing times should

be reported. Should be one of the following values: "secs" (default), "mins",
"hours", "days", "weeks". See also the units argument of difftime().

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_processing_time(log): Filters cases for a log.
• filter_processing_time(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

processing_time(),difftime()

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_resource_frequency(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

46 filter_resource

filter_resource Filter Resource

Description

Filters the log based on resource identifiers

This method can be used to filter on resource identifiers. It has a resources argument, to which a
vector of identifiers can be given. The selection can be negated with the reverse argument.

Usage

filter_resource(log, resources, reverse = FALSE, eventlog = deprecated())

S3 method for class 'log'
filter_resource(log, resources, reverse = FALSE, eventlog = deprecated())

S3 method for class 'grouped_log'
filter_resource(log, resources, reverse = FALSE, eventlog = deprecated())

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

resources character vector: A vector of resources identifiers.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_resource(log): Filters resources for a log.

• filter_resource(grouped_log): Filters resources for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

filter_resource_frequency 47

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_processing_time(), filter_resource_frequency(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_resource_frequency

Filter Resource Frequency

Description

Filters the log based on frequency of resources

Usage

filter_resource_frequency(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'log'
filter_resource_frequency(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_resource_frequency(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

48 filter_resource_frequency

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

percentage, interval

The target coverage of activity instances. Provide either percentage or interval.
percentage (numeric): A percentile of p will return the most common resource
types of the log, which account for at least p% of the activity instances.
interval (numeric vector of length 2): A resource frequency interval. Half
open interval can be created using NA.
For more information, see ’Details’ below.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Details

Filtering the log based on resource frequency can be done in two ways: using an interval of
allowed frequencies, or specify a coverage percentage:

• percentage: When filtering using a percentage p%, the filter will return p% of the activity
instances, starting from the resource labels with the highest frequency. The filter will retain
additional resource labels as long as the number of activity instances does not exceed the
percentage threshold.

• interval: When filtering using an interval, resource labels will be retained when their abso-
lute frequency fall in this interval. The interval is specified using a numeric vector of length
2. Half open intervals can be created by using NA, e.g., c(10, NA) will select resource labels
which occur 10 times or more.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_resource_frequency(log): Filters resources for a log.

• filter_resource_frequency(grouped_log): Filters resources for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),

filter_throughput_time 49

filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_processing_time(), filter_resource(), filter_throughput_time(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_throughput_time

Filter Throughput Time

Description

Filters cases based on their throughput_time.

This filter can be used by using an interval or by using a percentage. The percentage will always
start with the shortest cases first and stop including cases when the specified percentile is reached.
On the other hand, an absolute interval can be defined instead to filter cases which have a throughput
time in this interval. The time units in which this interval is defined can be supplied with the units
argument.

Usage

filter_throughput_time(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks"),
eventlog = deprecated()

)

S3 method for class 'log'
filter_throughput_time(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks"),
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_throughput_time(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("secs", "mins", "hours", "days", "weeks"),
eventlog = deprecated()

)

50 filter_throughput_time

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

interval, percentage

Provide either interval or percentage.
interval (numeric vector of length 2): A duration interval. Half open interval
can be created using NA.
percentage (numeric): A percentage to be used for relative filtering.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

units character (default "secs"): The time unit in which the processing times should
be reported. Should be one of the following values: "secs" (default), "mins",
"hours", "days", "weeks". See also the units argument of difftime().

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_throughput_time(log): Filters cases for a log.

• filter_throughput_time(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

throughput_time(),difftime()

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_processing_time(), filter_resource_frequency(), filter_resource(),
filter_time_period(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_time_period 51

filter_time_period Filter Time Period

Description

Function to filter the log using a time period.

Usage

filter_time_period(
log,
interval = NULL,
filter_method = c("contained", "intersecting", "start", "complete", "trim"),
force_trim = FALSE,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
filter_time_period(
log,
interval = NULL,
filter_method = c("contained", "intersecting", "start", "complete", "trim"),
force_trim = FALSE,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
filter_time_period(
log,
interval = NULL,
filter_method = c("contained", "intersecting", "start", "complete", "trim"),
force_trim = FALSE,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
filter_time_period(
log,
interval = NULL,
filter_method = c("contained", "intersecting", "start", "complete", "trim"),
force_trim = FALSE,
reverse = FALSE,
eventlog = deprecated()

)

52 filter_time_period

S3 method for class 'grouped_activitylog'
filter_time_period(
log,
interval = NULL,
filter_method = c("contained", "intersecting", "start", "complete", "trim"),
force_trim = FALSE,
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

interval Date or POSIXct vector: A time interval (vector of length 2 of type Date or
POSIXct). Half-open intervals can be created with NA.

filter_method character (default "contained"): Filtering method: "contained" (default),
"intersecting", "start", "complete", or "trim". For more information, see
’Details’ below.

force_trim logical (default FALSE): If TRUE in combination with filter_method "trim",
activity instances on the edges of the interval are cut at the exact edge of the
interval.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Details

Event data can be filtered by supplying a time window to the method filter_time_period. There
are 5 different values for filter_method:

• "contained": Keeps all the events related to cases contained in the time period.

• "intersecting": Keeps all the events related to cases in which at least one event started
and/or ended in the time period.

• "start": Keeps all the events related to cases started in the time period.

• "complete": Keeps all the events related to cases complete in the time period.

• "trim": Keeps all the events which started and ended in the time frame.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

filter_trace 53

Methods (by class)

• filter_time_period(eventlog): Filters activity instances for an eventlog.

• filter_time_period(grouped_eventlog): Filters activity instances for a grouped_eventlog.

• filter_time_period(activitylog): Filters activity instances for an activitylog.

• filter_time_period(grouped_activitylog): Filters activity instances for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_processing_time(), filter_resource_frequency(), filter_resource(),
filter_throughput_time(), filter_trace_frequency(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_trace Filter Trace

Description

Filters the log based on trace identifier.

This method can be used to filter on trace identifier, which can be obtained from case_list. It has
a trace_ids argument, to which a vector of identifiers can be given. The selection can be negated
with the reverse argument.

Usage

filter_trace(log, trace_ids, reverse = FALSE, eventlog = deprecated())

S3 method for class 'log'
filter_trace(log, trace_ids, reverse = FALSE, eventlog = deprecated())

S3 method for class 'grouped_log'
filter_trace(log, trace_ids, reverse = FALSE, eventlog = deprecated())

54 filter_trace_frequency

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

trace_ids character vector: A vector of trace identifiers

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_trace(log): Filters cases for a log.

