Package 'glmtlp'

October 13, 2022

Type Package
Title Generalized Linear Models with Truncated Lasso Penalty
Version 2.0.1
Date 2021-12-17
URL https://yuyangyy.com/glmtlp/
Depends R (>= 3.5.0)
Imports foreach, doParallel, ggplot2
Suggests rmarkdown, knirt, testthat (>= 3.0.0)
Description Extremely efficient procedures for fitting regularization path with 10, 11, and truncated lasso penalty for linear regression and logistic regression models. This version is a completely new version compared with our previous version, which was mainly based on R. New core algorithms are developed and are now written in C++ and highly optimized.

Encoding UTF-8

License GPL-3

LazyData true

Author Chunlin Li [aut], Yu Yang [aut, cre], Chong Wu [aut]

Maintainer Yu Yang <yang6367@umn.edu>

RoxygenNote 7.1.2

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-12-17 23:00:02 UTC

R topics documented:

	19
setup_lambda	18
predict.glmtlp	15
predict.cv.glmtlp	14
plot.glmtlp	12
plot.cv.glmtlp	11
glmtlp	
gen.gaussian.data	
gen.binomial.data	5
gau_data	5
cv.glmtlp	3
bin_data	2

Index

bin_data

A simulated binomial data set.

Description

A data set simulated for illustrating logistic regression models. Generated by gen.binomial.data(n = 200, p = 20, seed = 2021).

Usage

data(bin_data)

Format

A list with three elements: design matrix X, response y, and the true coefficient vector beta.

X design matrix

y response

beta the true coefficient vector

```
data("bin_data")
cv.fit <- cv.glmtlp(bin_data$X, bin_data$y, family = "binomial", penalty = "l1")
plot(cv.fit)</pre>
```

3

cv.glmtlp

Description

Performs k-fold cross-validation for 10, 11, or TLP-penalized regression models over a grid of values for the regularization parameter lambda (if penalty="10") or kappa (if penalty="10").

Usage

cv.glmtlp(X, y, ..., seed = NULL, nfolds = 10, obs.fold = NULL, ncores = 1)

Arguments

Х	input matrix, of dimension nobs x nvars, as in glmtlp.
У	response, of length nobs, as in glmtlp.
	Other arguments that can be passed to glmtlp.
seed	the seed for reproduction purposes
nfolds	number of folds; default is 10. The smallest value allowable is nfolds=3
obs.fold	an optional vector of values between 1 and nfolds identifying what fold each observation is in. If supplied, nfolds can be missing.
ncores	number of cores utilized; default is 1. If greater than 1, then doParallel::foreach will be used to fit each fold; if equal to 1, then for loop will be used to fit each fold. Users don't have to register parallel clusters outside.

Details

The function calls glmtlp nfolds+1 times; the first call to get the lambda or kappa sequence, and then the rest to compute the fit with each of the folds omitted. The cross-validation error is based on deviance (check here for more details). The error is accumulated over the folds, and the average error and standard deviation is computed.

When family = "binomial", the fold assignment (if not provided by the user) is generated in a stratified manner, where the ratio of 0/1 outcomes are the same for each fold.

Value

an object of class "cv.glmtlp" is returned, which is a list with the ingredients of the cross-validation fit.

call	the function call
cv.mean	The mean cross-validated error - a vector of length length(kappa) if penalty = "10" and length{lambda} otherwise.
cv.se	estimate of standard error of cv.mean.
fit	a fitted glmtlp object for the full data.

idx.min	the index of the lambda or kappa sequence that corresponding to the smallest cv mean error.
kappa	the values of kappa used in the fits, available when penalty = '10'.
kappa.min	the value of kappa that gives the minimum cv.mean, available when penalty = '10'.
lambda	the values of lambda used in the fits.
lambda.min	value of lambda that gives minimum cv.mean, available when penalty is 'll' or 'tlp'.
null.dev	null deviance of the model.
obs.fold	the fold id for each observation used in the CV.

