
Package ‘matlib’
December 8, 2022

Type Package

Title Matrix Functions for Teaching and Learning Linear Algebra and
Multivariate Statistics

Version 0.9.6

Date 2022-12-06

Maintainer Michael Friendly <friendly@yorku.ca>

Description A collection of matrix functions for teaching and learning matrix
linear algebra as used in multivariate statistical methods. These functions are
mainly for tutorial purposes in learning matrix algebra ideas using R. In some
cases, functions are provided for concepts available elsewhere in R, but where
the function call or name is not obvious. In other cases, functions are provided
to show or demonstrate an algorithm. In addition, a collection of functions are
provided for drawing vector diagrams in 2D and 3D.

License GPL (>= 2)

Language en-US

URL https://github.com/friendly/matlib

BugReports https://github.com/friendly/matlib/issues

LazyData TRUE

Suggests knitr, rmarkdown, carData, webshot2, markdown

Imports xtable, MASS, rgl, car, methods

VignetteBuilder knitr

RoxygenNote 7.2.2

Encoding UTF-8

NeedsCompilation no

Author Michael Friendly [aut, cre] (<https://orcid.org/0000-0002-3237-0941>),
John Fox [aut],
Phil Chalmers [aut],
Georges Monette [ctb],
Gaston Sanchez [ctb]

Repository CRAN

Date/Publication 2022-12-08 17:20:15 UTC

1

https://github.com/friendly/matlib
https://github.com/friendly/matlib/issues
https://orcid.org/0000-0002-3237-0941

2 R topics documented:

R topics documented:
matlib-package . 3
adjoint . 4
angle . 5
arc . 6
arrows3d . 7
buildTmat . 9
cholesky . 10
circle3d . 11
class . 12
cofactor . 12
cone3d . 13
corner . 14
Det . 15
echelon . 16
Eigen . 17
gaussianElimination . 18
Ginv . 20
GramSchmidt . 21
gsorth . 22
Inverse . 23
J . 24
len . 24
LU . 25
matrix2latex . 26
minor . 27
MoorePenrose . 28
mpower . 29
plot.regvec3d . 30
plotEqn . 32
plotEqn3d . 34
pointOnLine . 35
powerMethod . 36
printMatEqn . 38
printMatrix . 39
Proj . 40
QR . 41
R . 42
regvec3d . 43
rowadd . 46
rowCofactors . 47
rowMinors . 48
rowmult . 49
rowswap . 50
showEig . 51
showEqn . 52
Solve . 54

matlib-package 3

SVD . 56
svdDemo . 57
swp . 58
symMat . 59
therapy . 60
tr . 61
vandermode . 61
vec . 62
vectors . 62
vectors3d . 64
workers . 66
xprod . 67

Index 68

matlib-package matlib: Matrix Functions for Teaching and Learning Linear Algebra
and Multivariate Statistics.

Description

These functions are designed mainly for tutorial purposes in teaching & learning matrix algebra
ideas and applications to statistical methods using R.

Details

In some cases, functions are provided for concepts available elsewhere in R, but where the function
call or name is not obvious. In other cases, functions are provided to show or demonstrate an
algorithm, sometimes providing a verbose argument to print the details of computations.

In addition, a collection of functions are provided for drawing vector diagrams in 2D and 3D.

These are not meant for production uses. Other methods are more efficient for larger problems.

Topics

The functions in this package are grouped under the following topics

• Convenience functions:
tr, R, J, len, vec, Proj, mpower, vandermode

• Determinants: functions for calculating determinants by cofactor expansion
minor, cofactor, rowMinors, rowCofactors

• Elementary row operations: functions for solving linear equations "manually" by the steps
used in row echelon form and Gaussian elimination
rowadd, rowmult, rowswap

• Linear equations: functions to illustrate linear equations of the form $A x = b$
showEqn, plotEqn

4 adjoint

• Gaussian elimination: functions for illustrating Gaussian elimination for solving systems of
linear equations of the form $A x = b$.
gaussianElimination, Inverse, inv, echelon, Ginv, LU, cholesky, swp

• Eigenvalues: functions to illustrate the algorithms for calculating eigenvalues and eigenvectors
eigen, SVD, powerMethod, showEig

• Vector diagrams: functions for drawing vector diagrams in 2D and 3D
arrows3d, corner, arc, pointOnLine, vectors, vectors3d, regvec3d

Most of these ideas and implementations arose in courses and books by the authors. [Psychol-
ogy 6140](http://friendly.apps01.yorku.ca/psy6140/) was a starting point. Fox (1984) introduced
illustrations of vector geometry.

macOS Installation Note

The functions that draw 3D graphs use the rgl package. On macOS, the rgl package requires that
XQuartz be installed. After installing XQuartz, it’s necessary either to log out of and back into your
macOS account or to reboot your Mac.

References

Fox, J. Linear Statistical Models and Related Methods. John Wiley and Sons, 1984

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors,
and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA,
June 27 - June 30, 2016.

adjoint Calculate the Adjoint of a matrix

Description

This function calculates the adjoint of a square matrix, defined as the transposed matrix of cofactors
of all elements.

Usage

adjoint(A)

Arguments

A a square matrix

Value

a matrix of the same size as A

Author(s)

Michael Friendly

https://www.xquartz.org/

angle 5

See Also

Other determinants: Det(), cofactor(), minor(), rowCofactors(), rowMinors()

Examples

A <- J(3, 3) + 2*diag(3)
adjoint(A)

angle Angle between two vectors

Description

angle calculates the angle between two vectors.

Usage

angle(x, y, degree = TRUE)

Arguments

x a numeric vector

y a numeric vector

degree logical; should the angle be computed in degrees? If FALSE the result is returned
in radians

Value

a scalar containing the angle between the vectors

See Also

len

Examples

x <- c(2,1)
y <- c(1,1)
angle(x, y) # degrees
angle(x, y, degree = FALSE) # radians

visually
xlim <- c(0,2.5)
ylim <- c(0,2)
proper geometry requires asp=1
plot(xlim, ylim, type="n", xlab="X", ylab="Y", asp=1,

main = expression(theta == 18.4))
abline(v=0, h=0, col="gray")

6 arc

vectors(rbind(x,y), col=c("red", "blue"), cex.lab=c(2, 2))
text(.5, .37, expression(theta))

####
x <- c(-2,1)
y <- c(1,1)
angle(x, y) # degrees
angle(x, y, degree = FALSE) # radians

visually
xlim <- c(-2,1.5)
ylim <- c(0,2)
proper geometry requires asp=1
plot(xlim, ylim, type="n", xlab="X", ylab="Y", asp=1,

main = expression(theta == 108.4))
abline(v=0, h=0, col="gray")
vectors(rbind(x,y), col=c("red", "blue"), cex.lab=c(2, 2))
text(0, .4, expression(theta), cex=1.5)

arc Draw an arc showing the angle between vectors

Description

A utility function for drawing vector diagrams. Draws a circular arc to show the angle between two
vectors in 2D or 3D.

Usage

arc(p1, p2, p3, d = 0.1, absolute = TRUE, ...)

Arguments

p1 Starting point of first vector

p2 End point of first vector, and also start of second vector

p3 End point of second vector

d The distance from p2 along each vector for drawing their corner

absolute logical; if TRUE, d is taken as an absolute distance along the vectors; otherwise
it is calculated as a relative distance, i.e., a fraction of the length of the vectors.

... Arguments passed to link[graphics]{lines} or to link[rgl]{lines3d}

Details

In this implementation, the two vectors are specified by three points, p1, p2, p3, meaning a line
from p1 to p2, and another line from p2 to p3.

arrows3d 7

Value

none

References

https://math.stackexchange.com/questions/1507248/find-arc-between-two-tips-of-vectors-in-3d

See Also

Other vector diagrams: Proj(), arrows3d(), circle3d(), corner(), plot.regvec3d(), pointOnLine(),
regvec3d(), vectors3d(), vectors()

Examples

library(rgl)
vec <- rbind(diag(3), c(1,1,1))
rownames(vec) <- c("X", "Y", "Z", "J")
open3d()
aspect3d("iso")
vectors3d(vec, col=c(rep("black",3), "red"), lwd=2)
draw the XZ plane, whose equation is Y=0
planes3d(0, 0, 1, 0, col="gray", alpha=0.2)
show projections of the unit vector J
segments3d(rbind(c(1,1,1), c(1, 1, 0)))
segments3d(rbind(c(0,0,0), c(1, 1, 0)))
segments3d(rbind(c(1,0,0), c(1, 1, 0)))
segments3d(rbind(c(0,1,0), c(1, 1, 0)))
segments3d(rbind(c(1,1,1), c(1, 0, 0)))

show some orthogonal vectors
p1 <- c(0,0,0)
p2 <- c(1,1,0)
p3 <- c(1,1,1)
p4 <- c(1,0,0)
show some angles
arc(p1, p2, p3, d=.2)
arc(p4, p1, p2, d=.2)
arc(p3, p1, p2, d=.2)

arrows3d Draw 3D arrows

Description

Draws nice 3D arrows with cone3ds at their tips.

https://math.stackexchange.com/questions/1507248/find-arc-between-two-tips-of-vectors-in-3d

8 arrows3d

Usage

arrows3d(
coords,
headlength = 0.035,
head = "end",
scale = NULL,
radius = NULL,
ref.length = NULL,
draw = TRUE,
...

)

Arguments

coords A 2n x 3 matrix giving the start and end (x,y,z) coordinates of n arrows, in pairs.
The first vector in each pair is taken as the starting coordinates of the arrow, the
second as the end coordinates.

headlength Length of the arrow heads, in device units
head Position of the arrow head. Only head="end" is presently implemented.
scale Scale factor for base and tip of arrow head, a vector of length 3, giving relative

scale factors for X, Y, Z
radius radius of the base of the arrow head
ref.length length of vector to be used to scale all of the arrow heads (permits drawing arrow

heads of the same size as in a previous call); if NULL, arrows are scaled relative
to the longest vector

draw if TRUE (the default) draw the arrow(s)
... rgl arguments passed down to segments3d and cone3d, for example, col and

lwd

Details

This function is meant to be analogous to arrows, but for 3D plots using rgl. headlength, scale
and radius set the length, scale factor and base radius of the arrow head, a 3D cone. The units of
these are all in terms of the ranges of the current rgl 3D scene.

Value

invisibly returns the length of the vector used to scale the arrow heads

Author(s)

January Weiner, borrowed from the pca3d package, slightly modified by John Fox

See Also

vectors3d

Other vector diagrams: Proj(), arc(), circle3d(), corner(), plot.regvec3d(), pointOnLine(),
regvec3d(), vectors3d(), vectors()

buildTmat 9

Examples

#none yet

buildTmat Build/Get transformation matrices

Description

Recover the history of the row operations that have been performed. This function combines the
transformation matrices into a single transformation matrix representing all row operations or may
optionally print all the individual operations which have been performed.