• filter_trace(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

case_list

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_processing_time(), filter_resource_frequency(), filter_resource(),
filter_throughput_time(), filter_time_period(), filter_trace_frequency(), filter_trace_length(),
filter_trim_lifecycle(), filter_trim()

filter_trace_frequency

Filter Trace Frequency

Description

Filters the log based the frequency of traces, using an interval or a percentile cut off.

filter_trace_frequency 55

Usage

filter_trace_frequency(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'log'
filter_trace_frequency(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_trace_frequency(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

percentage, interval

The target coverage of activity instances. Provide either percentage or interval.
percentage (numeric): A percentile of p will select the most common traces
of the log, until at least p% of the cases is covered.
interval (numeric vector of length 2): A trace frequency interval. The filter
will select cases of which the trace has a frequency inside the interval. Half open
interval can be created using NA.
For more information, see ’Details’ below.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Details

Filtering the log based on trace frequency can be done in two ways: using an interval of allowed
frequencies, or specify a coverage percentage:

56 filter_trace_length

• percentage: When filtering using a percentage p%, the filter will return p% of the cases,
starting from the traces with the highest frequency. The filter will retain additional traces as
long as the number of activity instances does not exceed the percentage threshold.

• interval: When filtering using an interval, traces will be retained when their absolute fre-
quency fall in this interval. The interval is specified using a numeric vector of length 2. Half
open intervals can be created by using NA, e.g., c(10, NA) will select cases with a trace that
occurs 10 times or more.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_trace_frequency(log): Filters cases for a log.

• filter_trace_frequency(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_processing_time(), filter_resource_frequency(), filter_resource(),
filter_throughput_time(), filter_time_period(), filter_trace_length(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_trace_length Filter Trace Length

Description

Filters cases on trace_length, using a percentile threshold or interval.

This filter can be used by using an interval or by using a percentage. The percentage will always
start with the shortest cases first and stop including cases when the specified percentile is reached.
On the other hand, an absolute interval can be defined instead to filter cases which have a length in
this interval.

filter_trace_length 57

Usage

filter_trace_length(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'log'
filter_trace_length(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
filter_trace_length(
log,
interval = NULL,
percentage = NULL,
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

interval, percentage

Provide either interval or percentage.
interval (numeric vector of length 2): A trace length interval. Half open
interval can be created using NA.
percentage (numeric): A percentage p to be used for relative filtering.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_trace_length(log): Filters cases for a log.

58 filter_trim

• filter_trace_length(grouped_log): Filters cases for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

trace_length

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_processing_time(), filter_resource_frequency(), filter_resource(),
filter_throughput_time(), filter_time_period(), filter_trace_frequency(), filter_trace(),
filter_trim_lifecycle(), filter_trim()

filter_trim Trim Cases

Description

Trim cases from the first event of a set of start activities to the last event of a set of end activities.

One can trim cases by removing one or more activity instances at the start and/or end of a case.
Trimming is performed until all cases have a start and/or end point belonging to a set of allowed
activity labels. This filter requires a set of allowed start activities and/or a set of allowed end
activities. If one of them is not provided it will not trim the cases at this edge. The selection can be
reversed, which means that only the trimmed events at the start and end of cases are retained. As
such, this argument allows to cut intermediate parts out of traces.

Usage

filter_trim(
log,
start_activities = NULL,
end_activities = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
filter_trim(
log,
start_activities = NULL,
end_activities = NULL,
reverse = FALSE,

filter_trim 59

eventlog = deprecated()
)

S3 method for class 'grouped_eventlog'
filter_trim(
log,
start_activities = NULL,
end_activities = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
filter_trim(
log,
start_activities = NULL,
end_activities = NULL,
reverse = FALSE,
eventlog = deprecated()

)

S3 method for class 'grouped_activitylog'
filter_trim(
log,
start_activities = NULL,
end_activities = NULL,
reverse = FALSE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

start_activities, end_activities

character vector (default NULL): A vector of activity identifiers, or NULL.

reverse logical (default FALSE): Indicating whether the selection should be reversed.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_trim(eventlog): Filters activity instances for an eventlog.

60 filter_trim_lifecycle

• filter_trim(grouped_eventlog): Filters activity instances for a grouped_eventlog.

• filter_trim(activitylog): Filters activity instances for an activitylog.

• filter_trim(grouped_activitylog): Filters activity instances for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_processing_time(), filter_resource_frequency(), filter_resource(),
filter_throughput_time(), filter_time_period(), filter_trace_frequency(), filter_trace_length(),
filter_trace(), filter_trim_lifecycle()

filter_trim_lifecycle Filter Trim Life Cycle

Description

Trim activity instances from the first event of a set of start life cycle labels to the last event of a set
of end life cycle labels.

One can trim activity instances by removing one or more events at the start and/or end of the activity
instances. Trimming is performed until all activity instances have a start and/or end point belonging
to a set of allowed life cycle labels. This filter requires a set of allowed start life cycle labels and/or
a set of allowed life cycle labels. If one of them is not provided it will not trim the activity instances
at this edge.The selection can be reversed, which means that only the trimmed events at the start
and end of activity instances are retained. As such, this argument allows to cut intermediate parts
out of activity instances.

Usage

filter_trim_lifecycle(
log,
start_lifecycles = NULL,
end_lifecycles = NULL,
reverse = FALSE,
start_lifecycle = deprecated(),
end_lifecycle = deprecated(),
eventlog = deprecated()

)

filter_trim_lifecycle 61

S3 method for class 'eventlog'
filter_trim_lifecycle(
log,
start_lifecycles = NULL,
end_lifecycles = NULL,
reverse = FALSE,
start_lifecycle = deprecated(),
end_lifecycle = deprecated(),
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
filter_trim_lifecycle(
log,
start_lifecycles = NULL,
end_lifecycles = NULL,
reverse = FALSE,
start_lifecycle = deprecated(),
end_lifecycle = deprecated(),
eventlog = deprecated()

)

Arguments

log eventlog: Object of class eventlog or derivatives (grouped_eventlog).
start_lifecycles, end_lifecycles

character vector (default NULL): A vector of life cycle identifiers, or NULL.

reverse logical (default FALSE): Indicating whether the selection should be reversed.
start_lifecycle

[Deprecated]; please use start_lifecycles instead.

end_lifecycle [Deprecated]; please use end_lifecycles instead.

eventlog [Deprecated]; please use log instead.

Value

When given an object of type log, it will return a filtered log. When given an object of type
grouped_log, the filter will be applied in a stratified way (i.e. each separately for each group). The
returned log will be grouped on the same variables as the original log.

Methods (by class)

• filter_trim_lifecycle(eventlog): Filters activity instances for an eventlog.

• filter_trim_lifecycle(grouped_eventlog): Filters activity instances for a grouped_eventlog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

62 idle_time

See Also

lifecycle_id

Other filters: filter_activity_frequency(), filter_activity_instance(), filter_activity_presence(),
filter_activity(), filter_case_condition(), filter_case(), filter_endpoints_condition(),
filter_endpoints(), filter_flow_time(), filter_idle_time(), filter_infrequent_flows(),
filter_lifecycle_presence(), filter_lifecycle(), filter_precedence_condition(), filter_precedence_resource(),
filter_precedence(), filter_processing_time(), filter_resource_frequency(), filter_resource(),
filter_throughput_time(), filter_time_period(), filter_trace_frequency(), filter_trace_length(),
filter_trace(), filter_trim()

idle_time Idle Time

Description

Calculates the amount of time that no activity occurs.