Author(s)

Chunlin Li, Yu Yang, Chong Wu Maintainer: Yu Yang <yang6367@umn.edu>

References

Shen, X., Pan, W., & Zhu, Y. (2012). Likelihood-based selection and sharp parameter estimation. Journal of the American Statistical Association, 107(497), 223-232.
Shen, X., Pan, W., Zhu, Y., & Zhou, H. (2013). On constrained and regularized high-dimensional regression. Annals of the Institute of Statistical Mathematics, 65(5), 807-832.
Li, C., Shen, X., & Pan, W. (2021). Inference for a Large Directed Graphical Model with Interventions. arXiv preprint arXiv:2110.03805.
Yang, Y., & Zou, H. (2014). A coordinate majorization descent algorithm for 11 penalized learning. Journal of Statistical Computation and Simulation, 84(1), 84-95.
Two R package Github: ncvreg and glmnet.

See Also

glmtlp and plot, predict, and coef methods for "cv.glmtlp" objects.

```
# Gaussian
X <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
cv.fit <- cv.glmtlp(X, y, family = "gaussian", penalty = "l1", seed=2021)
# Binomial
X <- matrix(rnorm(100 * 20), 100, 20)
y <- sample(c(0,1), 100, replace = TRUE)
cv.fit <- cv.glmtlp(X, y, family = "binomial", penalty = "l1", seed=2021)</pre>
```

gau_data

Description

A data set simulated for illustrating linear regression models. Generated by gen.gaussian.data(n = 200, p = 20, seed = 2021).

Usage

data(gau_data)

Format

A list with five elements: design matrix X, response y, correlation structure of the covariates Sigma, true beta beta, and the noise level sigma.

X design matrix

y response

beta true beta values

sigma the noise level

Examples

```
data("gau_data")
cv.fit <- cv.glmtlp(gau_data$X, gau_data$y, family = "gaussian", penalty = "tlp")
plot(cv.fit)</pre>
```

gen.binomial.data Simulate a binomial data set

Description

Simulate a data set with binary response following the logistic regression model.

Usage

```
gen.binomial.data(n, p, rho = 0, kappa = 5, beta.type = 1, seed = 2021)
```

Arguments

n	Sample size.
р	Number of covariates.
rho	The parameter defining the $AR(1)$ correlation matrix.
kappa	The number of nonzero coefficients.
beta.type	Numeric indicator for choosing the beta type. For beta.type = 1, the true co- efficient vector has kappa components being 1, roughly equally distributed be- tween 1 to p. For beta.type = 2, the first kappa values are 1, and the rest are 0. For beta.type = 3, the first kappa values are equally-spaced values from 10 to 0.5, and the rest are 0. For beta.type = 4, the first kappa values are the first kappa values in c(-10, -6, -2, 2, 6, 10), and the rest are 0. For beta.type = 5, the first kappa values are 1, and the rest decay exponentially to 0 with base 0.5.
seed	The seed for reproducibility. Default is 2021.

Value

A list containing the simulated data.

Х	the covariate matrix, of dimension n x p.
У	the response, of length n.
beta	the true coefficients, of length p.

Examples

```
bin_data <- gen.binomial.data(n = 200, p = 20, seed = 2021)
head(bin_data$X)
head(bin_data$y)
head(bin_data$beta)</pre>
```

gen.gaussian.data Simulate a gaussian data set

Description

Simulate a data set with gaussian response following the linear regression model.

Usage

```
gen.gaussian.data(
    n,
    p,
    rho = 0,
    kappa = 5,
    beta.type = 1,
    snr = 1,
    seed = 2021
)
```

glmtlp

Arguments

n	Sample size.
р	Number of covariates.
rho	The parameter defining the $AR(1)$ correlation matrix.
kappa	The number of nonzero coefficients.
beta.type	Numeric indicator for choosing the beta type. For beta.type = 1, the true co- efficient vector has kappa components being 1, roughly equally distributed be- tween 1 to p. For beta.type = 2, the first kappa values are 1, and the rest are 0. For beta.type = 3, the first kappa values are equally-spaced values from 10 to 0.5, and the rest are 0. For beta.type = 4, the first kappa values are the first kappa values in c(-10, -6, -2, 2, 6, 10), and the rest are 0. For beta.type = 5, the first kappa values are 1, and the rest decay exponentially to 0 with base 0.5.
snr	Signal-to-noise ratio. Default is 1.
seed	The seed for reproducibility. Default is 2021.