Usage

buildTmat(x, all = FALSE)

S3 method for class 'trace'
as.matrix(x, ...)

S3 method for class 'trace'
print(x, ...)

Arguments

x a matrix A, joined with a vector of constants, b, that has been passed to gaussianElimination
or the row operator matrix functions

all logical; print individual transformation ies?

... additional arguments

Value

the transformation matrix or a list of individual transformation matrices

Author(s)

Phil Chalmers

See Also

echelon, gaussianElimination

10 cholesky

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

b <- c(8, -11, -3)

using row operations to reduce below diagonal to 0
Abt <- Ab <- cbind(A, b)
Abt <- rowadd(Abt, 1, 2, 3/2)
Abt <- rowadd(Abt, 1, 3, 1)
Abt <- rowadd(Abt, 2, 3, -4)
Abt

build T matrix and multiply by original form
(T <- buildTmat(Abt))
T %*% Ab # same as Abt

print all transformation matrices
buildTmat(Abt, TRUE)

invert transformation matrix to reverse operations
inv(T) %*% Abt

gaussian elimination
(soln <- gaussianElimination(A, b))
T <- buildTmat(soln)
inv(T) %*% soln

cholesky Cholesky Square Root of a Matrix

Description

Returns the Cholesky square root of the non-singular, symmetric matrix X. The purpose is mainly
to demonstrate the algorithm used by Kennedy & Gentle (1980).

Usage

cholesky(X, tol = sqrt(.Machine$double.eps))

Arguments

X a square symmetric matrix

tol tolerance for checking for 0 pivot

Value

the Cholesky square root of X

circle3d 11

Author(s)

John Fox

References

Kennedy W.J. Jr, Gentle J.E. (1980). Statistical Computing. Marcel Dekker.

See Also

chol for the base R function

gsorth for Gram-Schmidt orthogonalization of a data matrix

Examples

C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C
cholesky(C)
cholesky(C) %*% t(cholesky(C)) # check

circle3d Draw a horizontal circle

Description

A utility function for drawing a horizontal circle in the (x,y) plane in a 3D graph

Usage

circle3d(center, radius, segments = 100, fill = FALSE, ...)

Arguments

center A vector of length 3.

radius A positive number.

segments An integer specifying the number of line segments to use to draw the circle
(default, 100).

fill logical; if TRUE, the circle is filled (the default is FALSE).

... rgl material properties for the circle.

See Also

Other vector diagrams: Proj(), arc(), arrows3d(), corner(), plot.regvec3d(), pointOnLine(),
regvec3d(), vectors3d(), vectors()

12 cofactor

Examples

ctr=c(0,0,0)
circle3d(ctr, 3, fill = TRUE)
circle3d(ctr - c(-1,-1,0), 3, col="blue")
circle3d(ctr + c(1,1,0), 3, col="red")

class Class Data Set

Description

A small artificial data set used to illustrate statistical concepts.

Usage

data("class")

Format

A data frame with 15 observations on the following 4 variables.

sex a factor with levels F M

age a numeric vector

height a numeric vector

weight a numeric vector

Examples

data(class)
plot(class)

cofactor Cofactor of A[i,j]

Description

Returns the cofactor of element (i,j) of the square matrix A, i.e., the signed minor of the sub-matrix
that results when row i and column j are deleted.

Usage

cofactor(A, i, j)

cone3d 13

Arguments

A a square matrix
i row index
j column index

Value

the cofactor of A[i,j]

Author(s)

Michael Friendly

See Also

rowCofactors for all cofactors of a given row

Other determinants: Det(), adjoint(), minor(), rowCofactors(), rowMinors()

Examples

M <- matrix(c(4, -12, -4,
2, 1, 3,
-1, -3, 2), 3, 3, byrow=TRUE)

cofactor(M, 1, 1)
cofactor(M, 1, 2)
cofactor(M, 1, 3)

cone3d Draw a 3D cone

Description

Draws a cone in 3D from a base point to a tip point, with a given radius at the base. This is used
to draw nice arrow heads in arrows3d.

Usage

cone3d(base, tip, radius = 10, col = "grey", scale = NULL, ...)

Arguments

base coordinates of base of the cone
tip coordinates of tip of the cone
radius radius of the base
col color
scale scale factor for base and tip
... rgl arguments passed down; see rgl.material

14 corner

Value

returns the integer object ID of the shape that was added to the scene

Author(s)

January Weiner, borrowed from from the pca3d package

See Also

arrows3d

Examples

none yet

corner Draw a corner showing the angle between two vectors

Description

A utility function for drawing vector diagrams. Draws two line segments to indicate the angle
between two vectors, typically used for indicating orthogonal vectors are at right angles in 2D and
3D diagrams.

Usage

corner(p1, p2, p3, d = 0.1, absolute = TRUE, ...)

Arguments

p1 Starting point of first vector

p2 End point of first vector, and also start of second vector

p3 End point of second vector

d The distance from p2 along each vector for drawing their corner

absolute logical; if TRUE, d is taken as an absolute distance along the vectors; otherwise
it is calculated as a relative distance, i.e., a fraction of the length of the vectors.
See pointOnLine for the precise definition.

... Arguments passed to link[graphics]{lines} or to link[rgl]{lines3d}

Details

In this implementation, the two vectors are specified by three points, p1, p2, p3, meaning a line
from p1 to p2, and another line from p2 to p3.

Value

none

Det 15

See Also

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), plot.regvec3d(), pointOnLine(),
regvec3d(), vectors3d(), vectors()

Examples

none yet

Det Determinant of a Square Matrix

Description

Returns the determinant of a square matrix X, computed either by Gaussian elimination, expansion
by cofactors, or as the product of the eigenvalues of the matrix. If the latter, X must be symmetric.

Usage

Det(
X,
method = c("elimination", "eigenvalues", "cofactors"),
verbose = FALSE,
fractions = FALSE,
...

)

Arguments

X a square matrix

method one of ‘"elimination"‘ (the default), ‘"eigenvalues"‘, or ‘"cofactors"‘ (for com-
putation by minors and cofactors)

verbose logical; if TRUE, print intermediate steps

fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions
function; if you require greater accuracy, you can set the cycles (default 10)
and/or max.denominator (default 2000) arguments to fractions as a global
option, e.g., options(fractions=list(cycles=100, max.denominator=10^4)).

... arguments passed to gaussianElimination or Eigen

Value

the determinant of X

Author(s)

John Fox

16 echelon

See Also

det for the base R function

gaussianElimination, Eigen

Other determinants: adjoint(), cofactor(), minor(), rowCofactors(), rowMinors()

Examples

A <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
A
Det(A)
Det(A, verbose=TRUE, fractions=TRUE)
B <- matrix(1:9, 3, 3) # a singular matrix
B
Det(B)
C <- matrix(c(1, .5, .5, 1), 2, 2) # square, symmetric, nonsingular
Det(C)
Det(C, method="eigenvalues")
Det(C, method="cofactors")

echelon Echelon Form of a Matrix

Description

Returns the (reduced) row-echelon form of the matrix A, using gaussianElimination.

Usage

echelon(A, B, reduced = TRUE, ...)

Arguments

A coefficient matrix

B right-hand side vector or matrix. If B is a matrix, the result gives solutions for
each column as the right-hand side of the equations with coefficients in A.

reduced logical; should reduced row echelon form be returned? If FALSE a non-reduced
row echelon form will be returned

... other arguments passed to gaussianElimination

Details

When the matrix A is square and non-singular, the reduced row-echelon result will be the identity
matrix, while the row-echelon from will be an upper triangle matrix. Otherwise, the result will have
some all-zero rows, and the rank of the matrix is the number of not all-zero rows.

Eigen 17

Value

the reduced echelon form of X.

Author(s)

John Fox

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

b <- c(8, -11, -3)
echelon(A, b, verbose=TRUE, fractions=TRUE) # reduced row-echelon form
echelon(A, b, reduced=FALSE, verbose=TRUE, fractions=TRUE) # row-echelon form

A <- matrix(c(1,2,3,4,5,6,7,8,10), 3, 3) # a nonsingular matrix
A
echelon(A, reduced=FALSE) # the row-echelon form of A
echelon(A) # the reduced row-echelon form of A

b <- 1:3
echelon(A, b) # solving the matrix equation Ax = b
echelon(A, diag(3)) # inverting A

B <- matrix(1:9, 3, 3) # a singular matrix
B
echelon(B)
echelon(B, reduced=FALSE)
echelon(B, b)
echelon(B, diag(3))

Eigen Eigen Decomposition of a Square Symmetric Matrix

Description

Eigen calculates the eigenvalues and eigenvectors of a square, symmetric matrix using the iterated
QR decomposition

Usage

Eigen(X, tol = sqrt(.Machine$double.eps), max.iter = 100, retain.zeroes = TRUE)

18 gaussianElimination

Arguments

X a square symmetric matrix
tol tolerance passed to QR

max.iter maximum number of QR iterations
retain.zeroes logical; retain 0 eigenvalues?

Value

a list of two elements: values– eigenvalues, vectors– eigenvectors

Author(s)

John Fox and Georges Monette

See Also

eigen

SVD

Examples

C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C
EC <- Eigen(C) # eigenanalysis of C
EC$vectors %*% diag(EC$values) %*% t(EC$vectors) # check

gaussianElimination Gaussian Elimination

Description

gaussianElimination demonstrates the algorithm of row reduction used for solving systems of
linear equations of the form Ax = B. Optional arguments verbose and fractions may be used to
see how the algorithm works.

Usage

gaussianElimination(
A,
B,
tol = sqrt(.Machine$double.eps),
verbose = FALSE,
latex = FALSE,
fractions = FALSE

)

S3 method for class 'enhancedMatrix'
print(x, ...)

gaussianElimination 19

Arguments

A coefficient matrix
B right-hand side vector or matrix. If B is a matrix, the result gives solutions for

each column as the right-hand side of the equations with coefficients in A.
tol tolerance for checking for 0 pivot
verbose logical; if TRUE, print intermediate steps
latex logical; if TRUE, and verbose is TRUE, print intermediate steps using LaTeX equa-

tion outputs rather than R output
fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions

function; if you require greater accuracy, you can set the cycles (default 10)
and/or max.denominator (default 2000) arguments to fractions as a global
option, e.g., options(fractions=list(cycles=100, max.denominator=10^4)).

x matrix to print
... arguments to pass down

Value

If B is absent, returns the reduced row-echelon form of A. If B is present, returns the reduced row-
echelon form of A, with the same operations applied to B.