Usage

idle_time(
log,
level = c("log", "trace", "case", "resource"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
idle_time(
log,
level = c("log", "trace", "case", "resource"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
idle_time(
log,
level = c("log", "case", "trace", "resource"),
append = deprecated(),
append_column = NULL,

idle_time 63

units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
idle_time(
log,
level = c("log", "trace", "case", "resource"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_activitylog'
idle_time(
log,
level = c("log", "trace", "case", "resource"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "trace", "case", or "resource". For more information, see vignette("metrics",
"edeaR") and Details below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

units character (default "auto"): The time unit in which the throughput times should
be reported. Should be one of the following values: "auto" (default), "secs",
"mins", "hours", "days", "weeks". See also the units argument of difftime().

sort logical (default TRUE): Sort by decreasing idle time. Only relevant for "trace"
and "resource" level.

eventlog [Deprecated]; please use log instead.

64 number_of_repetitions

Details

Argument level has the following options:

• At "log" level, the idle time metric provides an overview of summary statistics of the idle
time per case, aggregated over the complete log.

• On "trace" level, the idle time metric provides an overview of the summary statistics of the
idle time for each trace in the log.

• On "case" level, the idle time metric provides an overview of the total idle time per case

• On "resource" level, this metric can be used to get an insight in the amount of time each
resource "wastes" during the process.

Methods (by class)

• idle_time(eventlog): Computes the idle time for an eventlog.

• idle_time(grouped_eventlog): Computes the idle time for a grouped_eventlog.

• idle_time(activitylog): Computes the idle time for an activitylog.

• idle_time(grouped_activitylog): Computes the idle time for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

throughput_time(),processing_time(),difftime()

Other metrics: activity_frequency(), activity_presence(), end_activities(), number_of_repetitions(),
number_of_selfloops(), number_of_traces(), processing_time(), resource_frequency(),
resource_involvement(), resource_specialisation(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

number_of_repetitions Number of Repetitions

Description

Provides information statistics on the number of repetitions

A repetition is an execution of an activity within a case while that activity has already been executed
before, but one or more other activities are executed in between.

number_of_repetitions 65

Usage

number_of_repetitions(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
number_of_repetitions(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
number_of_repetitions(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
number_of_repetitions(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_activitylog'
number_of_repetitions(
log,
type = c("all", "repeat", "redo"),

66 number_of_repetitions

level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

type character (default "all"): The type of repetitions: "all" (default), "repeat",
or "redo". For more information, see ’Details’ below.

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "case", "activity", "resource", or "resource-activity". For more
information, see vignette("metrics", "edeaR") and ’Details’ below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• At "log" level, this metric shows the summary statistics of the number of repetitions within a
case, which can provide insights in the amount of waste in a log. Each combination of two or
more occurrences of the same activity, executed not immediately following each other, by the
same resource is counted as one repeat repetition of this activity.

• On "case" level, this metric provides the absolute and relative number of repetitions in each
case.

• On "activity" level, this metric shows which activities occur the most in a repetition. The
absolute and relative number of both repeat and redo repetitions is provided by this metric,
giving an overview per activity.

• On "resource" level, it can be interesting to have an overview of which resources need more
than one time to execute an activity in a case or which resources need to have an activity
redone later on in the case by another resource. This metric provides the absolute and relative
number of times each resource appears in a repetition.

number_of_selfloops 67

• On "resource-activity" level, this metric provides specific information about which ac-
tivities and which resources are involved in the repetitions. For this metric the absolute and
relative number of repeat and redo repetitions is provided. Again, two difierent relative num-
bers are provided, one relative to the total number of executions of the activity in the complete
log, and one relative to the total number of executions performed by the resource throughout
the complete log.

Similar to the self-loop metric, a distinction should be made between "repeat" and "redo" repeti-
tions, as can be set by the type argument:

• "repeat" repetitions are activity executions of the same activity type that are executed not
immediately following each other, but by the same resource.

• "redo" repetitions are activity executions of the same activity type that are executed not im-
mediately following each other and by a different resource than the first activity occurrence of
this activity type.

Methods (by class)

• number_of_repetitions(eventlog): Computes the number of repetitions for an eventlog.
• number_of_repetitions(grouped_eventlog): Computes the number of repetitions for a
grouped_eventlog.

• number_of_repetitions(activitylog): Computes the number of repetitions for an activitylog.
• number_of_repetitions(grouped_activitylog): Computes the number of repetitions for

a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

number_of_selfloops

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_selfloops(), number_of_traces(), processing_time(), resource_frequency(),
resource_involvement(), resource_specialisation(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

number_of_selfloops Number of Self-loops

Description

Provides information statistics on the number of self-loops in a trace.

Activity instances of the same activity type that are executed more than once immediately after each
other by the same resource are in a self-loop ("length-1-loop"). If an activity instance of the same
activity type is executed 3 times after each other by the same resource, this is defined as a "size 2
self-loop".

68 number_of_selfloops

Usage

number_of_selfloops(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
number_of_selfloops(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
number_of_selfloops(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
number_of_selfloops(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_activitylog'
number_of_selfloops(
log,
type = c("all", "repeat", "redo"),

number_of_selfloops 69

level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

type character (default "all"): The type of repetitions: "all" (default), "repeat",
or "redo". For more information, see ’Details’ below.

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "case", "activity", "resource", or "resource-activity". For more
information, see vignette("metrics", "edeaR") and ’Details’ below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

eventlog [Deprecated]; please use log instead.

Details

Two types of self-loops are defined, which can be chosen using the type argument:

• "repeat" self-loops are activity executions of the same activity type that are executed imme-
diately following each other by the same resource.

• "redo" self-loops are activity executions of the same activity type that are executed immedi-
ately following each other by a different resource.

Argument level has the following options:

• At "log" level, the summary statistics of the number of self-loops within a trace can give
a first insight in the amount of waste in a log. As stated earlier, each combination of two
occurrences of the same activity executed by the same resource will be counted as one repeat
self-loop of this activity.

• On "case" level, an overview is provided of the absolute and relative number of repeat and
redo self-loops in each case. To calculate the relative number, each (repeat or redo) self-loop
is counted as 1 occurrence, and the other activity instances are also counted as 1.

• On "activity" level, the absolute and relative number of self-loops per activity can be an
indication for which activities are causing the most waste in the process.

70 number_of_traces

• On "resource" level, this metric can give insights into which resources needs to repeat their
work most often within a case, or for which resource the work they did should be redone by
another resource within the same case. This metric shows the absolute and relative number of
both repeat and redo self-loops for each resource in the log.

• On "resource-activity" level, this metric can be used to get an insight in which activities
are the most crucial for which resources. This metric shows the absolute and relative number
of both repeat and redo self-loops for each of the resource-activity combinations that occur in
the log. Two different relative numbers are provided here, one from the resource perspective
and one from the activity perspective. At the resource perspective, the denominator is the total
number of executions by the resource under consideration. At the activity perspective, the
denominator is the total number of occurrences of the activity under consideration.

Methods (by class)

• number_of_selfloops(eventlog): Computes the number of self-loops for an eventlog.

• number_of_selfloops(grouped_eventlog): Computes the number of self-loops for a grouped_eventlog.