Value

A list containing the simulated data.

Х	the covariate matrix, of dimension n x p.
У	the response, of length n.
beta	the true coefficients, of length p.
sigma	the standard error of the noise.

Examples

```
gau_data <- gen.gaussian.data(n = 200, p = 20, seed = 2021)
head(gau_data$X)
head(gau_data$y)
head(gau_data$beta)
gau_data$sigma
```

glmtlp

Fit a GLM with L0, L1, or TLP Penalization

Description

Fit generalized linear models via penalized maximum likelihood. The regularization path is computed for the 10, lasso, or truncated lasso penalty at a grid of values for the regularization parameter lambda or kappa. Fits linear and logistic regression models.

The package provides 3 penalties: 10, 11, and tlp and 3 distribution families: gaussian, binomial, and poisson.

Usage

```
glmtlp(
 Χ,
 у,
  family = c("gaussian", "binomial"),
 penalty = c("10", "11", "tlp"),
  nlambda = ifelse(penalty == "10", 50, 100),
  lambda.min.ratio = ifelse(nobs < nvars, 0.05, 0.001),</pre>
  lambda = NULL,
  kappa = NULL,
  tau = 0.3 * sqrt(log(nvars)/nobs),
  delta = 2,
  tol = 1e-04,
 weights = NULL,
  penalty.factor = rep(1, nvars),
  standardize = FALSE,
  dc.maxit = 20,
  cd.maxit = 10000,
  nr.maxit = 20,
  • • •
)
```

Arguments

Х	Input matrix, of dimension nobs x nvars; each row is an observation vector.
у	Response variable, of length nobs. For family="gaussian", it should be quan- titative; for family="binomial", it should be either a factor with two levels or a binary vector.
family	A character string representing one of the built-in families. See Details section below.
penalty	A character string representing one of the built-in penalties. "10" represents the L_0 penalty, "11" represents the lasso-type penalty (L_1 penalty), and "tlp" represents the truncated lasso penalty.
nlambda lambda min nati	The number of lambda values. Default is 100.
Tampua.min.rati	The smallest value for lambda, as a fraction of lambda.max, the smallest value for which all coefficients are zero. The default depends on the sample size nobs relative to the number of variables nvars. If nobs > nvars, the default is 0.0001 , and if nobs < nvars, the default is 0.01 .
lambda	A user-supplied lambda sequence. Typically, users should let the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda will override this. WARNING: please use this option with care. glmtlp relies on warms starts for speed, and it's often faster to fit a whole path than a single fit. Therefore, provide a decreasing sequence of lambda values if you want to use this option. Also, when penalty = 'l0', it is not recommended for the users to supply this parameter.

8

glmtlp

карра	A user-supplied kappa sequence. Typically, users should let the program com- pute its own kappa sequence based on nvars and nobs. This sequence is used when penalty = '10'.
tau	A tuning parameter used in the TLP-penalized regression models. Default is $0.3 * sqrt(log(nvars)/nobs)$.
delta	A tuning parameter used in the coordinate majorization descent algorithm. See Yang, Y., & Zou, H. (2014) in the reference for more detail.
tol	Tolerance level for all iterative optimization algorithms.
weights	Observation weights. Default is 1 for each observation.
penalty.factor	Separate penalty factors applied to each coefficient, which allows for differential shrinkage. Default is 1 for all variables.
standardize	Logical. Whether or not standardize the input matrix X; default is TRUE.
dc.maxit	Maximum number of iterations for the DC (Difference of Convex Functions) programming; default is 20.
cd.maxit	Maximum number of iterations for the coordinate descent algorithm; default is 10^{4} .
nr.maxit	Maximum number of iterations for the Newton-Raphson method; default is 500.
	Additional arguments.

Details

The sequence of models indexed by lambda (when penalty = c('ll', 'tlp')) or kappa (when penalty = 'l0') is fit by the coordinate descent algorithm.