Author(s)

John Fox

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

b <- c(8, -11, -3)
gaussianElimination(A, b)
gaussianElimination(A, b, verbose=TRUE, fractions=TRUE)
gaussianElimination(A, b, verbose=TRUE, fractions=TRUE, latex=TRUE)

determine whether matrix is solvable
gaussianElimination(A, numeric(3))

find inverse matrix by elimination: A = I -> A^-1 A = A^-1 I -> I = A^-1
gaussianElimination(A, diag(3))
inv(A)

works for 1-row systems (issue # 30)
A2 <- matrix(c(1, 1), nrow=1)
b2 = 2
gaussianElimination(A2, b2)
showEqn(A2, b2)
plotEqn works for this case
plotEqn(A2, b2)

20 Ginv

Ginv Generalized Inverse of a Matrix

Description

Ginv returns an arbitrary generalized inverse of the matrix A, using gaussianElimination.

Usage

Ginv(A, tol = sqrt(.Machine$double.eps), verbose = FALSE, fractions = FALSE)

Arguments

A numerical matrix

tol tolerance for checking for 0 pivot

verbose logical; if TRUE, print intermediate steps

fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions
function; if you require greater accuracy, you can set the cycles (default 10)
and/or max.denominator (default 2000) arguments to fractions as a global
option, e.g., options(fractions=list(cycles=100, max.denominator=10^4)).

Details

A generalized inverse is a matrix A− satisfying AA−A = A.

The purpose of this function is mainly to show how the generalized inverse can be computed using
Gaussian elimination.

Value

the generalized inverse of A, expressed as fractions if fractions=TRUE, or rounded

Author(s)

John Fox

See Also

ginv for a more generally usable function

Examples

A <- matrix(c(1,2,3,4,5,6,7,8,10), 3, 3) # a nonsingular matrix
A
Ginv(A, fractions=TRUE) # a generalized inverse of A = inverse of A
round(Ginv(A) %*% A, 6) # check

B <- matrix(1:9, 3, 3) # a singular matrix

GramSchmidt 21

B
Ginv(B, fractions=TRUE) # a generalized inverse of B
B %*% Ginv(B) %*% B # check

GramSchmidt Gram-Schmidt Orthogonalization of a Matrix

Description

Carries out simple Gram-Schmidt orthogonalization of a matrix. Treating the columns of the ma-
trix X in the given order, each successive column after the first is made orthogonal to all previous
columns by subtracting their projections on the current column.

Usage

GramSchmidt(
X,
normalize = TRUE,
verbose = FALSE,
tol = sqrt(.Machine$double.eps)

)

Arguments

X a matrix

normalize logical; should the resulting columns be normalized to unit length?

verbose logical; if TRUE, print intermediate steps

tol the tolerance for detecting linear dependencies in the columns of a. The default
is .Machine$double.eps

Value

A matrix of the same size as X, with orthogonal columns

Author(s)

Phil Chalmers, John Fox

Examples

(xx <- matrix(c(1:3, 3:1, 1, 0, -2), 3, 3))
crossprod(xx)
(zz <- GramSchmidt(xx, normalize=FALSE))
zapsmall(crossprod(zz))

normalized
(zz <- GramSchmidt(xx))

22 gsorth

zapsmall(crossprod(zz))

print steps
GramSchmidt(xx, verbose=TRUE)

A non-invertible matrix; hence, it is of deficient rank
(xx <- matrix(c(1:3, 3:1, 1, 0, -1), 3, 3))
R(xx)
crossprod(xx)
GramSchmidt finds an orthonormal basis
(zz <- GramSchmidt(xx))
zapsmall(crossprod(zz))

gsorth Gram-Schmidt Orthogonalization of a Matrix

Description

Calculates a matrix with uncorrelated columns using the Gram-Schmidt process

Usage

gsorth(y, order, recenter = TRUE, rescale = TRUE, adjnames = TRUE)

Arguments

y a numeric matrix or data frame

order if specified, a permutation of the column indices of y

recenter logical; if TRUE, the result has same means as the original y, else means = 0 for
cols 2:p

rescale logical; if TRUE, the result has same sd as original, else, sd = residual sd

adjnames logical; if TRUE, colnames are adjusted to Y1, Y2.1, Y3.12, ...

Details

This function, originally from the heplots package has now been deprecated in matlib. Use
GramSchmidt instead.

Value

a matrix/data frame with uncorrelated columns

Inverse 23

Examples

Not run:
set.seed(1234)
A <- matrix(c(1:60 + rnorm(60)), 20, 3)
cor(A)
G <- gsorth(A)
zapsmall(cor(G))

End(Not run)

Inverse Inverse of a Matrix

Description

Uses gaussianElimination to find the inverse of a square, non-singular matrix, X .

Usage

Inverse(X, tol = sqrt(.Machine$double.eps), ...)

Arguments

X a square numeric matrix

tol tolerance for checking for 0 pivot

... other arguments passed on

Details

The method is purely didactic: The identity matrix, I , is appended to X , giving X|I . Applying
Gaussian elimination gives I|X−1, and the portion corresponding to X−1 is returned.

Value

the inverse of X

Author(s)

John Fox

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

Inverse(A)
Inverse(A, verbose=TRUE, fractions=TRUE)

24 len

J Create a vector, matrix or array of constants

Description

This function creates a vector, matrix or array of constants, typically used for the unit vector or unit
matrix in matrix expressions.

Usage

J(..., constant = 1, dimnames = NULL)

Arguments

... One or more arguments supplying the dimensions of the array, all non-negative
integers

constant The value of the constant used in the array

dimnames Either NULL or the names for the dimensions.

Details

The "dimnames" attribute is optional: if present it is a list with one component for each dimension,
either NULL or a character vector of the length given by the element of the "dim" attribute for that
dimension. The list can be named, and the list names will be used as names for the dimensions.

Examples

J(3)
J(2,3)
J(2,3,2)
J(2,3, constant=2, dimnames=list(letters[1:2], LETTERS[1:3]))

X <- matrix(1:6, nrow=2, ncol=3)
dimnames(X) <- list(sex=c("M", "F"), day=c("Mon", "Wed", "Fri"))
J(2) %*% X # column sums
X %*% J(3) # row sums

len Length of a Vector or Column Lengths of a Matrix

Description

len calculates the Euclidean length (also called Euclidean norm) of a vector or the length of each
column of a numeric matrix.

LU 25

Usage

len(X)

Arguments

X a numeric vector or matrix

Value

a scalar or vector containing the length(s)

See Also

norm for more general matrix norms

Examples

len(1:3)
len(matrix(1:9, 3, 3))

distance between two vectors
len(1:3 - c(1,1,1))

LU LU Decomposition

Description

LU computes the LU decomposition of a matrix,A, such that PA = LU , where L is a lower triangle
matrix, U is an upper triangle, and P is a permutation matrix.

Usage

LU(A, b, tol = sqrt(.Machine$double.eps), verbose = FALSE, ...)

Arguments

A coefficient matrix

b right-hand side vector. When supplied the returned object will also contain the
solved d and x elements

tol tolerance for checking for 0 pivot

verbose logical; if TRUE, print intermediate steps

... additional arguments passed to showEqn

26 matrix2latex

Details

The LU decomposition is used to solve the equation Ax = b by calculating L(Ux− d) = 0, where
Ld = b. If row exchanges are necessary for A then the permutation matrix P will be required
to exchange the rows in A; otherwise, P will be an identity matrix and the LU equation will be
simplified to A = LU .

Value

A list of matrix components of the solution, P, L and U. If b is supplied, the vectors d and x are also
returned.

Author(s)

Phil Chalmers

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

b <- c(8, -11, -3)
(ret <- LU(A)) # P is an identity; no row swapping
with(ret, L %*% U) # check that A = L * U
LU(A, b)

LU(A, b, verbose=TRUE)
LU(A, b, verbose=TRUE, fractions=TRUE)

permutations required in this example
A <- matrix(c(1, 1, -1,

2, 2, 4,
1, -1, 1), 3, 3, byrow=TRUE)

b <- c(1, 2, 9)
(ret <- LU(A, b))
with(ret, P %*% A)
with(ret, L %*% U)

matrix2latex Convert matrix to LaTeX equation

Description

This function provides a soft-wrapper to xtable::xtableMatharray() with support for fractions
output and square brackets.

Usage

matrix2latex(x, fractions = FALSE, brackets = TRUE, ...)

minor 27

Arguments

x a matrix

fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions
function; if you require greater accuracy, you can set the cycles (default 10)
and/or max.denominator (default 2000) arguments to fractions as a global
option, e.g., options(fractions=list(cycles=100, max.denominator=10^4)).

brackets logical; include square brackets around the matrices?

... additional arguments passed to xtable::xtableMatharray()

Author(s)

Phil Chalmers

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

b <- c(8, -11, -3)

matrix2latex(cbind(A,b))
matrix2latex(cbind(A,b), digits = 0)
matrix2latex(cbind(A/2,b), fractions = TRUE)

minor Minor of A[i,j]

Description

Returns the minor of element (i,j) of the square matrix A, i.e., the determinant of the sub-matrix
that results when row i and column j are deleted.

Usage

minor(A, i, j)

Arguments

A a square matrix

i row index

j column index

Value

the minor of A[i,j]

28 MoorePenrose

Author(s)

Michael Friendly

See Also

rowMinors for all minors of a given row

Other determinants: Det(), adjoint(), cofactor(), rowCofactors(), rowMinors()

Examples

M <- matrix(c(4, -12, -4,
2, 1, 3,
-1, -3, 2), 3, 3, byrow=TRUE)

minor(M, 1, 1)
minor(M, 1, 2)
minor(M, 1, 3)

MoorePenrose Moore-Penrose inverse of a matrix

Description

The Moore-Penrose inverse is a generalization of the regular inverse of a square, non-singular,
symmetric matrix to other cases (rectangular, singular), yet retain similar properties to a regular
inverse.

Usage

MoorePenrose(X, tol = sqrt(.Machine$double.eps))

Arguments

X A numeric matrix

tol Tolerance for a singular (rank-deficient) matrix

Value

The Moore-Penrose inverse of X

Examples

X <- matrix(rnorm(20), ncol=2)
introduce a linear dependency in X[,3]
X <- cbind(X, 1.5*X[, 1] - pi*X[, 2])

Y <- MoorePenrose(X)
demonstrate some properties of the M-P inverse
X Y X = X

mpower 29

round(X %*% Y %*% X - X, 8)
Y X Y = Y
round(Y %*% X %*% Y - Y, 8)
X Y = t(X Y)
round(X %*% Y - t(X %*% Y), 8)
Y X = t(Y X)
round(Y %*% X - t(Y %*% X), 8)

mpower Matrix Power

Description

A simple function to demonstrate calculating the power of a square symmetric matrix in terms of
its eigenvalues and eigenvectors.