• number_of_selfloops(activitylog): Computes the number of self-loops for an activitylog.

• number_of_selfloops(grouped_activitylog): Computes the number of self-loops for a
grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

number_of_repetitions

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_repetitions(), number_of_traces(), processing_time(), resource_frequency(),
resource_involvement(), resource_specialisation(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

number_of_traces Number of Traces

Description

Computes how many traces there are.

This metric provides two values, the absolute and relative number of traces that occur in the log.
The relative number shows expected number of traces needed to cover 100 cases.

plot 71

Usage

number_of_traces(log, eventlog = deprecated())

S3 method for class 'log'
number_of_traces(log, eventlog = deprecated())

S3 method for class 'grouped_log'
number_of_traces(log, eventlog = deprecated())

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

eventlog [Deprecated]; please use log instead.

Methods (by class)

• number_of_traces(log): Number of traces in a log.

• number_of_traces(grouped_log): Number of traces in a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

traces

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_repetitions(), number_of_selfloops(), processing_time(), resource_frequency(),
resource_involvement(), resource_specialisation(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

plot Plot Methods

Description

Visualize metric

72 plot

Usage

S3 method for class 'activity_frequency'
plot(x, ...)

S3 method for class 'activity_presence'
plot(x, ...)

S3 method for class 'end_activities'
plot(x, ...)

S3 method for class 'idle_time'
plot(x, ...)

S3 method for class 'processing_time'
plot(x, ...)

S3 method for class 'referral_matrix'
plot(x, ...)

S3 method for class 'resource_frequency'
plot(x, ...)

S3 method for class 'resource_involvement'
plot(x, ...)

S3 method for class 'resource_specialisation'
plot(x, ...)

S3 method for class 'start_activities'
plot(x, ...)

S3 method for class 'throughput_time'
plot(x, ...)

S3 method for class 'trace_coverage'
plot(x, ...)

S3 method for class 'trace_length'
plot(x, ...)

S3 method for class 'number_of_selfloops'
plot(x, ...)

S3 method for class 'number_of_repetitions'
plot(x, ...)

print.work_schedule 73

Arguments

x Data to plot

... Additional variables

Value

A ggplot object, which can be customized further, if deemed necessary.

print.work_schedule Print work schedule

Description

Print work schedule

Usage

S3 method for class 'work_schedule'
print(x, ...)

Arguments

x Work schedule to print

... Additional arguments (ignored)

processing_time Processing Time

Description

Provides summary statistics about the processing time of the process.

In contrast to the throughput_time() of the cases in a log, the metrics concerning the active time or
the actual processing time provide summary statistics on the processing time of events on the level
of the complete log, the specific cases, traces, the activities, and the resource-activity combinations.

74 processing_time

Usage

processing_time(
log,
level = c("log", "trace", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
work_schedule = NULL,
eventlog = deprecated()

)

S3 method for class 'eventlog'
processing_time(
log,
level = c("log", "trace", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
work_schedule = NULL,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
processing_time(
log,
level = c("log", "trace", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
work_schedule = NULL,
eventlog = deprecated()

)

S3 method for class 'activitylog'
processing_time(
log,
level = c("log", "trace", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
work_schedule = NULL,
eventlog = deprecated()

)

processing_time 75

S3 method for class 'grouped_activitylog'
processing_time(
log,
level = c("log", "trace", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
work_schedule = NULL,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "trace", "case", "activity", "resource", or "resource-activity".
For more information, see vignette("metrics", "edeaR") and Details below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

units character (default "auto"): The time unit in which the processing times should
be reported. Should be one of the following values: "auto" (default), "secs",
"mins", "hours", "days", "weeks". See also the units argument of difftime().

sort logical (default TRUE): Sort on decreasing processing time. For "case" level
only.

work_schedule A schedule of working hours. If provided, only working hours are counted as
processing time.

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• At "log" level, this metric calculates the summary statistics of the actual processing time per
case, summarised over the complete event log.

• On "trace" level, the summary statistics of processing time can be calculated for each possi-
ble sequence of activities that appears in the event log.

• On "case" level, a list of cases with their processing time are provided.

• On "activity" level, an overview of the average processing time -or the service time- of each
activity can be calculated.

76 redo_repetitions_referral_matrix

• At "resource" level, this metric calculates the processing time per resource.

• On "resource-activity" level, the efficiency of resources by looking at the combination of
each resource with each activity can be investigated.

Methods (by class)

• processing_time(eventlog): Computes processing time for an eventlog.

• processing_time(grouped_eventlog): Computes processing time for a grouped_eventlog.

• processing_time(activitylog): Computes processing time for an activitylog.

• processing_time(grouped_activitylog): Computes processing time for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

idle_time(),throughput_time(),difftime()

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_repetitions(), number_of_selfloops(), number_of_traces(), resource_frequency(),
resource_involvement(), resource_specialisation(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

redo_repetitions_referral_matrix

Referral matrix repetitons

Description

Provides a list of initatiors and completers of redo repetitons

Usage

redo_repetitions_referral_matrix(log, eventlog = deprecated())

S3 method for class 'eventlog'
redo_repetitions_referral_matrix(log, eventlog = deprecated())

S3 method for class 'activitylog'
redo_repetitions_referral_matrix(log, eventlog = deprecated())

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

eventlog [Deprecated]; please use log instead.

redo_selfloops_referral_matrix 77

Methods (by class)

• redo_repetitions_referral_matrix(eventlog): Compute matrix for eventlog

• redo_repetitions_referral_matrix(activitylog): Compute matrix for activitylog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

number_of_repetitions

redo_selfloops_referral_matrix

Referral matrix selfloops

Description

Provides a list of initatiors and completers of redo selfloops

Usage

redo_selfloops_referral_matrix(log, eventlog = deprecated())

S3 method for class 'eventlog'
redo_selfloops_referral_matrix(log, eventlog = deprecated())

S3 method for class 'activitylog'
redo_selfloops_referral_matrix(log, eventlog = deprecated())

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

eventlog [Deprecated]; please use log instead.

Methods (by class)

• redo_selfloops_referral_matrix(eventlog): Compute matrix for eventlog

• redo_selfloops_referral_matrix(activitylog): Compute matrix for activitylog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

78 resource_frequency

See Also

number_of_selfloops

resource_frequency Resource Frequency

Description

Analyses the frequency of resources at different levels of analysis.

Usage

resource_frequency(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
resource_frequency(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
resource_frequency(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
resource_frequency(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),

resource_frequency 79

append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_activitylog'
resource_frequency(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "case", "activity", "resource", or "resource-activity". For more
information, see vignette("metrics", "edeaR") and ’Details’ below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• At "log" level, summary statistics show the number of times a resource executes an activity
in the complete log.

• On "case" level, summary statistics of the frequency of resources can be used to get a better
view on the variance between the different cases, to get an insight into the number of different
resources working on each case together with the number of activities a resource executes per
case.

• On "activity" level, the resource frequency states how many different resources are execut-
ing a specific activity in the complete log.

80 resource_involvement

• On "resource" level, this metric simply shows the absolute and relative frequency of occur-
rences of each resource in the complete log.