The objective function for the "gaussian" family is:

$$1/2RSS/nobs + \lambda * penalty,$$

and for the other models it is:

$$-loglik/nobs + \lambda * penalty.$$

Also note that, for "gaussian", glmtlp standardizes y to have unit variance (using 1/(n-1) formula).

Details on family option

glmtlp currently only supports built-in families, which are specified by a character string. For all families, the returned object is a regularization path for fitting the generalized linear regression models, by maximizing the corresponding penalized log-likelihood. glmtlp(..., family="binomial") fits a traditional logistic regression model for the log-odds.

Details on penalty option

The built-in penalties are specified by a character string. For 10 penalty, kappa sequence is used for generating the regularization path, while for 11 and tlp penalty, lambda sequence is used for generating the regularization path.

Value

An object with S3 class "glmtlp".

beta	a nvars x length(kappa) matrix of coefficients when penalty = '10'; or a nvars x length(lambda) matrix of coefficients when penalty = $c('11', 'tlp')$.
call	the call that produces this object.
family	the distribution family used in the model fitting.
intercept	<pre>the intercept vector, of length(kappa) when penalty = 'l0' or length(lambda) when penalty = c('l1', 'tlp').</pre>
lambda	the actual sequence of lambda values used. Note that the length may be smaller than the provided nlambda due to removal of saturated values.
penalty	the penalty type in the model fitting.
penalty.factor	the penalty factor for each coefficient used in the model fitting.
tau	the tuning parameter used in the model fitting, available when penalty = 'tlp'.

glmtlp functions

'glmtlp()', 'cv.glmtlp()'

Author(s)

Chunlin Li, Yu Yang, Chong Wu Maintainer: Yu Yang <yang6367@umn.edu>

References

Shen, X., Pan, W., & Zhu, Y. (2012). Likelihood-based selection and sharp parameter estimation. Journal of the American Statistical Association, 107(497), 223-232.
Shen, X., Pan, W., Zhu, Y., & Zhou, H. (2013). On constrained and regularized high-dimensional regression. Annals of the Institute of Statistical Mathematics, 65(5), 807-832.
Li, C., Shen, X., & Pan, W. (2021). Inference for a Large Directed Graphical Model with Interventions. arXiv preprint arXiv:2110.03805.
Yang, Y., & Zou, H. (2014). A coordinate majorization descent algorithm for 11 penalized learning. Journal of Statistical Computation and Simulation, 84(1), 84-95.
Two R package Github: ncvreg and glmnet.

See Also

print, predict, coef and plot methods, and the cv.glmtlp function.

```
# Gaussian
X <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
fit1 <- glmtlp(X, y, family = "gaussian", penalty = "10")
fit2 <- glmtlp(X, y, family = "gaussian", penalty = "11")</pre>
```

plot.cv.glmtlp

```
fit3 <- glmtlp(X, y, family = "gaussian", penalty = "tlp")
# Binomial
X <- matrix(rnorm(100 * 20), 100, 20)
y <- sample(c(0, 1), 100, replace = TRUE)
fit <- glmtlp(X, y, family = "binomial", penalty = "l1")</pre>
```

plot.cv.glmtlp Plot Method for a "cv.glmtlp" Object

Description

Plots the cross-validation curve, and the upper and lower standard deviation curves, as a function of the lambda or kappa values.

Usage

```
## S3 method for class 'cv.glmtlp'
plot(x, vertical.line = TRUE, ...)
```

Arguments

x	Fitted cv.glmtlp object
vertical.line	Logical. Whether or not include a vertical line indicating the position of the
	index which gives the smallest CV error.
	Additional arguments.

Details

The generated plot is a ggplot object, and therefore, the users are able to customize the plots following the ggplot2 syntax.

Author(s)

Chunlin Li, Yu Yang, Chong Wu Maintainer: Yu Yang <yang6367@umn.edu>

References

Shen, X., Pan, W., & Zhu, Y. (2012). Likelihood-based selection and sharp parameter estimation. Journal of the American Statistical Association, 107(497), 223-232.
Shen, X., Pan, W., Zhu, Y., & Zhou, H. (2013). On constrained and regularized high-dimensional regression. Annals of the Institute of Statistical Mathematics, 65(5), 807-832.
Li, C., Shen, X., & Pan, W. (2021). Inference for a Large Directed Graphical Model with Interventions. arXiv preprint arXiv:2110.03805.
Yang, Y., & Zou, H. (2014). A coordinate majorization descent algorithm for 11 penalized learning. Journal of Statistical Computation and Simulation, 84(1), 84-95.
Two R package Github: ncvreg and glmnet.