Usage

mpower(A, p, tol = sqrt(.Machine$double.eps))

Arguments

A a square symmetric matrix

p matrix power, not necessarily a positive integer

tol tolerance for determining if the matrix is symmetric

Details

The matrix power p can be a fraction or other non-integer. For example, p=1/2 and p=1/3 give a
square-root and cube-root of the matrix.

Negative powers are also allowed. For example, p=-1 gives the inverse and p=-1/2 gives the inverse
square-root.

Value

A raised to the power p: A^p

See Also

The {%^%} operator in the expm package is far more efficient

Examples

C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C
mpower(C, 2)
zapsmall(mpower(C, -1))
solve(C) # check

30 plot.regvec3d

plot.regvec3d Plot method for regvec3d objects

Description

The plot method for regvec3d objects uses the low-level graphics tools in this package to draw 3D
and 3D vector diagrams reflecting the partial and marginal relations of y to x1 and x2 in a bivariate
multiple linear regression model, lm(y ~ x1 + x2).

The summary method prints the vectors and their vector lengths, followed by the summary for the
model.

Usage

S3 method for class 'regvec3d'
plot(
x,
y,
dimension = 3,
col = c("black", "red", "blue", "brown", "lightgray"),
col.plane = "gray",
cex.lab = 1.2,
show.base = 2,
show.marginal = FALSE,
show.hplane = TRUE,
show.angles = TRUE,
error.sphere = c("none", "e", "y.hat"),
scale.error.sphere = x$scale,
level.error.sphere = 0.95,
grid = FALSE,
add = FALSE,
...

)

S3 method for class 'regvec3d'
summary(object, ...)

S3 method for class 'regvec3d'
print(x, ...)

Arguments

x A “regvec3d” object

y Ignored; only included for compatibility with the S3 generic

dimension Number of dimensions to plot: 3 (default) or 2

plot.regvec3d 31

col A vector of 5 colors. col[1] is used for the y and residual (e) vectors, and for
x1 and x2; col[2] is used for the vectors y -> yhat and y -> e; col[3] is used
for the vectors yhat -> b1 and yhat -> b2;

col.plane Color of the base plane in a 3D plot or axes in a 2D plot

cex.lab character expansion applied to vector labels. May be a number or numeric vector
corresponding to the the rows of X, recycled as necessary.

show.base If show.base > 0, draws the base plane in a 3D plot; if show.base > 1, the plane
is drawn thicker

show.marginal If TRUE also draws lines showing the marginal relations of y on x1 and on x2

show.hplane If TRUE, draws the plane defined by y, yhat and the origin in the 3D

show.angles If TRUE, draw and label the angle between the x1 and x2 and between y and yhat,
corresponding respectively to the correlation between the xs and the multiple
correlation

error.sphere Plot a sphere (or in 2D, a circle) of radius proportional to the length of the
residual vector, centered either at the origin ("e") or at the fitted-values vector
("y.hat"; the default is "none".)

scale.error.sphere

Whether to scale the error sphere if error.sphere="y.hat"; defaults to TRUE
if the vectors representing the variables are scaled, in which case the oblique
projections of the error spheres can represent confidence intervals for the coef-
ficients; otherwise defaults to FALSE.

level.error.sphere

The confidence level for the error sphere, applied if scale.error.sphere=TRUE.

grid If TRUE, draws a light grid on the base plane

add If TRUE, add to the current plot; otherwise start a new rgl or plot window

... Parameters passed down to functions [unused now]

object A regvec3d object for the summary method

Details

A 3D diagram shows the vector y and the plane formed by the predictors, x1 and x2, where all
variables are represented in deviation form, so that the intercept need not be included.

A 2D diagram, using the first two columns of the result, can be used to show the projection of the
space in the x1, x2 plane.

The drawing functions vectors and link{vectors3d} used by the plot.regvec3d method only
work reasonably well if the variables are shown on commensurate scales, i.e., with either scale=TRUE
or normalize=TRUE.

Value

None

References

Fox, J. (2016). Applied Regression Analysis and Generalized Linear Models, 3rd ed., Sage, Chapter
10.

32 plotEqn

See Also

regvec3d, vectors3d, vectors

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), pointOnLine(),
regvec3d(), vectors3d(), vectors()

Examples

if (require(carData)) {
data("Duncan", package="carData")
dunc.reg <- regvec3d(prestige ~ income + education, data=Duncan)
plot(dunc.reg)
plot(dunc.reg, dimension=2)
plot(dunc.reg, error.sphere="e")
summary(dunc.reg)

Example showing Simpson's paradox
data("States", package="carData")
states.vec <- regvec3d(SATM ~ pay + percent, data=States, scale=TRUE)
plot(states.vec, show.marginal=TRUE)
plot(states.vec, show.marginal=TRUE, dimension=2)
summary(states.vec)

}

plotEqn Plot Linear Equations

Description

Shows what matrices A, b look like as the system of linear equations, Ax = b with two unknowns,
x1, x2, by plotting a line for each equation.

Usage

plotEqn(
A,
b,
vars,
xlim,
ylim,
col = 1:nrow(A),
lwd = 2,
lty = 1,
axes = TRUE,
labels = TRUE,
solution = TRUE

)

plotEqn 33

Arguments

A either the matrix of coefficients of a system of linear equations, or the matrix
cbind(A,b). The A matrix must have two columns.

b if supplied, the vector of constants on the right hand side of the equations, of
length matching the number of rows of A.

vars a numeric or character vector of names of the variables. If supplied, the length
must be equal to the number of unknowns in the equations, i.e., 2. The default
is c(expression(x[1]), expression(x[2])).

xlim horizontal axis limits for the first variable

ylim vertical axis limits for the second variable; if missing, ylim is calculated from
the range of the set of equations over the xlim.

col scalar or vector of colors for the lines, recycled as necessary

lwd scalar or vector of line widths for the lines, recycled as necessary

lty scalar or vector of line types for the lines, recycled as necessary

axes logical; draw horizontal and vertical axes through (0,0)?

labels logical, or a vector of character labels for the equations; if TRUE, each equation
is labeled using the character string resulting from showEqn, modified so that
the xs are properly subscripted.

solution logical; should the solution points for pairs of equations be marked?

Value

nothing; used for the side effect of making a plot

Author(s)

Michael Friendly

References

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors,
and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA,
June 27 - June 30, 2016.

See Also

showEqn

Examples

consistent equations
A<- matrix(c(1,2,3, -1, 2, 1),3,2)
b <- c(2,1,3)
showEqn(A, b)
plotEqn(A,b)

34 plotEqn3d

inconsistent equations
b <- c(2,1,6)
showEqn(A, b)
plotEqn(A,b)

plotEqn3d Plot Linear Equations in 3D

Description

Shows what matrices A, b look like as the system of linear equations, Ax = b with three unknowns,
x1, x2, and x3, by plotting a plane for each equation.

Usage

plotEqn3d(
A,
b,
vars,
xlim = c(-2, 2),
ylim = c(-2, 2),
zlim,
col = 2:(nrow(A) + 1),
alpha = 0.9,
labels = FALSE,
solution = TRUE,
axes = TRUE,
lit = FALSE

)

Arguments

A either the matrix of coefficients of a system of linear equations, or the matrix
cbind(A,b) The A matrix must have three columns.

b if supplied, the vector of constants on the right hand side of the equations, of
length matching the number of rows of A.

vars a numeric or character vector of names of the variables. If supplied, the length
must be equal to the number of unknowns in the equations. The default is
paste0("x", 1:ncol(A).

xlim axis limits for the first variable

ylim axis limits for the second variable

zlim horizontal axis limits for the second variable; if missing, zlim is calculated from
the range of the set of equations over the xlim and ylim

col scalar or vector of colors for the lines, recycled as necessary

alpha transparency applied to each plane

pointOnLine 35

labels logical, or a vector of character labels for the equations; not yet implemented.
solution logical; should the solution point for all equations be marked (if possible)
axes logical; whether to frame the plot with coordinate axes
lit logical, specifying if lighting calculation should take place on geometry; see

rgl.material

Value

nothing; used for the side effect of making a plot

Author(s)

Michael Friendly, John Fox

References

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors,
and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA,
June 27 - June 30, 2016.

Examples

three consistent equations in three unknowns
A <- matrix(c(13, -4, 2, -4, 11, -2, 2, -2, 8), 3,3)
b <- c(1,2,4)
plotEqn3d(A,b)

pointOnLine Position of a point along a line

Description

A utility function for drawing vector diagrams. Find position of an interpolated point along a line
from x1 to x2.

Usage

pointOnLine(x1, x2, d, absolute = TRUE)

Arguments

x1 A vector of length 2 or 3, representing the starting point of a line in 2D or 3D
space

x2 A vector of length 2 or 3, representing the ending point of a line in 2D or 3D
space

d The distance along the line from x1 to x2 of the point to be found.
absolute logical; if TRUE, d is taken as an absolute distance along the line; otherwise it is

calculated as a relative distance, i.e., a fraction of the length of the line.

36 powerMethod

Details

The function takes a step of length d along the line defined by the difference between the two
points, x2 - x1. When absolute=FALSE, this step is proportional to the difference, while when
absolute=TRUE, the difference is first scaled to unit length so that the step is always of length d.
Note that the physical length of a line in different directions in a graph depends on the aspect ratio
of the plot axes, and lines of the same length will only appear equal if the aspect ratio is one (asp=1
in 2D, or aspect3d("iso") in 3D).

Value

The interpolated point, a vector of the same length as x1

See Also

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), plot.regvec3d(),
regvec3d(), vectors3d(), vectors()

Examples

x1 <- c(0, 0)
x2 <- c(1, 4)
pointOnLine(x1, x2, 0.5)
pointOnLine(x1, x2, 0.5, absolute=FALSE)
pointOnLine(x1, x2, 1.1)

y1 <- c(1, 2, 3)
y2 <- c(3, 2, 1)
pointOnLine(y1, y2, 0.5)
pointOnLine(y1, y2, 0.5, absolute=FALSE)

powerMethod Power Method for Eigenvectors

Description

Finds a dominant eigenvalue, λ1, and its corresponding eigenvector, v1, of a square matrix by
applying Hotelling’s (1933) Power Method with scaling.