• On "resource-activity" level, the absolute and relative number of times each resource-
activity combination occurs in the complete log can be calculated. Two different relative
numbers are provided here, one from the resource perspective and one from the activity per-
spective. At the resource perspective, the denominator is the total number of executions by the
resource under consideration. At the activity perspective, the denominator is the total number
of occurrences of the activity under consideration.

Methods (by class)

• resource_frequency(eventlog): Computes the resource frequency for an eventlog.

• resource_frequency(grouped_eventlog): Computes the resource frequency for a grouped_eventlog.

• resource_frequency(activitylog): Computes the resource frequency for an activitylog.

• resource_frequency(grouped_activitylog): Computes the resource frequency for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

resource_involvement

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_repetitions(), number_of_selfloops(), number_of_traces(), processing_time(),
resource_involvement(), resource_specialisation(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

resource_involvement Resource Involvement

Description

Calculates for each resource or resource-activity combination in what percentage of cases it is
present.

Next to the resource_frequency, the involvement of resources in cases can be of interest to, e.g.,
decide how "indispensable" they are. This metric is provided on three levels of analysis, which are
the cases, the resources, and the resource-activity combinations.

resource_involvement 81

Usage

resource_involvement(
log,
level = c("case", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'log'
resource_involvement(
log,
level = c("case", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
resource_involvement(
log,
level = c("case", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "case"): Level of granularity for the analysis: "case"
(default), "resource", or "resource-activity". For more information, see
vignette("metrics", "edeaR") and ’Details’ below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

82 resource_specialisation

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• On "case" level, the absolute and relative number of distinct resources executing activities in
each case is calculated, to get an overview of which cases are handled by a small amount of
resources and which cases need more resources, indicating a higher level of variance in the
process.

• On "resource" level, this metric provides the absolute and relative number of cases in which
each resource is involved, indicating which resources are more "necessary" within the process
than the others.

• On "resource-activity" level, this metric provides a list of all resource-activity combina-
tions with the absolute and relative number of cases in which each resource-activity combina-
tion is involved.

Methods (by class)

• resource_involvement(log): Computes the resource involvement for a log.

• resource_involvement(grouped_log): Computes the resource involvement for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

resource_frequency

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_repetitions(), number_of_selfloops(), number_of_traces(), processing_time(),
resource_frequency(), resource_specialisation(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

resource_specialisation

Resource Specialisation

Description

Analyses whether resources specialise in specific activities.

This metric can give an overview of which resources are performing certain activities more than
others, and which resources are responsible for containing all knowledge or capabilities on one
topic.

resource_specialisation 83

Usage

resource_specialisation(
log,
level = c("log", "activity", "resource"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

resource_specialization(
log,
level = c("log", "activity", "resource"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'log'
resource_specialisation(
log,
level = c("log", "activity", "resource"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
resource_specialisation(
log,
level = c("log", "activity", "resource"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), , "activity", or "resource". For more information, see vignette("metrics",
"edeaR") and ’Details’ below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.

84 resource_specialisation

Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• At "log" level, this metric provides summary statistics on the number of distinct activities
executed per resource.

• On "activity" level, this metric provides an overview of the absolute and relative number of
different resources executing this activity within the complete log. This will give insights into
which activities resources are specialised in.

• On "resource" level, this metric shows the absolute and relative number of distinct activities
that each resource executes.

Methods (by class)

• resource_specialisation(log): Computes the resource specialisation for a log.

• resource_specialisation(grouped_log): Computes the resource specialisation for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_repetitions(), number_of_selfloops(), number_of_traces(), processing_time(),
resource_frequency(), resource_involvement(), start_activities(), throughput_time(),
trace_coverage(), trace_length()

size_of_repetitions 85

size_of_repetitions Metric: Size of repetitions

Description

Provides summary statistics on the sizes of repetitions.

Usage

size_of_repetitions(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
eventlog = deprecated()

)

S3 method for class 'eventlog'
size_of_repetitions(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
size_of_repetitions(
log,
type = c("repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
eventlog = deprecated()

)

S3 method for class 'activitylog'
size_of_repetitions(
log,
type = c("repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
eventlog = deprecated()

)

86 size_of_repetitions

S3 method for class 'grouped_activitylog'
size_of_repetitions(
log,
type = c("repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

type character (default "all"): The type of repetitions: "all" (default), "repeat",
or "redo". For more information, see ’Details’ below.

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "case", "activity", "resource", or "resource-activity". For more
information, see vignette("metrics", "edeaR") and ’Details’ below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

eventlog [Deprecated]; please use log instead.

Methods (by class)

• size_of_repetitions(eventlog): Size of repetitions for eventlog

• size_of_repetitions(grouped_eventlog): Size of repetitions for grouped event log

• size_of_repetitions(activitylog): Size of repetitions for activitylog

• size_of_repetitions(grouped_activitylog): Size of repetitions for grouped activitylog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

number_of_repetitions

size_of_selfloops 87

size_of_selfloops Metric: Size of selfloops

Description

Provides summary statistics on the sizes of selfloops

Usage

size_of_selfloops(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
eventlog = deprecated()

)

S3 method for class 'eventlog'
size_of_selfloops(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
size_of_selfloops(
log,
type = c("repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-acitivty"),
append = deprecated(),
append_column = NULL,
eventlog = deprecated()

)

S3 method for class 'activitylog'
size_of_selfloops(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
eventlog = deprecated()

)

88 size_of_selfloops

S3 method for class 'grouped_activitylog'
size_of_selfloops(
log,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

type character (default "all"): The type of repetitions: "all" (default), "repeat",
or "redo". For more information, see ’Details’ below.

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "case", "activity", "resource", or "resource-activity". For more
information, see vignette("metrics", "edeaR") and ’Details’ below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

eventlog [Deprecated]; please use log instead.

Methods (by class)

• size_of_selfloops(eventlog): Size of selfloops for eventlog

• size_of_selfloops(grouped_eventlog): Size of selfloops for grouped eventlog

• size_of_selfloops(activitylog): Size of selfloops for activitylog

• size_of_selfloops(grouped_activitylog): Size of selfloops for grouped activitylog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

number_of_selfloops

start_activities 89

start_activities Start Activities

Description

Analyse the start activities in the process.

Usage

start_activities(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
start_activities(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
start_activities(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
start_activities(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

90 start_activities

S3 method for class 'grouped_activitylog'
start_activities(
log,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "case", "activity", "resource", or "resource-activity". For more
information, see vignette("metrics", "edeaR") and ’Details’ below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• On "log" level, this metric shows the absolute and relative number of activities that are the
first activity in one or more of the cases.

• On "case" level, this metric provides an overview of the start activity of each case.

• On "activity" level, this metric calculates for each activity the absolute and relative number
of cases that start with this activity type. Similar to the end_activities metric, the relative
number is calculated as a portion of the number of cases, being the number of "opportunities"
that an activity could be the start activity. The cumulative sum is added to have an insight in
the number of activities that is required to cover a certain part of the total.

• On "resource" level, an overview of which resources execute the first activity per case are
provided.

