Package 'logisticPCA'

October 13, 2022
Type Package
Title Binary Dimensionality Reduction
Version 0.2
Date 2016-03-13
NeedsCompilation yes
ByteCompile yes
Author Andrew J. Landgraf
Maintainer Andrew J. Landgraf andland@gmail.com
Description Dimensionality reduction techniques for binary data including logistic PCA.
License MIT + file LICENSE
LazyData true
URL https://github.com/andland/logisticPCA
Imports ggplot2
Suggests rARPACK ($>=0.10-0$), testthat ($>=0.11 .0$), knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 5.0.1
Repository CRAN
Date/Publication 2016-03-14 07:54:24

R topics documented:

logisticPCA-package . 2
convexLogisticPCA . 2
cv.clpca . 4
cv.lpca . 5
cv.lsvd . 6
fitted.lpca . 7
fitted.lsvd . 7
house_votes84 . 8
inv.logit.mat 9
logisticPCA 10
logisticSVD 11
log_like_Bernoulli 13
plot.clpca 13
plot.cv.lpca 14
plot.lpca 15
plot.lsvd 16
predict.clpca 17
predict.lpca 18
predict.lsvd 19
project.Fantope 20
Index 21
logisticPCA-package logisticPCA-package

Description

Dimension reduction techniques for binary data including logistic PCA

Author(s)

Andrew J. Landgraf

$$
\text { convexLogisticPCA } \quad \text { Convex Logistic Principal Component Analysis }
$$

Description

Dimensionality reduction for binary data by extending Pearson's PCA formulation to minimize Binomial deviance. The convex relaxation to projection matrices, the Fantope, is used.

Usage

convexLogisticPCA(x, k = 2, m = 4, quiet = TRUE, partial_decomp = FALSE, max_iters = 1000, conv_criteria = 1e-06, random_start = FALSE, start_H, mu, main_effects = TRUE, ss_factor = 4, weights, M)

Arguments

x	matrix with all binary entries
k	number of principal components to return
m	value to approximate the saturated model
quiet	logical; whether the calculation should give feedback
partial_decomp	logical; if TRUE, the function uses the rARPACK package to quickly initialize H when $n \operatorname{col}(x)$ is large and k is small
max_iters	number of maximum iterations
conv_criteria	convergence criteria. The difference between average deviance in successive iterations
random_start	logical; whether to randomly inititalize the parameters. If FALSE, function will use an eigen-decomposition as starting value
start_H	starting value for the Fantope matrix
mu	main effects vector. Only used if main_effects = TRUE
main_effects	logical; whether to include main effects in the model
ss_factor	step size multiplier. Amount by which to multiply the step size. Quadratic convergence rate can be proven for ss_factor = 1, but I have found higher values sometimes work better. The default is ss_factor $=4$. If it is not converging, try ss_factor $=1$.
weights	an optional matrix of the same size as the x with non-negative weights
M	depricated. Use m instead

Value
An S3 object of class clpca which is a list with the following components:

mu	the main effects
H	a rank k Fantope matrix
U	a ceiling(k)-dimentional orthonormal matrix with the loadings PCs m
the princial component scores iters the parameter inputed	
loss_trace number of iterations required for convergence proj_loss_trace	the trace of the average negative log likelihood using the Fantope matrix
prop_deviance_expl	
the trace of the average negative log likelihood using the projection matrix	

References

Landgraf, A.J. \& Lee, Y., 2015. Dimensionality reduction for binary data through the projection of natural parameters. arXiv preprint arXiv:1510.06112.

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
# run convex logistic PCA on it
clpca = convexLogisticPCA(mat, k = 1, m = 4)
```

```
cv.clpca CV for convex logistic PCA
```


Description

Run cross validation on dimension and m for convex logistic PCA

Usage