Usage

powerMethod(A, v = NULL, eps = 1e-06, maxiter = 100, plot = FALSE)

Arguments

A a square numeric matrix

v optional starting vector; if not supplied, it uses a unit vector of length equal to
the number of rows / columns of x.

powerMethod 37

eps convergence threshold for terminating iterations

maxiter maximum number of iterations

plot logical; if TRUE, plot the series of iterated eigenvectors?

Details

The method is based upon the fact that repeated multiplication of a matrix A by a trial vector v(k)1

converges to the value of the eigenvector,

v
(k+1)
1 = Av

(k)
1 /||Av(k)1 ||

The corresponding eigenvalue is then found as

λ1 =
vT1 Av1
vT1 v1

In pre-computer days, this method could be extended to find subsequent eigenvalue - eigenvector
pairs by "deflation", i.e., by applying the method again to the new matrix. A− λ1v1vT1 .

This method is still used in some computer-intensive applications with huge matrices where only
the dominant eigenvector is required, e.g., the Google Page Rank algorithm.

Value

a list containing the eigenvector (vector), eigenvalue (value), iterations (iter), and iteration his-
tory (vector_iterations)

Author(s)

Gaston Sanchez (from matrixkit)

References

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24, 417-441, and 498-520.

Examples

A <- cbind(c(7, 3), c(3, 6))
powerMethod(A)
eigen(A)$values[1] # check
eigen(A)$vectors[,1]

demonstrate how the power method converges to a solution
powerMethod(A, v = c(-.5, 1), plot = TRUE)

B <- cbind(c(1, 2, 0), c(2, 1, 3), c(0, 3, 1))
(rv <- powerMethod(B))

deflate to find 2nd latent vector
l <- rv$value

38 printMatEqn

v <- c(rv$vector)
B1 <- B - l * outer(v, v)
powerMethod(B1)
eigen(B)$vectors # check

a positive, semi-definite matrix, with eigenvalues 12, 6, 0
C <- matrix(c(7, 4, 1, 4, 4, 4, 1, 4, 7), 3, 3)
eigen(C)$vectors
powerMethod(C)

printMatEqn Print Matrices or Matrix Operations Side by Side

Description

This function is designed to print a collection of matrices, vectors, character strings and matrix
expressions side by side. A typical use is to illustrate matrix equations in a compact and compre-
hensible way.

Usage

printMatEqn(..., space = 1, tol = sqrt(.Machine$double.eps), fractions = FALSE)

Arguments

... matrices and character operations to be passed and printed to the console. These
can include named arguments, character string operation symbols (e.g., "+")

space amount of blank spaces to place around operations such as "+", "-", "=", etc

tol tolerance for rounding

fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions
function; if you require greater accuracy, you can set the cycles (default 10)
and/or max.denominator (default 2000) arguments to fractions as a global
option, e.g., options(fractions=list(cycles=100, max.denominator=10^4)).

Value

NULL; A formatted sequence of matrices and matrix operations is printed to the console

Author(s)

Phil Chalmers

See Also

showEqn

printMatrix 39

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

x <- c(2, 3, -1)

provide implicit or explicit labels
printMatEqn(AA = A, "*", xx = x, '=', b = A %*% x)
printMatEqn(A, "*", x, '=', b = A %*% x)
printMatEqn(A, "*", x, '=', A %*% x)

compare with showEqn
b <- c(4, 2, 1)
printMatEqn(A, x=paste0("x", 1:3),"=", b)
showEqn(A, b)

decimal example
A <- matrix(c(0.5, 1, 3, 0.75, 2.8, 4), nrow = 2)
x <- c(0.5, 3.7, 2.3)
y <- c(0.7, -1.2)
b <- A %*% x - y

printMatEqn(A, "*", x, "-", y, "=", b)
printMatEqn(A, "*", x, "-", y, "=", b, fractions=TRUE)

printMatrix Print a matrix, allowing fractions or LaTeX output

Description

Print a matrix, allowing fractions or LaTeX output

Usage

printMatrix(
A,
parent = TRUE,
fractions = FALSE,
latex = FALSE,
tol = sqrt(.Machine$double.eps)

)

Arguments

A A numeric matrix

parent flag used to search in the parent envir for suitable definitions of other arguments.
Set to TRUE (the default) if you want to only use the inputs provided.

40 Proj

fractions If TRUE, print numbers as rational fractions, using the fractions function;
if you require greater accuracy, you can set the cycles (default 10) and/or
max.denominator (default 2000) arguments to fractions as a global option,
e.g., options(fractions=list(cycles=100, max.denominator=10^4)).

latex If TRUE, print the matrix in LaTeX format

tol Tolerance for rounding small numbers to 0

Value

The formatted matrix

See Also

fractions

Examples

A <- matrix(1:12, 3, 4) / 6
printMatrix(A, fractions=TRUE)
printMatrix(A, latex=TRUE)

Proj Projection of Vector y on columns of X

Description

Fitting a linear model, lm(y ~ X), by least squares can be thought of geometrically as the orthog-
onal projection of y on the column space of X. This function is designed to allow exploration of
projections and orthogonality.

Usage

Proj(y, X, list = FALSE)

Arguments

y a vector, treated as a one-column matrix

X a vector or matrix. Number of rows of y and X must match

list logical; if FALSE, return just the projected vector; otherwise returns a list

Details

The projection is defined as Py where P = X(X ′X)−X ′ and X− is a generalized inverse.

Value

the projection of y on X (if list=FALSE) or a list with elements y and P

QR 41

Author(s)

Michael Friendly

See Also

Other vector diagrams: arc(), arrows3d(), circle3d(), corner(), plot.regvec3d(), pointOnLine(),
regvec3d(), vectors3d(), vectors()

Examples

X <- matrix(c(1, 1, 1, 1, 1, -1, 1, -1), 4,2, byrow=TRUE)
y <- 1:4
Proj(y, X[,1]) # project y on unit vector
Proj(y, X[,2])
Proj(y, X)

project unit vector on line between two points
y <- c(1,1)
p1 <- c(0,0)
p2 <- c(1,0)
Proj(y, cbind(p1, p2))

orthogonal complements
y <- 1:4
yp <-Proj(y, X, list=TRUE)
yp$y
P <- yp$P
IP <- diag(4) - P
yc <- c(IP %*% y)
crossprod(yp$y, yc)

P is idempotent: P P = P
P %*% P
all.equal(P, P %*% P)

QR QR Decomposition by Graham-Schmidt Orthonormalization

Description

QR computes the QR decomposition of a matrix, X , that is an orthonormal matrix, Q and an upper
triangular matrix, R, such that X = QR.

Usage

QR(X, tol = sqrt(.Machine$double.eps))

42 R

Arguments

X a numeric matrix

tol tolerance for detecting linear dependencies in the columns of X

Details

The QR decomposition plays an important role in many statistical techniques. In particular it can
be used to solve the equation Ax = b for given matrix A and vector b. The function is included
here simply to show the algorithm of Gram-Schmidt orthogonalization. The standard qr function is
faster and more accurate.

Value

a list of three elements, consisting of an orthonormal matrix Q, an upper triangular matrix R, and the
rank of the matrix X

Author(s)

John Fox and Georges Monette

See Also

qr

Examples

A <- matrix(c(1,2,3,4,5,6,7,8,10), 3, 3) # a square nonsingular matrix
res <- QR(A)
res
q <- res$Q
zapsmall(t(q) %*% q) # check that q' q = I
r <- res$R
q %*% r # check that q r = A

relation to determinant: det(A) = prod(diag(R))
det(A)
prod(diag(r))

B <- matrix(1:9, 3, 3) # a singular matrix
QR(B)

R Rank of a Matrix

Description

Returns the rank of a matrix X, using the QR decomposition, QR. Included here as a simple function,
because rank does something different and it is not obvious what to use for matrix rank.

regvec3d 43

Usage

R(X)

Arguments

X a matrix

Value

rank of X

See Also

qr

Examples

M <- outer(1:3, 3:1)
M
R(M)

M <- matrix(1:9, 3, 3)
M
R(M)
why rank=2?
echelon(M)

set.seed(1234)
M <- matrix(sample(1:9), 3, 3)
M
R(M)

regvec3d Vector space representation of a two-variable regression model

Description

regvec3d calculates the 3D vectors that represent the projection of a two-variable multiple regres-
sion model from n-D observation space into the 3D mean-deviation variable space that they span,
thus showing the regression of y on x1 and x2 in the model lm(y ~ x1 + x2). The result can be used
to draw 2D and 3D vector diagrams accurately reflecting the partial and marginal relations of y to
x1 and x2 as vectors in this representation.

44 regvec3d

Usage

regvec3d(x1, ...)

S3 method for class 'formula'
regvec3d(
formula,
data = NULL,
which = 1:2,
name.x1,
name.x2,
name.y,
name.e,
name.y.hat,
name.b1.x1,
name.b2.x2,
abbreviate = 0,
...

)

Default S3 method:
regvec3d(
x1,
x2,
y,
scale = FALSE,
normalize = TRUE,
name.x1 = deparse(substitute(x1)),
name.x2 = deparse(substitute(x2)),
name.y = deparse(substitute(y)),
name.e = "residuals",
name.y.hat = paste0(name.y, "hat"),
name.b1.x1 = paste0("b1", name.x1),
name.b2.x2 = paste0("b2", name.x2),
name.y1.hat = paste0(name.y, "hat 1"),
name.y2.hat = paste0(name.y, "hat 2"),
...

)

Arguments

x1 The generic argument or the first predictor passed to the default method

... Arguments passed to methods

formula A two-sided formula for the linear regression model. It must contain two quan-
titative predictors (x1 and x2) on the right-hand-side. If further predictors are
included, y, x1 and x2 are taken as residuals from the their linear fits on these
variables.

data A data frame in which the variables in the model are found

regvec3d 45

which Indices of predictors variables in the model taken as x1 and x2

name.x1 Name for x1 to be used in the result and plots. By default, this is taken as
the name of the x1 variable in the formula, possibly abbreviated according to
abbreviate.

name.x2 Ditto for the name of x2
name.y Ditto for the name of y
name.e Name for the residual vector. Default: "residuals"
name.y.hat Name for the fitted vector
name.b1.x1 Name for the vector corresponding to the partial coefficient of x1
name.b2.x2 Name for the vector corresponding to the partial coefficient of x2
abbreviate An integer. If abbreviate >0, the names of x1, x2 and y are abbreviated to this

length before being combined with the other name.* arguments
x2 second predictor variable in the model
y response variable in the model
scale logical; if TRUE, standardize each of y, x1, x2 to standard scores
normalize logical; if TRUE, normalize each vector relative to the maximum length of all
name.y1.hat Name for the vector corresponding to the marginal coefficient of x1
name.y2.hat Name for the vector corresponding to the marginal coefficient of x2

Details

If additional variables are included in the model, e.g., lm(y ~ x1 + x2 + x3 + ...), then y, x1 and
x2 are all taken as residuals from their separate linear fits on x3 + ..., thus showing their partial
relations net of (or adjusting for) these additional predictors.