• On "resource-activity" level, this metric shows for each occurring resource-activity com-
bination the absolute and relative number of times this resource executes this activity as an
start activity in a case.

throughput_time 91

Methods (by class)

• start_activities(eventlog): Computes the start activities for an eventlog.

• start_activities(grouped_eventlog): Computes the start activities for a grouped_eventlog.

• start_activities(activitylog): Computes the start activities for an activitylog.

• start_activities(grouped_activitylog): Computes the start activities for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

end_activities

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_repetitions(), number_of_selfloops(), number_of_traces(), processing_time(),
resource_frequency(), resource_involvement(), resource_specialisation(), throughput_time(),
trace_coverage(), trace_length()

throughput_time Throughput Time of Cases

Description

Provides summary statistics concerning the throughput times of cases.

Usage

throughput_time(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
work_schedule = NULL,
eventlog = deprecated()

)

S3 method for class 'eventlog'
throughput_time(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),

92 throughput_time

sort = TRUE,
work_schedule = NULL,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
throughput_time(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
work_schedule = NULL,
eventlog = deprecated()

)

S3 method for class 'activitylog'
throughput_time(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
work_schedule = NULL,
eventlog = deprecated()

)

S3 method for class 'grouped_activitylog'
throughput_time(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
units = c("auto", "secs", "mins", "hours", "days", "weeks"),
sort = TRUE,
work_schedule = NULL,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "trace", or "case". For more information, see vignette("metrics",
"edeaR") and Details below.

throughput_time 93

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

units character (default "auto"): The time unit in which the throughput times should
be reported. Should be one of the following values: "auto" (default), "secs",
"mins", "hours", "days", "weeks". See also the units argument of difftime.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

work_schedule A schedule of working hours. If provided, only working hours are counted as
processing time.

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• At "log" level, the summary statistics describing the throughput time of cases in an aggregated
fashion.

• On "trace" level, the throughput time of the different process variants or traces in the log are
calculated.

• On "case" level, the throughput time is defined as the total duration of the case, or the differ-
ence between the timestamp of the end event and the timestamp of the start event of the case.
Possible idle_time() is also included in this calculation.

For other levels (e.g. "activity", "resource", or "resource-activity"), the throughput time
is equal to the processing_time() and are, therefore, not supported by this method.

Methods (by class)

• throughput_time(eventlog): Computes throughput time for an eventlog.

• throughput_time(grouped_eventlog): Computes throughput time for a grouped_eventlog.

• throughput_time(activitylog): Computes throughput time for an activitylog.

• throughput_time(grouped_activitylog): Computes throughput time for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

94 trace_coverage

See Also

idle_time(),processing_time(),difftime()

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_repetitions(), number_of_selfloops(), number_of_traces(), processing_time(),
resource_frequency(), resource_involvement(), resource_specialisation(), start_activities(),
trace_coverage(), trace_length()

trace_coverage Trace Coverage

Description

Analyses the structuredness of a log by use of trace frequencies.

Usage

trace_coverage(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'log'
trace_coverage(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_log'
trace_coverage(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

trace_coverage 95

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "trace", or "case". For more information, see vignette("metrics",
"edeaR") and Details below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• At "log" level, summary statistics of the coverage of traces are returned.

• On "trace" level, the absolute and relative frequency of each trace are returned.

• On "case" level, the coverage of the corresponding trace is returned for each case.

Methods (by class)

• trace_coverage(log): Calculates trace coverage metric for a log.

• trace_coverage(grouped_log): Calculates trace coverage metric for a grouped_log.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_repetitions(), number_of_selfloops(), number_of_traces(), processing_time(),
resource_frequency(), resource_involvement(), resource_specialisation(), start_activities(),
throughput_time(), trace_length()

96 trace_length

trace_length Trace Length

Description

Analysis of trace lengths

This metric provides an overview of the number of activities that occur in each trace.

An important remark is that this metric takes into account each instance of an activity, but not the
individual lifecycle events.

Usage

trace_length(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'eventlog'
trace_length(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_eventlog'
trace_length(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'activitylog'
trace_length(
log,
level = c("log", "trace", "case"),
append = deprecated(),

trace_length 97

append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

S3 method for class 'grouped_activitylog'
trace_length(
log,
level = c("log", "trace", "case"),
append = deprecated(),
append_column = NULL,
sort = TRUE,
eventlog = deprecated()

)

Arguments

log log: Object of class log or derivatives (grouped_log, eventlog, activitylog,
etc.).

level character (default "log"): Level of granularity for the analysis: "log" (de-
fault), "trace", or "case". For more information, see vignette("metrics",
"edeaR") and Details below.

append logical (default FALSE) [Deprecated]: The arguments append and append_column
have been deprecated in favour of augment.
Indicating whether to append results to original log. Ignored when level is "log"
or "trace".

append_column [Deprecated] The arguments append and append_column have been deprecated
in favour of augment.
Which of the output columns to append to log, if append = TRUE. Default column
depends on chosen level.

sort logical (default TRUE): Sort output on count. Only for levels with frequency
count output.

eventlog [Deprecated]; please use log instead.

Details

Argument level has the following options:

• At "log" level, the summary statistics describing the trace length of cases in an aggregated
fashion.

• On "trace" level, the trace length of the different process variants or traces in the log are
calculated.

• On "case" level, the trace lengths for each case are computed.

Methods (by class)

• trace_length(eventlog): Computes trace length for an eventlog.

98 trace_length

• trace_length(grouped_eventlog): Computes trace length for a grouped_eventlog.

• trace_length(activitylog): Computes trace length for an activitylog.

• trace_length(grouped_activitylog): Computes trace length for a grouped_activitylog.

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

Other metrics: activity_frequency(), activity_presence(), end_activities(), idle_time(),
number_of_repetitions(), number_of_selfloops(), number_of_traces(), processing_time(),
resource_frequency(), resource_involvement(), resource_specialisation(), start_activities(),
throughput_time(), trace_coverage()

Index

∗ filters_case
filter_activity_presence, 21
filter_case, 23
filter_case_condition, 24
filter_endpoints, 26
filter_endpoints_condition, 27
filter_flow_time, 29
filter_idle_time, 31
filter_infrequent_flows, 33
filter_precedence, 37
filter_precedence_condition, 40
filter_precedence_resource, 42
filter_processing_time, 44
filter_throughput_time, 49
filter_trace, 53
filter_trace_frequency, 54
filter_trace_length, 56

∗ filters_event
filter_activity, 16
filter_activity_frequency, 17
filter_activity_instance, 19
filter_lifecycle, 34
filter_lifecycle_presence, 35
filter_resource, 46
filter_resource_frequency, 47
filter_time_period, 51
filter_trim, 58
filter_trim_lifecycle, 60