Examples

```
X <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
cv.fit <- cv.glmtlp(X, y, family = "gaussian", penalty = "tlp")
plot(cv.fit)
plot(cv.fit, vertical.line = FALSE)
cv.fit2 <- cv.glmtlp(X, y, family = "gaussian", penalty = "10")
plot(cv.fit2)
plot(cv.fit2, vertical.line = FALSE)
data("gau_data")
cv.fit <- cv.glmtlp(gau_data$X, gau_data$y, family = "gaussian", penalty = "tlp")
plot(cv.fit)
data("bin_data")
cv.fit <- cv.glmtlp(bin_data$X, bin_data$y, family = "binomial", penalty = "11")
plot(cv.fit)</pre>
```

```
plot.glmtlp
```

Plot Method for a "glmtlp" Object

Description

Generates a solution path plot for a fitted "glmtlp" object.

Usage

```
## S3 method for class 'glmtlp'
plot(
    x,
    xvar = c("lambda", "kappa", "deviance", "l1_norm", "log_lambda"),
    xlab = iname,
    ylab = "Coefficients",
    title = "Solution Path",
    label = FALSE,
    label.size = 3,
    ...
)
```

Arguments

х	Fitted glmtlp object.
xvar	The x-axis variable to plot against, including "lambda", "kappa", "deviance", "l1_norm", and "log_lambda".
xlab	The x-axis label of the plot, default is "Lambda", "Kappa", "Fraction of Explained Deviance", "L1 Norm", and "Log Lambda".

12

ylab	The y-axis label of the plot, default is "Coefficients".
title	The main title of the plot, default is "Solution Path".
label	Logical, whether or not attach the labels for the non-zero coefficients, default is FALSE.
label.size	The text size of the labels, default is 3.
	Additional arguments.

Details

The generated plot is a ggplot object, and therefore, the users are able to customize the plots following the ggplot2 syntax.

Value

A ggplot object.

Author(s)

Chunlin Li, Yu Yang, Chong Wu Maintainer: Yu Yang <yang6367@umn.edu>

References

Shen, X., Pan, W., & Zhu, Y. (2012). Likelihood-based selection and sharp parameter estimation. Journal of the American Statistical Association, 107(497), 223-232.

Shen, X., Pan, W., Zhu, Y., & Zhou, H. (2013). On constrained and regularized high-dimensional regression. Annals of the Institute of Statistical Mathematics, 65(5), 807-832.

Li, C., Shen, X., & Pan, W. (2021). Inference for a Large Directed Graphical Model with Interventions. arXiv preprint arXiv:2110.03805.

Yang, Y., & Zou, H. (2014). A coordinate majorization descent algorithm for 11 penalized learning. Journal of Statistical Computation and Simulation, 84(1), 84-95. Two R package Github: ncvreg and glmnet.

See Also

print, predict, coef and plot methods, and the cv.glmtlp function.

```
X <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
fit <- glmtlp(X, y, family = "gaussian", penalty = "l1")
plot(fit, xvar = "lambda")
plot(fit, xvar = "log_lambda")
plot(fit, xvar = "l1_norm")
plot(fit, xvar = "log_lambda", label = TRUE)
fit2 <- glmtlp(X, y, family = "gaussian", penalty = "l0")
plot(fit2, xvar = "kappa", label = TRUE)</pre>
```

predict.cv.glmtlp Predict Method for a "cv.glmtlp" Object.

Description

Makes predictions for a cross-validated glmtlp model, using the stored "glmtlp" object, and the optimal value chosen for lambda.