A 3D diagram shows the vector y and the plane formed by the predictors, x1 and x2, where all
variables are represented in deviation form, so that the intercept need not be included.

A 2D diagram, using the first two columns of the result, can be used to show the projection of the
space in the x1, x2 plane.

In these views, the ANOVA representation of the various sums of squares for the regression pre-
dictors appears as the lengths of the various vectors. For example, the error sum of squares is the
squared length of the e vector, and the regression sum of squares is the squared length of the yhat
vector.

The drawing functions vectors and link{vectors3d} used by the plot.regvec3d method only
work reasonably well if the variables are shown on commensurate scales, i.e., with either scale=TRUE
or normalize=TRUE.

Value

An object of class “regvec3d”, containing the following components

model The “lm” object corresponding to lm(y ~ x1 + x2).
vectors A 9 x 3 matrix, whose rows correspond to the variables in the model, the residual

vector, the fitted vector, the partial fits for x1, x2, and the marginal fits of y on
x1 and x2. The columns effectively represent x1, x2, and y, but are named "x",
"y" and "z".

46 rowadd

Methods (by class)

• regvec3d(formula): Formula method for regvec3d

• regvec3d(default): Default method for regvec3d

References

Fox, J. (2016). Applied Regression Analysis and Generalized Linear Models, 3rd ed., Sage, Chapter
10.

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors,
and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA,
June 27 - June 30, 2016.

See Also

plot.regvec3d

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), plot.regvec3d(),
pointOnLine(), vectors3d(), vectors()

Examples

library(rgl)
therapy.vec <- regvec3d(therapy ~ perstest + IE, data=therapy)
therapy.vec
plot(therapy.vec, col.plane="darkgreen")
plot(therapy.vec, dimension=2)

rowadd Add multiples of rows to other rows

Description

The elementary row operation rowadd adds multiples of one or more rows to other rows of a matrix.
This is usually used as a means to solve systems of linear equations, of the formAx = b, and rowadd
corresponds to adding equals to equals.

Usage

rowadd(x, from, to, mult)

Arguments

x a numeric matrix, possibly consisting of the coefficient matrix, A, joined with a
vector of constants, b.

from the index of one or more source rows. If from is a vector, it must have the same
length as to.

to the index of one or more destination rows

mult the multiplier(s)

rowCofactors 47

Details

The functions rowmult and rowswap complete the basic operations used in reduction to row echelon
form and Gaussian elimination. These functions are used for demonstration purposes.

Value

the matrix x, as modified

See Also

echelon, gaussianElimination

Other elementary row operations: rowmult(), rowswap()

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

b <- c(8, -11, -3)

using row operations to reduce below diagonal to 0
Ab <- cbind(A, b)
(Ab <- rowadd(Ab, 1, 2, 3/2)) # row 2 <- row 2 + 3/2 row 1
(Ab <- rowadd(Ab, 1, 3, 1)) # row 3 <- row 3 + 1 row 1
(Ab <- rowadd(Ab, 2, 3, -4)) # row 3 <- row 3 - 4 row 2
multiply to make diagonals = 1
(Ab <- rowmult(Ab, 1:3, c(1/2, 2, -1)))
The matrix is now in triangular form

Could continue to reduce above diagonal to zero
echelon(A, b, verbose=TRUE, fractions=TRUE)

rowCofactors Row Cofactors of A[i,]

Description

Returns the vector of cofactors of row i of the square matrix A. The determinant, Det(A), can then
be found as M[i,] %*% rowCofactors(M,i) for any row, i.

Usage

rowCofactors(A, i)

Arguments

A a square matrix

i row index

48 rowMinors

Value

a vector of the cofactors of A[i,]

Author(s)

Michael Friendly

See Also

Det for the determinant

Other determinants: Det(), adjoint(), cofactor(), minor(), rowMinors()

Examples

M <- matrix(c(4, -12, -4,
2, 1, 3,
-1, -3, 2), 3, 3, byrow=TRUE)

minor(M, 1, 1)
minor(M, 1, 2)
minor(M, 1, 3)
rowCofactors(M, 1)
Det(M)
expansion by cofactors of row 1
M[1,] %*% rowCofactors(M,1)

rowMinors Row Minors of A[i,]

Description

Returns the vector of minors of row i of the square matrix A

Usage

rowMinors(A, i)

Arguments

A a square matrix

i row index

Value

a vector of the minors of A[i,]

Author(s)

Michael Friendly

rowmult 49

See Also

Other determinants: Det(), adjoint(), cofactor(), minor(), rowCofactors()

Examples

M <- matrix(c(4, -12, -4,
2, 1, 3,
-1, -3, 2), 3, 3, byrow=TRUE)

minor(M, 1, 1)
minor(M, 1, 2)
minor(M, 1, 3)
rowMinors(M, 1)

rowmult Multiply Rows by Constants

Description

Multiplies one or more rows of a matrix by constants. This corresponds to multiplying or dividing
equations by constants.

Usage

rowmult(x, row, mult)

Arguments

x a matrix, possibly consisting of the coefficient matrix, A, joined with a vector of
constants, b.

row index of one or more rows.

mult row multiplier(s)

Value

the matrix x, modified

See Also

echelon, gaussianElimination

Other elementary row operations: rowadd(), rowswap()

50 rowswap

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

b <- c(8, -11, -3)

using row operations to reduce below diagonal to 0
Ab <- cbind(A, b)
(Ab <- rowadd(Ab, 1, 2, 3/2)) # row 2 <- row 2 + 3/2 row 1
(Ab <- rowadd(Ab, 1, 3, 1)) # row 3 <- row 3 + 1 row 1
(Ab <- rowadd(Ab, 2, 3, -4))
multiply to make diagonals = 1
(Ab <- rowmult(Ab, 1:3, c(1/2, 2, -1)))
The matrix is now in triangular form

rowswap Interchange two rows of a matrix

Description

This elementary row operation corresponds to interchanging two equations.

Usage

rowswap(x, from, to)

Arguments

x a matrix, possibly consisting of the coefficient matrix, A, joined with a vector of
constants, b.

from source row.

to destination row

Value

the matrix x, with rows from and to interchanged

See Also

echelon, gaussianElimination

Other elementary row operations: rowadd(), rowmult()

showEig 51

showEig Show the eigenvectors associated with a covariance matrix

Description

This function is designed for illustrating the eigenvectors associated with the covariance matrix for a
given bivariate data set. It draws a data ellipse of the data and adds vectors showing the eigenvectors
of the covariance matrix.

Usage

showEig(
X,
col.vec = "blue",
lwd.vec = 3,
mult = sqrt(qchisq(levels, 2)),
asp = 1,
levels = c(0.5, 0.95),
plot.points = TRUE,
add = !plot.points,
...

)

Arguments

X A two-column matrix or data frame

col.vec color for eigenvectors

lwd.vec line width for eigenvectors

mult length multiplier(s) for eigenvectors

asp aspect ratio of plot, set to asp=1 by default, and passed to dataEllipse

levels passed to dataEllipse determining the coverage of the data ellipse(s)

plot.points logical; should the points be plotted?

add logical; should this call add to an existing plot?

... other arguments passed to link[car]{dataEllipse}

Author(s)

Michael Friendly

See Also

dataEllipse

52 showEqn

Examples

x <- rnorm(200)
y <- .5 * x + .5 * rnorm(200)
X <- cbind(x,y)
showEig(X)

Duncan data
data(Duncan, package="carData")
showEig(Duncan[, 2:3], levels=0.68)
showEig(Duncan[,2:3], levels=0.68, robust=TRUE, add=TRUE, fill=TRUE)

showEqn Show Matrices (A, b) as Linear Equations

Description

Shows what matrices A, b look like as the system of linear equations, Ax = b, but written out as a
set of equations.

Usage

showEqn(
A,
b,
vars,
simplify = FALSE,
reduce = FALSE,
fractions = FALSE,
latex = FALSE

)

Arguments

A either the matrix of coefficients of a system of linear equations, or the matrix
cbind(A,b). Alternatively, can be of class 'lm' to print the equations for the
design matrix in a linear regression model

b if supplied, the vector of constants on the right hand side of the equations. When
omitted the values b1, b2, ..., bn will be used as placeholders

vars a numeric or character vector of names of the variables. If supplied, the length
must be equal to the number of unknowns in the equations. The default is
paste0("x", 1:ncol(A).

simplify logical; try to simplify the equations?
reduce logical; only show the unique linear equations
fractions logical; express numbers as rational fractions, using the fractions function;

if you require greater accuracy, you can set the cycles (default 10) and/or
max.denominator (default 2000) arguments to fractions as a global option,
e.g., options(fractions=list(cycles=100, max.denominator=10^4)).

latex logical; print equations in a form suitable for LaTeX output?

showEqn 53

Value

a one-column character matrix, one row for each equation

Author(s)

Michael Friendly, John Fox, and Phil Chalmers

References

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors,
and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA,
June 27 - June 30, 2016.

See Also

plotEqn, plotEqn3d

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

b <- c(8, -11, -3)
showEqn(A, b)
show numerically
x <- solve(A, b)
showEqn(A, b, vars=x)

showEqn(A, b, simplify=TRUE)
showEqn(A, b, latex=TRUE)

lower triangle of equation with zeros omitted (for back solving)
A <- matrix(c(2, 1, 2,

-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

U <- LU(A)$U
showEqn(U, simplify=TRUE, fractions=TRUE)
showEqn(U, b, simplify=TRUE, fractions=TRUE)

####################
Linear models Design Matricies
data(mtcars)
ancova <- lm(mpg ~ wt + vs, mtcars)
summary(ancova)
showEqn(ancova)
showEqn(ancova, simplify=TRUE)
showEqn(ancova, vars=round(coef(ancova),2))
showEqn(ancova, vars=round(coef(ancova),2), simplify=TRUE)

twoway_int <- lm(mpg ~ vs * am, mtcars)
summary(twoway_int)
car::Anova(twoway_int)

54 Solve

showEqn(twoway_int)
showEqn(twoway_int, reduce=TRUE)
showEqn(twoway_int, reduce=TRUE, simplify=TRUE)

Piece-wise linear regression
x <- c(1:10, 13:22)
y <- numeric(20)
y[1:10] <- 20:11 + rnorm(10, 0, 1.5)
y[11:20] <- seq(11, 15, len=10) + rnorm(10, 0, 1.5)
plot(x, y, pch = 16)

x2 <- as.numeric(x > 10)
mod <- lm(y ~ x + I((x - 10) * x2))
summary(mod)
lines(x, fitted(mod))
showEqn(mod)
showEqn(mod, vars=round(coef(mod),2))
showEqn(mod, simplify=TRUE)

Solve Solve and Display Solutions for Systems of Linear Simultaneous Equa-
tions

Description

Solve the equation system Ax = b, given the coefficient matrix A and right-hand side vector b,
using link{gaussianElimination}. Display the solutions using showEqn.