∗ filters
filter_activity, 16
filter_activity_frequency, 17
filter_activity_instance, 19
filter_activity_presence, 21
filter_case, 23
filter_case_condition, 24
filter_endpoints, 26
filter_endpoints_condition, 27
filter_flow_time, 29
filter_idle_time, 31

filter_infrequent_flows, 33
filter_lifecycle, 34
filter_lifecycle_presence, 35
filter_precedence, 37
filter_precedence_condition, 40
filter_precedence_resource, 42
filter_processing_time, 44
filter_resource, 46
filter_resource_frequency, 47
filter_throughput_time, 49
filter_time_period, 51
filter_trace, 53
filter_trace_frequency, 54
filter_trace_length, 56
filter_trim, 58
filter_trim_lifecycle, 60

∗ metrics_organizational
resource_frequency, 78
resource_involvement, 80
resource_specialisation, 82

∗ metrics_other
augment, 9

∗ metrics_repetition
number_of_repetitions, 64
number_of_selfloops, 67
redo_repetitions_referral_matrix,

76
redo_selfloops_referral_matrix, 77
size_of_repetitions, 85
size_of_selfloops, 87

∗ metrics_structuredness
activity_frequency, 3
activity_presence, 5
end_activities, 14
number_of_traces, 70
start_activities, 89
trace_coverage, 94
trace_length, 96

∗ metrics_time

99

100 INDEX

idle_time, 62
processing_time, 73
throughput_time, 91

∗ metrics
activity_frequency, 3
activity_presence, 5
end_activities, 14
idle_time, 62
number_of_repetitions, 64
number_of_selfloops, 67
number_of_traces, 70
processing_time, 73
resource_frequency, 78
resource_involvement, 80
resource_specialisation, 82
start_activities, 89
throughput_time, 91
trace_coverage, 94
trace_length, 96

∗ queues
calculate_queuing_length, 10
calculate_queuing_times, 11

∗ visualization
plot, 71

∗ work_schedule
add_fixed_holiday, 8
add_floating_holiday, 8
add_holiday_periods, 9
change_day, 13
create_work_schedule, 13
print.work_schedule, 73

activity_frequency, 3, 7, 16, 64, 67, 70, 71,
76, 80, 82, 84, 91, 94, 95, 98

activity_presence, 5, 5, 16, 64, 67, 70, 71,
76, 80, 82, 84, 91, 94, 95, 98

activitylog, 4–7, 10, 12, 15, 16, 18, 21, 23,
25, 26, 28–30, 32, 33, 38, 41, 43, 45,
46, 48, 50, 52–55, 57, 59, 60, 63, 64,
66, 67, 69–71, 75–77, 79–81, 83, 86,
88, 90–93, 95, 97, 98

add_fixed_holiday, 8
add_floating_holiday, 8
add_holiday_periods, 9
augment, 4, 6, 9, 15, 63, 66, 69, 75, 79, 81, 83,

84, 86, 88, 90, 93, 95, 97

bupaR::grouped_log, 30
bupaR::log, 30

calculate_queuing_length, 10
calculate_queuing_times, 11, 11
case_list, 53, 54
change_day, 13
character, 4, 10–12, 15, 16, 21, 23, 27, 30,

32, 35, 36, 38, 41, 43, 45, 46, 50, 52,
54, 59, 61, 63, 66, 69, 75, 79, 81, 83,
86, 88, 90, 92, 93, 95, 97

create_work_schedule, 13

Date, 52
difftime, 11, 12, 93
difftime(), 30–32, 45, 50, 63, 64, 75, 76, 94

end_activities, 5, 7, 14, 64, 67, 70, 71, 76,
80, 82, 84, 90, 91, 94, 95, 98

eventlog, 4–7, 10, 12, 15, 16, 18, 20, 21, 23,
25, 26, 28–30, 32, 33, 35–38, 41, 43,
45, 46, 48, 50, 52–55, 57, 59, 61, 63,
64, 66, 67, 69–71, 75–77, 79–81, 83,
86, 88, 90–93, 95, 97

filter, 25
filter_activity, 16, 19, 20, 22, 24, 25, 27,

29, 31, 32, 34, 35, 37, 39, 41, 44, 45,
47, 48, 50, 53, 54, 56, 58, 60, 62

filter_activity_frequency, 17, 17, 20, 22,
24, 25, 27, 29, 31, 32, 34, 35, 37, 39,
41, 44, 45, 47, 48, 50, 53, 54, 56, 58,
60, 62

filter_activity_instance, 17, 19, 19, 22,
24, 25, 27, 29, 31, 32, 34, 35, 37, 39,
41, 44, 45, 47, 48, 50, 53, 54, 56, 58,
60, 62

filter_activity_presence, 17, 19, 20, 21,
24, 25, 27, 29, 31, 32, 34, 35, 37, 39,
41, 44, 45, 47, 48, 50, 53, 54, 56, 58,
60, 62

filter_case, 17, 19, 20, 22, 23, 25, 27, 29,
31, 32, 34, 35, 37, 39, 41, 44, 45, 47,
48, 50, 53, 54, 56, 58, 60, 62

filter_case_condition, 17, 19, 20, 22, 24,
24, 27, 29, 31, 32, 34, 35, 37, 39, 41,
44, 45, 47, 48, 50, 53, 54, 56, 58, 60,
62

filter_endpoints, 17, 19, 20, 22, 24, 25, 26,
29, 31, 32, 34, 35, 37, 39, 41, 44, 45,
47, 48, 50, 53, 54, 56, 58, 60, 62

INDEX 101

filter_endpoints_condition, 17, 19, 20,
22, 24, 25, 27, 27, 31, 32, 34, 35, 37,
39, 41, 44, 45, 47, 48, 50, 53, 54, 56,
58, 60, 62

filter_endpoints_conditions
(filter_endpoints_condition),
27

filter_flow_time, 17, 19, 20, 22, 24, 25, 27,
29, 29, 32, 34, 35, 37, 39, 41, 44, 45,
47, 48, 50, 53, 54, 56, 58, 60, 62

filter_idle_time, 17, 19, 20, 22, 24, 25, 27,
29, 31, 31, 34, 35, 37, 39, 41, 44, 45,
47, 48, 50, 53, 54, 56, 58, 60, 62

filter_infrequent_flows, 17, 19, 20, 22,
24, 25, 27, 29, 31, 32, 33, 35, 37, 39,
41, 44, 45, 47, 48, 50, 53, 54, 56, 58,
60, 62

filter_lifecycle, 17, 19, 20, 22, 24, 25, 27,
29, 31, 32, 34, 34, 37, 39, 41, 44, 45,
47, 49, 50, 53, 54, 56, 58, 60, 62

filter_lifecycle_presence, 17, 19, 20, 22,
24, 25, 27, 29, 31, 32, 34, 35, 35, 39,
41, 44, 45, 47, 49, 50, 53, 54, 56, 58,
60, 62

filter_precedence, 17, 19, 20, 22, 24, 25,
27, 29, 31, 32, 34, 35, 37, 37, 40, 41,
44, 45, 47, 49, 50, 53, 54, 56, 58, 60,
62

filter_precedence(), 44
filter_precedence_condition, 17, 19, 20,

22, 24, 25, 27, 29, 31, 32, 34, 35, 37,
39, 40, 44, 45, 47, 49, 50, 53, 54, 56,
58, 60, 62