```
cv.clpca(x, ks, ms = seq(2, 10, by = 2), folds = 5, quiet = TRUE, Ms, ...)
```


Arguments

x	matrix with all binary entries
ks	the different dimensions k to try
ms	the different approximations to the saturated model m to try
folds	if folds is a scalar, then it is the number of folds. If it is a vector, it should be the same length as the number of rows in x
quiet	logical; whether the function should display progress Ms
\ldots	depricated. Use ms instead

Value

A matrix of the CV negative log likelihood with k in rows and m in columns

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
```

```
    # generate a binary matrix
    mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
    ## Not run:
    negloglikes = cv.clpca(mat, ks = 1:9, ms = 3:6)
    plot(negloglikes)
    ## End(Not run)
```

 cv.lpca CV for logistic PCA

Description

Run cross validation on dimension and m for logistic PCA

Usage

$\mathrm{cv} . \operatorname{lpca}(\mathrm{x}, \mathrm{ks}, \mathrm{ms}=\mathrm{seq}(2,10$, by $=2)$, folds $=5$, quiet $=$ TRUE, Ms, \ldots)

Arguments

x
ks the different dimensions k to try
ms the different approximations to the saturated model m to try
folds if folds is a scalar, then it is the number of folds. If it is a vector, it should be the same length as the number of rows in x
quiet logical; whether the function should display progress
Ms depricated. Use ms instead
... Additional arguments passed to logisticPCA

Value

A matrix of the CV negative log likelihood with k in rows and m in columns

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
## Not run:
```

```
    negloglikes = cv.lpca(mat, ks = 1:9, ms = 3:6)
    plot(negloglikes)
    ## End(Not run)
```

cv.lsvd CV for logistic SVD

Description

Run cross validation on dimension for logistic SVD

Usage

$c v . \operatorname{lsvd}(x, k s, f o l d s=5$, quiet $=$ TRUE, \ldots)

Arguments

x	matrix with all binary entries
ks	the different dimensions k to try
folds	if folds is a scalar, then it is the number of folds. If it is a vector, it should be the same length as the number of rows in x
quiet	logical; whether the function should display progress
\ldots	Additional arguments passed to logisticSVD

Value

A matrix of the CV negative \log likelihood with k in rows

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
## Not run:
negloglikes = cv.lsvd(mat, ks = 1:9)
plot(negloglikes)
## End(Not run)
```


Description

Fit a lower dimentional representation of the binary matrix using logistic PCA

Usage

\#\# S3 method for class 'lpca'
fitted(object, type = c("link", "response"), ...)

Arguments

object	logistic PCA object the type of fitting required. type $="$ "link" gives output on the logit scale and type $=$ "response" gives output on the probability scale
\ldots	Additional arguments

Examples

```
    # construct a low rank matrix in the logit scale
    rows = 100
    cols = 10
    set.seed(1)
    mat_logit = outer(rnorm(rows), rnorm(cols))
    # generate a binary matrix
    mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
    # run logistic PCA on it
    lpca = logisticPCA(mat, k = 1, m = 4, main_effects = FALSE)
    # construct fitted probability matrix
    fit = fitted(lpca, type = "response")
```

 fitted.lsvd
 Fitted values using logistic SVD

Description

Fit a lower dimentional representation of the binary matrix using logistic SVD

Usage

\#\# S3 method for class 'lsvd'
fitted(object, type = c("link", "response"), ...)

Arguments

```
    object logistic SVD object
    type the type of fitting required. type = "link" gives output on the logit scale and
        type = "response" gives output on the probability scale
    ... Additional arguments
```


Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
# run logistic SVD on it
lsvd = logisticSVD(mat, k = 1, main_effects = FALSE, partial_decomp = FALSE)
# construct fitted probability matrix
fit = fitted(lsvd, type = "response")
```

house_votes84 United States Congressional Voting Records 1984

Description

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16 key votes identified by the CQA. The CQA lists nine different types of votes: voted for, paired for, and announced for (these three simplified to yea), voted against, paired against, and announced against (these three simplified to nay), voted present, voted present to avoid conflict of interest, and did not vote or otherwise make a position known (these three simplified to an unknown disposition).

Usage

house_votes84

Format

A matrix with all binary or missing entries. There are 435 rows corresponding members of congress and 16 columns representing the bills being voted on. The row names refer to the political party of the members of congress

Source

Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Volume XL: Congressional Quarterly Inc., Washington, D.C., 1985

Data converted to a matrix from:
Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

Examples

```
data(house_votes84)
congress_lpca = logisticPCA(house_votes84, k = 2, m = 4)
```

inv.logit.mat Inverse logit for matrices

Description

Apply the inverse logit function to a matrix, element-wise. It generalizes the inv. logit function from the gtools library to matrices

Usage

inv.logit.mat(x, min $=0, \max =1$)

Arguments

x
matrix
min Lower end of logit interval
$\max \quad$ Upper end of logit interval

Examples