Usage

Solve(
A,
b = rep(0, nrow(A)),
vars,
verbose = FALSE,
simplify = TRUE,
fractions = FALSE,
...

)

Arguments

A, the matrix of coefficients of a system of linear equations

b, the vector of constants on the right hand side of the equations. The default is a
vector of zeros, giving the homogeneous equations Ax = 0.

vars a numeric or character vector of names of the variables. If supplied, the length
must be equal to the number of unknowns in the equations. The default is
paste0("x", 1:ncol(A).

Solve 55

verbose, logical; show the steps of the Gaussian elimination algorithm?

simplify logical; try to simplify the equations?

fractions logical; express numbers as rational fractions, using the fractions function;
if you require greater accuracy, you can set the cycles (default 10) and/or
max.denominator (default 2000) arguments to fractions as a global option,
e.g., options(fractions=list(cycles=100, max.denominator=10^4)).

..., arguments to be passed to link{gaussianElimination} and showEqn

Details

This function mimics the base function solve when supplied with two arguments, (A, b), but gives
a prettier result, as a set of equations for the solution. The call solve(A) with a single argument
overloads this, returning the inverse of the matrix A. For that sense, use the function inv instead.

Value

the function is used primarily for its side effect of printing the solution in a readable form, but it
invisibly returns the solution as a character vector

Author(s)

John Fox

See Also

gaussianElimination, showEqn inv, solve

Examples

A1 <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

b1 <- c(8, -11, -3)
Solve(A1, b1) # unique solution

A2 <- matrix(1:9, 3, 3)
b2 <- 1:3
Solve(A2, b2, fractions=TRUE) # underdetermined

b3 <- c(1, 2, 4)
Solve(A2, b3, fractions=TRUE) # overdetermined

56 SVD

SVD Singular Value Decomposition of a Matrix

Description

Compute the singular-value decomposition of a matrix X either by Jacobi rotations (the default) or
from the eigenstructure of X ′X using Eigen. Both methods are iterative. The result consists of two
orthonormal matrices, U , and V and the vector d of singular values, such that X = Udiag(d)V ′.

Usage

SVD(
X,
method = c("Jacobi", "eigen"),
tol = sqrt(.Machine$double.eps),
max.iter = 100

)

Arguments

X a square symmetric matrix

method either "Jacobi" (the default) or "eigen"

tol zero and convergence tolerance

max.iter maximum number of iterations

Details

The default method is more numerically stable, but the eigenstructure method is much simpler.
Singular values of zero are not retained in the solution.

Value

a list of three elements: d– singular values, U– left singular vectors, V– right singular vectors

Author(s)

John Fox and Georges Monette

See Also

svd, the standard svd function

Eigen

svdDemo 57

Examples

C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C
SVD(C)

least squares by the SVD
data("workers")
X <- cbind(1, as.matrix(workers[, c("Experience", "Skill")]))
head(X)
y <- workers$Income
head(y)
(svd <- SVD(X))
VdU <- svd$V %*% diag(1/svd$d) %*%t(svd$U)
(b <- VdU %*% y)
coef(lm(Income ~ Experience + Skill, data=workers))

svdDemo Demonstrate the SVD for a 3 x 3 matrix

Description

This function draws an rgl scene consisting of a representation of the identity matrix and a 3 x 3
matrix A, together with the corresponding representation of the matrices U, D, and V in the SVD
decomposition, A = U D V’.

Usage

svdDemo(A, shape = c("cube", "sphere"), alpha = 0.7, col = rainbow(6))

Arguments

A A 3 x 3 numeric matrix

shape Basic shape used to represent the identity matrix: "cube" or "sphere"

alpha transparency value used to draw the shape

col Vector of 6 colors for the faces of the basic cube

Value

Nothing

Author(s)

Original idea from Duncan Murdoch

58 swp

Examples

A <- matrix(c(1,2,0.1, 0.1,1,0.1, 0.1,0.1,0.5), 3,3)
svdDemo(A)

Not run:
B <- matrix(c(1, 0, 1, 0, 2, 0, 1, 0, 2), 3, 3)
svdDemo(B)

a positive, semi-definite matrix with eigenvalues 12, 6, 0
C <- matrix(c(7, 4, 1, 4, 4, 4, 1, 4, 7), 3, 3)
svdDemo(C)

End(Not run)

swp The Matrix Sweep Operator

Description

The swp function “sweeps” a matrix on the rows and columns given in index to produce a new ma-
trix with those rows and columns “partialled out” by orthogonalization. This was defined as a fun-
damental statistical operation in multivariate methods by Beaton (1964) and expanded by Dempster
(1969). It is closely related to orthogonal projection, but applied to a cross-products or covariance
matrix, rather than to data.

Usage

swp(M, index)

Arguments

M a numeric matrix

index a numeric vector indicating the rows/columns to be swept. The entries must be
less than or equal to the number or rows or columns in M. If missing, the function
sweeps on all rows/columns 1:min(dim(M)).

Details

If M is the partitioned matrix [
R S
T U

]
where R is q × q then swp(M, 1:q) gives[

R−1 R−1S

−TR−1 U−TR−1S

]

symMat 59

Value

the matrix M with rows and columns in indices swept.

References

Beaton, A. E. (1964), The Use of Special Matrix Operations in Statistical Calculus, Princeton, NJ:
Educational Testing Service.

Dempster, A. P. (1969) Elements of Continuous Multivariate Analysis. Addison-Wesley, Reading,
Mass.

See Also

Proj, QR

Examples

data(therapy)
mod3 <- lm(therapy ~ perstest + IE + sex, data=therapy)
X <- model.matrix(mod3)
XY <- cbind(X, therapy=therapy$therapy)
XY
M <- crossprod(XY)
swp(M, 1)
swp(M, 1:2)

symMat Create a Symmetric Matrix from a Vector

Description

Creates a square symmetric matrix from a vector.

Usage

symMat(x, diag = TRUE, byrow = FALSE, names = FALSE)

Arguments

x A numeric vector used to fill the upper or lower triangle of the matrix.

diag Logical. If TRUE (the default), the diagonals of the created matrix are replaced
by elements of x; otherwise, the diagonals of the created matrix are replaced by
"1".

byrow Logical. If FALSE (the default), the created matrix is filled by columns; other-
wise, the matrix is filled by rows.

names Either a logical or a character vector of names for the rows and columns of the
matrix. If FALSE, no names are assigned; if TRUE, rows and columns are named
X1, X2,

60 therapy

Value

A symmetric square matrix based on column major ordering of the elements in x.

Author(s)

Originally from metaSEM::vec2symMat, Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>; mod-
ified by Michael Friendly

Examples

symMat(1:6)
symMat(1:6, byrow=TRUE)
symMat(5:0, diag=FALSE)

therapy Therapy Data

Description

A toy data set on outcome in therapy in relation to a personality test (perstest) and a scale of
internal-external locus of control (IE) used to illustrate linear and multiple regression.

Usage

data("therapy")

Format

A data frame with 10 observations on the following 4 variables.

sex a factor with levels F M

perstest score on a personality test, a numeric vector

therapy outcome in psychotherapy, a numeric vector

IE score on a scale of internal-external locus of control, a numeric vector

Examples

data(therapy)
plot(therapy ~ perstest, data=therapy, pch=16)
abline(lm(therapy ~ perstest, data=therapy), col="red")

plot(therapy ~ perstest, data=therapy, cex=1.5, pch=16,
col=ifelse(sex=="M", "red","blue"))

tr 61

tr Trace of a Matrix

Description

Calculates the trace of a square numeric matrix, i.e., the sum of its diagonal elements

Usage

tr(X)

Arguments

X a numeric matrix

Value

a numeric value, the sum of diag(X)

Examples

X <- matrix(1:9, 3, 3)
tr(X)

vandermode Vandermode Matrix

Description

The function returns the Vandermode matrix of a numeric vector, x, whose columns are the vector
raised to the powers 0:n.

Usage

vandermode(x, n)

Arguments

x a numeric vector
n a numeric scalar

Value

a matrix of size length(x) x n

Examples

vandermode(1:5, 4)

62 vectors

vec Vectorize a Matrix

Description

Returns a 1-column matrix, stacking the columns of x, a matrix or vector. Also supports comma-
separated inputs similar to the concatenation function c.

Usage

vec(x, ...)

Arguments

x A matrix or vector

... (optional) additional objects to be stacked

Value

A one-column matrix containing the elements of x and ... in column order

Examples

vec(1:3)
vec(matrix(1:6, 2, 3))
vec(c("hello", "world"))
vec("hello", "world")
vec(1:3, "hello", "world")

vectors Draw geometric vectors in 2D

Description

This function draws vectors in a 2D plot, in a way that facilitates constructing vector diagrams. It
allows vectors to be specified as rows of a matrix, and can draw labels on the vectors.

Usage

vectors(
X,
origin = c(0, 0),
lwd = 2,
angle = 13,
length = 0.15,
labels = TRUE,

vectors 63

cex.lab = 1.5,
pos.lab = 4,
frac.lab = 1,
...

)

Arguments

X a vector or two-column matrix representing a set of geometric vectors; if a ma-
trix, one vector is drawn for each row

origin the origin from which they are drawn, a vector of length 2.

lwd line width(s) for the vectors, a constant or vector of length equal to the number
of rows of X.

angle the angle argument passed to arrows determining the angle of arrow heads.

length the length argument passed to arrows determining the length of arrow heads.

labels a logical or a character vector of labels for the vectors. If TRUE and X is a matrix,
labels are taken from rownames(X). If NULL, no labels are drawn.

cex.lab character expansion applied to vector labels. May be a number or numeric vector
corresponding to the the rows of X, recycled as necessary.

pos.lab label position relative to the label point as in text, recycled as necessary.

frac.lab location of label point, as a fraction of the distance between origin and X, re-
cycled as necessary. Values frac.lab > 1 locate the label beyond the end of the
vector.

... other arguments passed on to graphics functions.