filter_precedence_resource, 17, 19, 20,
22, 24, 25, 27, 29, 31, 32, 34, 35, 37,
39, 41, 42, 45, 47, 49, 50, 53, 54, 56,
58, 60, 62

filter_processing_time, 17, 19, 20, 22, 24,
25, 27, 29, 31, 32, 34, 35, 37, 39, 41,
44, 44, 47, 49, 50, 53, 54, 56, 58, 60,
62

filter_resource, 17, 19, 20, 22, 24, 25, 27,
29, 31, 32, 34, 35, 37, 39, 41, 44, 45,
46, 49, 50, 53, 54, 56, 58, 60, 62

filter_resource_frequency, 17, 19, 20, 22,
24, 25, 27, 29, 31, 32, 34, 35, 37, 39,
41, 44, 45, 47, 47, 50, 53, 54, 56, 58,
60, 62

filter_throughput_time, 17, 19, 20, 22, 24,
25, 27, 29, 31, 32, 34, 35, 37, 39, 41,
44, 45, 47, 49, 49, 53, 54, 56, 58, 60,
62

filter_time_period, 17, 19, 20, 22, 24, 25,
27, 29, 31, 32, 34, 35, 37, 39, 41, 44,
45, 47, 49, 50, 51, 54, 56, 58, 60, 62

filter_trace, 17, 19, 20, 22, 24, 25, 27, 29,
31, 32, 34, 35, 37, 39, 41, 44, 45, 47,
49, 50, 53, 53, 56, 58, 60, 62

filter_trace_frequency, 17, 19, 20, 22, 24,
25, 27, 29, 31, 32, 34, 35, 37, 39, 41,
44, 45, 47, 49, 50, 53, 54, 54, 58, 60,
62

filter_trace_length, 17, 19, 20, 22, 24, 25,
27, 29, 31, 32, 34, 35, 37, 39, 41, 44,
45, 47, 49, 50, 53, 54, 56, 56, 60, 62

filter_trim, 17, 19, 20, 22, 24, 25, 27, 29,
31, 32, 34, 35, 37, 39, 41, 44, 45, 47,
49, 50, 53, 54, 56, 58, 58, 62

filter_trim_lifecycle, 17, 19, 20, 22, 24,
25, 27, 29, 31, 32, 34, 35, 37, 39, 41,
44, 45, 47, 49, 50, 53, 54, 56, 58, 60,
60

grouped_activitylog, 5, 7, 12, 16, 33, 53,
60, 64, 67, 70, 76, 80, 91, 93, 98

grouped_eventlog, 5, 7, 12, 16, 20, 33,
35–37, 53, 60, 61, 64, 67, 70, 76, 80,
91, 93, 98

grouped_log, 4, 6, 10, 12, 15–23, 25–30, 32,
33, 35, 37–39, 41, 43, 45, 46, 48, 50,
52, 54–59, 61, 63, 66, 69, 71, 75–77,
79, 81–84, 86, 88, 90, 92, 95, 97

idle_time, 5, 7, 16, 31, 62, 67, 70, 71, 76, 80,
82, 84, 91, 94, 95, 98

idle_time(), 32, 76, 93, 94

lifecycle_id, 35, 37, 62
log, 4, 6, 10, 12, 15–23, 25–30, 32, 33, 35,

37–39, 41, 43, 45, 46, 48, 50, 52,
54–57, 59, 61, 63, 66, 69, 71, 75–77,
79, 81–84, 86, 88, 90, 92, 95, 97

logical, 4, 6, 7, 15, 16, 18, 20, 21, 23, 25, 27,
29, 30, 32, 35, 36, 39, 41, 43, 45, 46,
48, 50, 52, 54, 55, 57, 59, 61, 63, 66,
69, 75, 79, 81, 83, 84, 86, 88, 90, 93,
95, 97

102 INDEX

NA, 18, 30, 32, 45, 48, 50, 52, 55–57
NULL, 27, 59, 61
number_of_repetitions, 5, 7, 16, 64, 64, 70,

71, 76, 77, 80, 82, 84, 86, 91, 94, 95,
98

number_of_selfloops, 5, 7, 16, 64, 67, 67,
71, 76, 78, 80, 82, 84, 88, 91, 94, 95,
98

number_of_traces, 5, 7, 16, 64, 67, 70, 70,
76, 80, 82, 84, 91, 94, 95, 98

numeric, 11, 18, 27, 30, 32, 33, 45, 48, 50, 55,
57

plot, 71
POSIXct, 52
print.work_schedule, 73
processing_time, 5, 7, 16, 44, 64, 67, 70, 71,

73, 80, 82, 84, 91, 94, 95, 98
processing_time(), 31, 45, 64, 93, 94

redo_repetitions_referral_matrix, 76
redo_selfloops_referral_matrix, 77
resource_frequency, 5, 7, 16, 64, 67, 70, 71,

76, 78, 80, 82, 84, 91, 94, 95, 98
resource_involvement, 5, 7, 16, 64, 67, 70,

71, 76, 80, 80, 84, 91, 94, 95, 98
resource_specialisation, 5, 7, 16, 64, 67,

70, 71, 76, 80, 82, 82, 91, 94, 95, 98
resource_specialization

(resource_specialisation), 82

self-loop, 67
seq.Date, 11
size_of_repetitions, 85
size_of_selfloops, 87
start_activities, 5, 7, 15, 16, 64, 67, 70,

71, 76, 80, 82, 84, 89, 94, 95, 98

throughput_time, 5, 7, 16, 49, 64, 67, 70, 71,
76, 80, 82, 84, 91, 91, 95, 98

throughput_time(), 50, 64, 73, 76
trace_coverage, 5, 7, 16, 64, 67, 70, 71, 76,

80, 82, 84, 91, 94, 94, 98
trace_length, 5, 7, 16, 56, 58, 64, 67, 70, 71,

76, 80, 82, 84, 91, 94, 95, 96
traces, 71

	activity_frequency
	activity_presence
	add_fixed_holiday
	add_floating_holiday
	add_holiday_periods
	augment
	calculate_queuing_length
	calculate_queuing_times
	change_day
	create_work_schedule
	end_activities
	filter_activity
	filter_activity_frequency
	filter_activity_instance
	filter_activity_presence
	filter_case
	filter_case_condition
	filter_endpoints
	filter_endpoints_condition
	filter_flow_time
	filter_idle_time
	filter_infrequent_flows
	filter_lifecycle
	filter_lifecycle_presence
	filter_precedence
	filter_precedence_condition
	filter_precedence_resource
	filter_processing_time
	filter_resource
	filter_resource_frequency
	filter_throughput_time
	filter_time_period
	filter_trace
	filter_trace_frequency
	filter_trace_length
	filter_trim
	filter_trim_lifecycle
	idle_time
	number_of_repetitions
	number_of_selfloops
	number_of_traces
	plot
	print.work_schedule
	processing_time
	redo_repetitions_referral_matrix
	redo_selfloops_referral_matrix
	resource_frequency
	resource_involvement
	resource_specialisation
	size_of_repetitions
	size_of_selfloops
	start_activities
	throughput_time
	trace_coverage
	trace_length
	Index