```
(mat = matrix(rnorm(10 * 5), nrow = 10, ncol = 5))
inv.logit.mat(mat)
```


Description

Dimensionality reduction for binary data by extending Pearson's PCA formulation to minimize Binomial deviance

Usage

logisticPCA(x, k = 2, m = 4, quiet = TRUE, partial_decomp = FALSE, max_iters = 1000, conv_criteria = 1e-05, random_start = FALSE, start_U, start_mu, main_effects = TRUE, validation, M, use_irlba)

Arguments

x	matrix with all binary entries
k	number of principal components to return
m	value to approximate the saturated model. If $m=0, \mathrm{~m}$ is solved for
quiet	logical; whether the calculation should give feedback
partial_decomp	logical; if TRUE, the function uses the rARPACK package to more quickly calculate the eigen-decomposition. This is usually faster than standard eigendecomponsition when $\operatorname{ncol}(x)>100$ and k is small
max_iters	number of maximum iterations
conv_criteria	convergence criteria. The difference between average deviance in successive iterations
random_start	logical; whether to randomly inititalize the parameters. If FALSE, function will use an eigen-decomposition as starting value
start_U	starting value for the orthogonal matrix
start_mu	starting value for mu. Only used if main_effects = TRUE
main_effects	logical; whether to include main effects in the model
validation	optional validation matrix. If supplied and $m=0$, the validation data is used to solve for m
M	depricated. Use minstead
use_irlba	depricated. Use partial_decomp instead

Value

An S3 object of class lpca which is a list with the following components:

mu	the main effects
U	a k-dimentional orthonormal matrix with the loadings
PCs	the princial component scores

m the parameter inputed or solved for
iters number of iterations required for convergence
loss_trace the trace of the average negative log likelihood of the algorithm. Should be non-increasing
prop_deviance_expl
the proportion of deviance explained by this model. If main_effects = TRUE, the null model is just the main effects, otherwise the null model estimates 0 for all natural parameters.

References

Landgraf, A.J. \& Lee, Y., 2015. Dimensionality reduction for binary data through the projection of natural parameters. arXiv preprint arXiv:1510.06112.

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
# run logistic PCA on it
lpca = logisticPCA(mat, k = 1, m = 4, main_effects = FALSE)
# Logistic PCA likely does a better job finding latent features
# than standard PCA
plot(svd(mat_logit)$u[, 1], lpca$PCs[, 1])
plot(svd(mat_logit)$u[, 1], svd(mat)$u[, 1])
```

logisticSVD Logistic Singular Value Decomposition

Description

Dimensionality reduction for binary data by extending SVD to minimize binomial deviance.

Usage

logisticSVD(x, k = 2, quiet = TRUE, max_iters = 1000, conv_criteria = 1e-05, random_start = FALSE, start_A, start_B, start_mu, partial_decomp = TRUE, main_effects = TRUE, use_irlba)

Arguments

x
k
quiet logical; whether the calculation should give feedback
max_iters number of maximum iterations
conv_criteria convergence criteria. The difference between average deviance in successive iterations
random_start logical; whether to randomly inititalize the parameters. If FALSE, algorithm will use an SVD as starting value
start_A starting value for the left singular vectors
start_B starting value for the right singular vectors
start_mu starting value for mu. Only used if main_effects = TRUE
partial_decomp logical; if TRUE, the function uses the rARPACK package to more quickly calculate the SVD. When the number of columns is small, the approximation may be less accurate and slower
main_effects logical; whether to include main effects in the model
use_irlba depricated. Use partial_decomp instead

Value

An S3 object of class lsvd which is a list with the following components:
mu the main effects
A a k-dimentional orthogonal matrix with the scaled left singular vectors
B a k-dimentional orthonormal matrix with the right singular vectors
iters number of iterations required for convergence
loss_trace the trace of the average negative log likelihood of the algorithm. Should be non-increasing
prop_deviance_expl
the proportion of deviance explained by this model. If main_effects = TRUE, the null model is just the main effects, otherwise the null model estimates 0 for all natural parameters.

References

de Leeuw, Jan, 2006. Principal component analysis of binary data by iterated singular value decomposition. Computational Statistics \& Data Analysis 50 (1), 21-39.