Value

none

See Also

arrows, text

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), plot.regvec3d(),
pointOnLine(), regvec3d(), vectors3d()

Examples

shows addition of vectors
u <- c(3,1)
v <- c(1,3)
sum <- u+v

xlim <- c(0,5)
ylim <- c(0,5)
proper geometry requires asp=1
plot(xlim, ylim, type="n", xlab="X", ylab="Y", asp=1)
abline(v=0, h=0, col="gray")

64 vectors3d

vectors(rbind(u,v,`u+v`=sum), col=c("red", "blue", "purple"), cex.lab=c(2, 2, 2.2))
show the opposing sides of the parallelogram
vectors(sum, origin=u, col="red", lty=2)
vectors(sum, origin=v, col="blue", lty=2)

projection of vectors
vectors(Proj(v,u), labels="P(v,u)", lwd=3)
vectors(v, origin=Proj(v,u))
corner(c(0,0), Proj(v,u), v, col="grey")

vectors3d Draw 3D vectors

Description

This function draws vectors in a 3D plot, in a way that facilitates constructing vector diagrams. It
allows vectors to be specified as rows of a matrix, and can draw labels on the vectors.

Usage

vectors3d(
X,
origin = c(0, 0, 0),
headlength = 0.035,
ref.length = NULL,
radius = 1/60,
labels = TRUE,
cex.lab = 1.2,
adj.lab = 0.5,
frac.lab = 1.1,
draw = TRUE,
...

)

Arguments

X a vector or three-column matrix representing a set of geometric vectors; if a
matrix, one vector is drawn for each row

origin the origin from which they are drawn, a vector of length 3.

headlength the headlength argument passed to arrows3d determining the length of arrow
heads

ref.length vector length to be used in scaling arrow heads so that they are all the same size;
if NULL the longest vector is used to scale the arrow heads

radius radius of the base of the arrow heads

labels a logical or a character vector of labels for the vectors. If TRUE and X is a matrix,
labels are taken from rownames(X). If FALSE or NULL, no labels are drawn.

vectors3d 65

cex.lab character expansion applied to vector labels. May be a number or numeric vector
corresponding to the the rows of X, recycled as necessary.

adj.lab label position relative to the label point as in text3d, recycled as necessary.

frac.lab location of label point, as a fraction of the distance between origin and X, re-
cycled as necessary. Values frac.lab > 1 locate the label beyond the end of the
vector.

draw if TRUE (the default), draw the vector(s).

... other arguments passed on to graphics functions.

Value

invisibly returns the vector ref.length used to scale arrow heads

Bugs

At present, the color (color=) argument is not handled as expected when more than one vector is
to be drawn.

Author(s)

Michael Friendly

See Also

arrows3d, codetexts3d, codergl.material

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), plot.regvec3d(),
pointOnLine(), regvec3d(), vectors()

Examples

vec <- rbind(diag(3), c(1,1,1))
rownames(vec) <- c("X", "Y", "Z", "J")
library(rgl)
open3d()
vectors3d(vec, color=c(rep("black",3), "red"), lwd=2)
draw the XZ plane, whose equation is Y=0
planes3d(0, 0, 1, 0, col="gray", alpha=0.2)
vectors3d(c(1,1,0), col="green", lwd=2)
show projections of the unit vector J
segments3d(rbind(c(1,1,1), c(1, 1, 0)))
segments3d(rbind(c(0,0,0), c(1, 1, 0)))
segments3d(rbind(c(1,0,0), c(1, 1, 0)))
segments3d(rbind(c(0,1,0), c(1, 1, 0)))
show some orthogonal vectors
p1 <- c(0,0,0)
p2 <- c(1,1,0)
p3 <- c(1,1,1)
p4 <- c(1,0,0)
corner(p1, p2, p3, col="red")
corner(p1, p4, p2, col="red")

66 workers

corner(p1, p4, p3, col="blue")

rgl.bringtotop()

workers Workers Data

Description

A toy data set comprised of information on workers Income in relation to other variables, used for
illustrating linear and multiple regression.

Usage

data("workers")

Format

A data frame with 10 observations on the following 4 variables.

Income income from the job, a numeric vector

Experience number of years of experience, a numeric vector

Skill skill level in the job, a numeric vector

Gender a factor with levels Female Male

Examples

data(workers)
plot(Income ~ Experience, data=workers, main="Income ~ Experience", pch=20, cex=2)

simple linear regression
reg1 <- lm(Income ~ Experience, data=workers)
abline(reg1, col="red", lwd=3)

quadratic fit?
plot(Income ~ Experience, data=workers, main="Income ~ poly(Experience,2)", pch=20, cex=2)
reg2 <- lm(Income ~ poly(Experience,2), data=workers)
fit2 <-predict(reg2)
abline(reg1, col="red", lwd=1, lty=1)
lines(workers$Experience, fit2, col="blue", lwd=3)

How does Income depend on a factor?
plot(Income ~ Gender, data=workers, main="Income ~ Gender")
points(workers$Gender, jitter(workers$Income), cex=2, pch=20)
means<-aggregate(workers$Income,list(workers$Gender),mean)
points(means,col="red", pch="+", cex=2)
lines(means,col="red", lwd=2)

xprod 67

xprod Generalized Vector Cross Product

Description

Given two linearly independent length 3 vectors **a** and **b**, the cross product, a × b (read
"a cross b"), is a vector that is perpendicular to both **a** and **b** thus normal to the plane
containing them.

Usage

xprod(...)

Arguments

... N-1 linearly independent vectors of the same length, N.

Details

A generalization of this idea applies to two or more dimensional vectors.

See: [https://en.wikipedia.org/wiki/Cross_product] for geometric and algebraic properties.

Value

Returns the generalized vector cross-product, a vector of length N.

Author(s)

Matthew Lundberg, in a [Stack Overflow post][https://stackoverflow.com/questions/36798301/r-
compute-cross-product-of-vectors-physics]

Examples

xprod(1:3, 4:6)

This works for an dimension
xprod(c(0,1)) # 2d
xprod(c(1,0,0), c(0,1,0)) # 3d
xprod(c(1,1,1), c(0,1,0)) # 3d
xprod(c(1,0,0,0), c(0,1,0,0), c(0,0,1,0)) # 4d

Index

∗ datasets
class, 12
therapy, 60
workers, 66

∗ determinants
adjoint, 4
cofactor, 12
Det, 15
minor, 27
rowCofactors, 47
rowMinors, 48

∗ elementary row operations
rowadd, 46
rowmult, 49
rowswap, 50

∗ matrix of elementary row operations
buildTmat, 9

∗ vector diagrams
arc, 6
arrows3d, 7
circle3d, 11
corner, 14
plot.regvec3d, 30
pointOnLine, 35
Proj, 40
regvec3d, 43
vectors, 62
vectors3d, 64

adjoint, 4, 13, 16, 28, 48, 49
angle, 5
arc, 4, 6, 8, 11, 15, 32, 36, 41, 46, 63, 65
arrows, 8, 63
arrows3d, 4, 7, 7, 11, 13–15, 32, 36, 41, 46,

63–65
as.matrix.trace (buildTmat), 9

buildTmat, 9

c, 62

chol, 11
cholesky, 4, 10
circle3d, 7, 8, 11, 15, 32, 36, 41, 46, 63, 65
class, 12
cofactor, 3, 5, 12, 16, 28, 48, 49
cone3d, 13
corner, 4, 7, 8, 11, 14, 32, 36, 41, 46, 63, 65

dataEllipse, 51
Det, 5, 13, 15, 28, 48, 49
det, 16

echelon, 4, 9, 16, 47, 49, 50
Eigen, 15, 16, 17, 56
eigen, 4, 18

fractions, 15, 19, 20, 27, 38, 40, 52, 55

gaussianElimination, 4, 9, 15, 16, 18, 23,
47, 49, 50, 55

Ginv, 4, 20
ginv, 20
GramSchmidt, 21, 22
gsorth, 11, 22

inv, 4, 55
inv (Inverse), 23
Inverse, 4, 23

J, 3, 24

len, 3, 5, 24
LU, 4, 25

matlib (matlib-package), 3
matlib-package, 3
matrix2latex, 26
minor, 3, 5, 13, 16, 27, 48, 49
MoorePenrose, 28
mpower, 3, 29

norm, 25

68

INDEX 69

plot.regvec3d, 7, 8, 11, 15, 30, 31, 36, 41,
45, 46, 63, 65

plotEqn, 3, 32, 53
plotEqn3d, 34, 53
pointOnLine, 4, 7, 8, 11, 14, 15, 32, 35, 41,

46, 63, 65
powerMethod, 4, 36
print.enhancedMatrix

(gaussianElimination), 18
print.regvec3d (plot.regvec3d), 30
print.trace (buildTmat), 9
printMatEqn, 38
printMatrix, 39
Proj, 3, 7, 8, 11, 15, 32, 36, 40, 46, 59, 63, 65

QR, 18, 41, 42, 59
qr, 42, 43

R, 3, 42
regvec3d, 4, 7, 8, 11, 15, 32, 36, 41, 43, 63, 65
rgl, 8
rgl.material, 13, 35, 65
rowadd, 3, 46, 49, 50
rowCofactors, 3, 5, 13, 16, 28, 47, 49
rowMinors, 3, 5, 13, 16, 28, 48, 48
rowmult, 3, 47, 49, 50
rowswap, 3, 47, 49, 50

segments3d, 8
showEig, 4, 51
showEqn, 3, 25, 33, 38, 52, 54, 55
Solve, 54
solve, 55
summary.regvec3d (plot.regvec3d), 30
SVD, 4, 18, 56
svd, 56
svdDemo, 57
swp, 4, 58
symMat, 59

text, 63
text3d, 65
texts3d, 65
therapy, 60
tr, 3, 61

vandermode, 3, 61
vec, 3, 62
vectors, 4, 7, 8, 11, 15, 31, 32, 36, 41, 45, 46,

62, 65

vectors3d, 4, 7, 8, 11, 15, 32, 36, 41, 46, 63,
64

workers, 66

xprod, 67

	matlib-package
	adjoint
	angle
	arc
	arrows3d
	buildTmat
	cholesky
	circle3d
	class
	cofactor
	cone3d
	corner
	Det
	echelon
	Eigen
	gaussianElimination
	Ginv
	GramSchmidt
	gsorth
	Inverse
	J
	len
	LU
	matrix2latex
	minor
	MoorePenrose
	mpower
	plot.regvec3d
	plotEqn
	plotEqn3d
	pointOnLine
	powerMethod
	printMatEqn
	printMatrix
	Proj
	QR
	R
	regvec3d
	rowadd
	rowCofactors
	rowMinors
	rowmult
	rowswap
	showEig
	showEqn
	Solve
	SVD
	svdDemo
	swp
	symMat
	therapy
	tr
	vandermode
	vec
	vectors
	vectors3d
	workers
	xprod
	Index