Usage

```
## S3 method for class 'cv.glmtlp'
predict(
    object,
    X,
    type = c("link", "response", "class", "coefficients", "numnzs", "varnzs"),
    lambda = NULL,
    kappa = NULL,
    which = object$idx.min,
    ...
)
## S3 method for class 'cv.glmtlp'
coef(object, lambda = NULL, kappa = NULL, which = object$idx.min, ...)
```

Arguments

object	Fitted "cv.glmtlp" object.
Х	X Matrix of new values for X at which predictions are to be made. Must be a matrix.
type	Type of prediction to be made. For "gaussian" models, type "link" and "response" are equivalent and both give the fitted values. For "binomial" models, type "link" gives the linear predictors and type "response" gives the fitted probabilities. Type "coefficients" computes the coefficients at the pro- vided values of lambda or kappa. Note that for "binomial" models, results are returned only for the class corresponding to the second level of the factor re- sponse. Type "class" applies only to "binomial" models, and gives the class label corresponding to the maximum probability. Type "numnz" gives the to- tal number of non-zero coefficients for each value of lambda or kappa. Type "varnz" gives a list of indices of the nonzero coefficients for each value of lambda or kappa.
lambda	Value of the penalty parameter lambda at which predictions are to be made Default is NULL.
kappa	Value of the penalty parameter kappa at which predictions are to be made. Default is NULL.
which	Index of the penalty parameter lambda or kappa sequence at which predictions are to be made. Default is the idx.min stored in the $cv.glmtp$ object.
	Additional arguments.

predict.glmtlp

Value

The object returned depends on type.

Author(s)

Chunlin Li, Yu Yang, Chong Wu Maintainer: Yu Yang <yang6367@umn.edu>

References

Shen, X., Pan, W., & Zhu, Y. (2012). Likelihood-based selection and sharp parameter estimation. Journal of the American Statistical Association, 107(497), 223-232.
Shen, X., Pan, W., Zhu, Y., & Zhou, H. (2013). On constrained and regularized high-dimensional regression. Annals of the Institute of Statistical Mathematics, 65(5), 807-832.
Li, C., Shen, X., & Pan, W. (2021). Inference for a Large Directed Graphical Model with Interventions. arXiv preprint arXiv:2110.03805.
Yang, Y., & Zou, H. (2014). A coordinate majorization descent algorithm for 11 penalized learning. Journal of Statistical Computation and Simulation, 84(1), 84-95.
Two R package Github: ncvreg and glmnet.

See Also

print, predict, coef and plot methods, and the cv.glmtlp function.

Examples

```
X <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
cv.fit <- cv.glmtlp(X, y, family = "gaussian", penalty = "l1")
predict(cv.fit, X = X[1:5, ])
coef(cv.fit)
predict(cv.fit, X = X[1:5, ], lambda = 0.1)</pre>
```

predict.glmtlp Predict Method for a "glmtlp" Object

Description

Predicts fitted values, logits, coefficients and more from a fitted glmtlp object.

Usage

```
## S3 method for class 'glmtlp'
predict(
   object,
   X,
   type = c("link", "response", "class", "coefficients", "numnz", "varnz"),
```

```
lambda = NULL,
 kappa = NULL,
 which = 1:(ifelse(object$penalty == "l0", length(object$kappa),
    length(object$lambda))),
  • • •
)
## S3 method for class 'glmtlp'
coef(
 object,
 lambda = NULL,
 kappa = NULL,
 which = 1:(ifelse(object$penalty == "l0", length(object$kappa),
   length(object$lambda))),
 drop = TRUE,
  . . .
)
```

Arguments

object	Fitted glmtlp model object.
X	Matrix of new values for X at which predictions are to be made. Must be a matrix. This argument will not used for type=c("coefficients","numnz", "varnz").
type	Type of prediction to be made. For "gaussian" models, type "link" and "response" are equivalent and both give the fitted values. For "binomial" models, type "link" gives the linear predictors and type "response" gives the fitted probabilities. Type "coefficients" computes the coefficients at the pro- vided values of lambda or kappa. Note that for "binomial" models, results are returned only for the class corresponding to the second level of the factor re- sponse. Type "class" applies only to "binomial" models, and gives the class label corresponding to the maximum probability. Type "numnz" gives the to- tal number of non-zero coefficients for each value of lambda or kappa. Type "varnz" gives a list of indices of the nonzero coefficients for each value of lambda or kappa.
lambda	Value of the penalty parameter lambda at which predictions are to be made Default is NULL.
kappa	Value of the penalty parameter kappa at which predictions are to be made. Default is NULL.
which	Index of the penalty parameter lambda or kappa sequence at which predictions are to be made. Default are the indices for the entire penalty parameter sequence.
	Additional arguments.
drop	Whether or not keep the dimension that is of length 1.