Collins, M., Dasgupta, S., \& Schapire, R. E., 2001. A generalization of principal components analysis to the exponential family. In NIPS, 617-624.

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
# run logistic SVD on it
lsvd = logisticSVD(mat, k = 1, main_effects = FALSE, partial_decomp = FALSE)
# Logistic SVD likely does a better job finding latent features
# than standard SVD
plot(svd(mat_logit)$u[, 1], lsvd$A[, 1])
plot(svd(mat_logit)$u[, 1], svd(mat)$u[, 1])
```

log_like_Bernoulli Bernoulli Log Likelihood

Description

Calculate the Bernoulli log likelihood of matrix

Usage

log_like_Bernoulli(x, theta, q)

Arguments

x
matrix with all binary entries
theta estimated natural parameters with same dimensions as x
$q \quad$ instead of x, you can input matrix q which is -1 if $x=0$, 1 if $x=1$, and 0 if is.na(x)

```
plot.clpca Plot convex logistic PCA
```


Description

Plots the results of a convex logistic PCA

Usage

\#\# S3 method for class 'clpca'
plot(x, type = c("trace", "loadings", "scores"), ...)

Arguments

x
type
convex logistic PCA object
the type of plot type $=$ "trace" plots the algorithms progress by iteration, type $=$ "loadings" plots the first 2 PC loadings, type = "scores" plots the first 2 PC scores
$\ldots \quad$ Additional arguments

Examples

\# construct a low rank matrix in the logit scale
rows $=100$
cols = 10
set.seed(1)
mat_logit $=$ outer(rnorm(rows), rnorm(cols))
\# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
\# run convex logistic PCA on it
clpca $=$ convexLogisticPCA(mat, $k=2, m=4$, main_effects = FALSE)
\#\# Not run:
plot(clpca)
\#\# End(Not run)
plot.cv.lpca
Plot CV for logistic PCA

Description

Plot cross validation results logistic PCA

Usage

```
\#\# S3 method for class 'cv.lpca'
plot(x, ...)
```


Arguments

x	a cv.lpca object
\ldots	Additional arguments

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
## Not run:
negloglikes = cv.lpca(dat, ks = 1:9, ms = 3:6)
plot(negloglikes)
## End(Not run)
```

plot.lpca

Plot logistic PCA

Description

Plots the results of a logistic PCA

Usage

```
## S3 method for class 'lpca'
plot(x, type = c("trace", "loadings", "scores"), ...)
```


Arguments

x
type
logistic PCA object
the type of plot type = "trace" plots the algorithms progress by iteration, type = "loadings" plots the first 2 principal component loadings, type = "scores" plots the loadings first 2 principal component scores
... Additional arguments

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
# run logistic PCA on it
```

```
lpca = logisticPCA(mat, k = 2, m = 4, main_effects = FALSE)
## Not run:
plot(lpca)
## End(Not run)
```

plot.lsvd

Plot logistic SVD

Description

Plots the results of a logistic SVD

Usage

\#\# S3 method for class 'lsvd'
plot(x, type = c("trace", "loadings", "scores"), ...)

Arguments

x
type
logistic SVD object
the type of plot type = "trace" plots the algorithms progress by iteration, type = "loadings" plots the first 2 principal component loadings, type = "scores" plots the loadings first 2 principal component scores
... Additional arguments

Examples

```
# construct a low rank matrix in the logit scale
rows = 100
cols = 10
set.seed(1)
mat_logit = outer(rnorm(rows), rnorm(cols))
# generate a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
# run logistic SVD on it
lsvd = logisticSVD(mat, k = 2, main_effects = FALSE, partial_decomp = FALSE)
## Not run:
plot(lsvd)
## End(Not run)
```


Description

Predict Convex Logistic PCA scores or reconstruction on new data

Usage

```
## S3 method for class 'clpca'
predict(object, newdata, type = c("PCs", "link", "response"),
    ...)
```


Arguments

object	convex logistic PCA object newdata
matrix with all binary entries. If missing, will use the data that object was fit on	
type	the type of fitting required. type $=$ "PCs" gives the PC scores, type $=" l i n k "$ gives matrix on the logit scale and type $=$ "response" gives matrix on the prob- ability scale
\ldots	Additional arguments

Examples

```
# construct a low rank matrices in the logit scale
rows = 100
cols = 10
set.seed(1)
loadings = rnorm(cols)
mat_logit = outer(rnorm(rows), loadings)
mat_logit_new = outer(rnorm(rows), loadings)
# convert to a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
mat_new = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit_new)) * 1.0
# run logistic PCA on it
clpca = convexLogisticPCA(mat, k = 1, m = 4, main_effects = FALSE)
PCs = predict(clpca, mat_new)
```


Description

Predict Logistic PCA scores or reconstruction on new data

Usage

```
## S3 method for class 'lpca'
predict(object, newdata, type = c("PCs", "link", "response"),
    ...)
```


Arguments

object	logistic PCA object
newdata	matrix with all binary entries. If missing, will use the data that object was fit on
type	the type of fitting required. type $=" P C s "$ gives the PC scores, type $="$ "link" gives matrix on the logit scale and type $="$ response" gives matrix on the prob- ability scale
\ldots	Additional arguments

Examples

```
# construct a low rank matrices in the logit scale
rows = 100
cols = 10
set.seed(1)
loadings = rnorm(cols)
mat_logit = outer(rnorm(rows), loadings)
mat_logit_new = outer(rnorm(rows), loadings)
# convert to a binary matrix
mat = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
mat_new = (matrix(runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit_new)) * 1.0
# run logistic PCA on it
lpca = logisticPCA(mat, k = 1, m = 4, main_effects = FALSE)
PCs = predict(lpca, mat_new)
```


predict.lsvd
 Predict Logistic SVD left singular values or reconstruction on new data

Description

Predict Logistic SVD left singular values or reconstruction on new data

Usage

```
## S3 method for class 'lsvd'
predict(object, newdata, quiet = TRUE, max_iters = 1000,
    conv_criteria = 1e-05, random_start = FALSE, start_A, type = c("PCs",
    "link", "response"), ...)
```


Arguments

object newdata	logistic SVD object matrix with all binary entries. If missing, will use the data that object was fit on
quiet	logical; whether the calculation should give feedback max_iters conv_criteria number of maximum iterations convergence criteria. The difference between average deviance in successive iterations
random_start	logical; whether to randomly inititalize the parameters. If FALSE, algorithm implicitly starts A with 0 matrix
start_A	starting value for the left singular vectors the type of fitting required. type = "PCs" gives the left singular vectors, type = "link" gives matrix on the logit scale and type = "response" gives matrix on the probability scale
..	Additional arguments

Details

Minimizes binomial deviance for new data by finding the optimal left singular vector matrix (A), given B and mu. Assumes the columns of the right singular vector matrix (B) are orthonormal.

Examples

```
# construct a low rank matrices in the logit scale
rows = 100
cols = 10
set.seed(1)
loadings = rnorm(cols)
mat_logit = outer(rnorm(rows), loadings)
mat_logit_new = outer(rnorm(rows), loadings)
```

\# convert to a binary matrix
mat $=$ (matrix (runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit)) * 1.0
mat_new $=(\operatorname{matrix}($ runif(rows * cols), rows, cols) <= inv.logit.mat(mat_logit_new)) * 1.0
\# run logistic PCA on it
lsvd $=$ logisticSVD(mat, $k=1$, main_effects = FALSE, partial_decomp = FALSE)

A_new = predict(lsvd, mat_new)
project. Fantope Project onto the Fantope

Description

Project a symmetric matrix onto the convex set of the rank k Fantope

Usage

project.Fantope (x, k)

Arguments

x
a symmetric matrix
k
the rank of the Fantope desired

Value

H a rank k Fantope matrix
$\mathrm{U} \quad$ a k-dimentional orthonormal matrix with the first k eigenvectors of H

Index

```
* datasets
    house_votes84,8
* package
    logisticPCA-package, 2
convexLogisticPCA, 2
cv.clpca,4
cv.lpca,5
cv.lsvd,6
fitted.lpca,7
fitted.lsvd,7
house_votes84,8
inv.logit.mat, }
log_like_Bernoulli,13
logisticPCA,10
logisticPCA-package, 2
logisticSVD,11
plot.clpca,13
plot.cv.lpca,14
plot.lpca, 15
plot.lsvd, 16
predict.clpca,17
predict.lpca,18
predict.lsvd, 19
project.Fantope,20
```