Details

coef(...) is equivalent to predict(type="coefficients",...)

16

predict.glmtlp

Value

The object returned depends on type.

Author(s)

Chunlin Li, Yu Yang, Chong Wu Maintainer: Yu Yang <yang6367@umn.edu>

References

Shen, X., Pan, W., & Zhu, Y. (2012). Likelihood-based selection and sharp parameter estimation. Journal of the American Statistical Association, 107(497), 223-232.
Shen, X., Pan, W., Zhu, Y., & Zhou, H. (2013). On constrained and regularized high-dimensional regression. Annals of the Institute of Statistical Mathematics, 65(5), 807-832.
Li, C., Shen, X., & Pan, W. (2021). Inference for a Large Directed Graphical Model with Interventions. arXiv preprint arXiv:2110.03805.
Yang, Y., & Zou, H. (2014). A coordinate majorization descent algorithm for 11 penalized learning. Journal of Statistical Computation and Simulation, 84(1), 84-95.
Two R package Github: ncvreg and glmnet.

See Also

print, predict, coef and plot methods, and the cv.glmtlp function.

```
# Gaussian
X <- matrix(rnorm(100 * 20), 100, 20)
y <- rnorm(100)
fit <- glmtlp(X, y, family = "gaussian", penalty = "l1")</pre>
predict(fit, X = X[1:5, ])
coef(fit)
predict(fit, X = X[1:5, ], lambda = 0.1)
# Binomial
X <- matrix(rnorm(100 * 20), 100, 20)
y <- sample(c(0,1), 100, replace = TRUE)</pre>
fit <- glmtlp(X, y, family = "binomial", penalty = "l1")</pre>
coef(fit)
predict(fit, X = X[1:5, ], type = "response")
predict(fit, X = X[1:5, ], type = "response", lambda = 0.01)
predict(fit, X = X[1:5, ], type = "class", lambda = 0.01)
predict(fit, X = X[1:5, ], type = "numnz", lambda = 0.01)
```

setup_lambda

Description

Generate lambda sequence.

Usage

setup_lambda(X, y, weights, lambda.min.ratio, nlambda)

Arguments

Х	Input matrix, of dimension nobs x nvars; each row is an observation vector.	
У	Response variable, of length nobs. For family="gaussian", it should be quan- titative; for family="binomial", it should be either a factor with two levels or a binary vector.	
weights	Observation weights.	
lambda.min.ratio		
	The smallest value for lambda, as a fraction of lambda.max, the smallest value for which all coefficients are zero. The default depends on the sample size nobs relative to the number of variables nvars.	
nlambda	The number of lambda values.	

Index

```
* datasets
    bin_data, 2
    gau_data, 5
* models
    cv.glmtlp, 3
    glmtlp,7
    plot.cv.glmtlp, 11
    plot.glmtlp, 12
    predict.cv.glmtlp, 14
    predict.glmtlp, 15
* plot
    plot.cv.glmtlp, 11
    plot.glmtlp, 12
* regression
    cv.glmtlp, 3
    glmtlp,7
    predict.cv.glmtlp, 14
    predict.glmtlp, 15
bin_data, 2
coef.cv.glmtlp(predict.cv.glmtlp), 14
coef.glmtlp(predict.glmtlp), 15
cv.glmtlp, 3
gau_data, 5
gen.binomial.data,5
gen.gaussian.data,6
glmtlp,7
plot.cv.glmtlp, 11
plot.glmtlp, 12
predict.cv.glmtlp, 14
\texttt{predict.glmtlp}, 15
```

 $\texttt{setup_lambda, 18}$