Rcpp: A Class Library for R/C+4 Object Mapping
and R Package Development

Dominick Samperi*

October 24, 2009

Abstract

A set of C++ classes that facilitates the process of using C++ with the Open Source R statistical
software system is described. The C++ classes described here model R data structures like vectors,
matrices, factors, dates, data frames, time series, and functions. Objects of these types can be
instantiated from pointers (or SEXP’s) that R passes to the C++ side. The C++ model objects can
also be constructed from C++ data structures and later returned to R in a format that it recognizes.
The function model can be used to make calls from C++ to R functions that take parameters (and
return values) of any of the types just mentioned.

1 Overview

The R system is written in the C language, and it provides a C API for package developers who have
typically coded functions to be called from R in C or FORTRAN. A commonly used interface (the so-
called .C interface) permits only simple objects like vectors and matrices to be passed as parameters
(and returned). A somewhat newer interface called the .Call interface can be used to pass pointers to
R objects to the C/C++ side, but this interface has not yet been fully exploited to provide an object
mapping between R and C++.

The purpose of the Rcpp class library is to provide such a mapping. At present it provides a
mapping between some of the most commonly used data structures on the R side to C++ classes. These
data structures include vectors, matrices, factors, dates, data frames, time series, and functions. It is
possible to call C++ functions from R with arguments of any of these types, and C++ objects can call R
functions with arguments of these types as well. Functions on either side can return values of any of the
supported types. Currently the R types supported are all S3 classes, but the same techniques could be
used to support the newer S4 classes.

When an R function calls a C++ function using the .Call interface the C++ side sees each parameter
as a pointer to the corresponding R object. The C++ class that models each R type has a constructor
that takes this pointer as an argument; it uses it to construct the model object in the address space of
the C++ module.! The attributes of the R object are effectively copied into the C++ model where they
can be processed naturally using C++ syntax. The C++ classes also have constructors that take C++ data
structures (instead of a pointer to an R object), and objects constructed using them can be passed to R
just as easily as those constructed from R pointers.

To return values to R or to make calls to R functions the process is reversed: each C++ object needs
to be transformed into an object in R’s address space, and a pointer to this object must be passed to R.

*This is an updated version of the document Building R Packages that call C++ functions: Repp: R/C++ Interface
Classes Version 5.0, September 20, 2006. I am grateful to those who took the time to send kind words of appreciation,
and I want to thank Dirk Eddelbuettel, Hin-Tak Leung, Uwe Ligges, Duncan Murdoch, Brian Ripley, and Paul Roebuck
for helpful comments. For best results the package RcppTemplate should be installed and running in an R session while
reading this guide.

1t is possible to work with the R object in its own address space but this is tricky since R garbage collects.

A pointer to an R object as seen on the C++ side is called a SEXP,? and the protocol just described can
be made more explicit using the code fragment:

RcppExport SEXP CppFunction(SEXP sexp, SEXP fsexp) { // C++ declaration.
RcppFunction f(fsexp,1); // Construct C++ interface f from fsexp (numArgs=1).
RcppTypel cl(sexp); // C++ constructs object cl of type RcppTypel from sexp
.-+ // Do some processing, generate C++ object c2 to be passed to R
RcppSEXP sp = getSEXP(c2); // Map C++ object c2 (type RcppType2) to SEXP sp.
f.setNextArg(sp); // Set first and only argument for function call.

SEXP result = f.callR(); // Call R function.
RcppType3 c3(result); // Instantiate return value as C++ object.

Here the function CppFunction is called from R using the .Call interface with two parameters, sexp
and fsexp. We assume that the first points to an R object that can be modeled using RcppTypel,
and the second points to an R function that can be modeled using RcppFunction. We assume that
the function accepts 1 argument of the R type mapped to RcppType2, and returns a value that can be
mapped to ReppType3. The pattern should be clear from the code fragment: C++ constructors are used
to transform R objects into C++ objects, and the overloaded function getSEXP () is used to do the reverse
transformation.

The function getSEXP () transforms its input C++ object into the corresponding object in R’s address
space and returns a pointer (or SEXP) to this R object. It also returns a count of the number of addresses
in R’s address space that had to be protected from cleanup by R’s garbage collection. The Rcpp library
takes care of unprotecting these addresses before returning to R so that the corresponding memory can
be freed when no longer in use.

The data structures currently supported include heterogeneous parameter lists (where you would pass
in doubles, reals, strings, etc., with names attached), homogeneous parameter lists (where all parameter
values are numeric and named), 1D vectors, 2D matrices, dates (both Date and POSIXt types), factors,
data frames, zoo time series objects, and function objects. A summary of the main classes is given in
Table 1.

Description R class Rcpp class
Parameters list RcppParams
Date Date RcppDate
Date-Time POSIXt POSIXct | RcppDateTime
Date details NA RcpplocalTime
Factor factor RcppFactor
Data frame data.frame RcppFrame

Zoo time series [zooreg] zoo RcppZoo

Frame column NA RcppColumn
Function adapter | function RcppFunction
Return list user-defined RcppResultSet

Table 1: Mapping between selected Rcpp classes and R classes.

Only regular fixed-frequency zoo objects have the zooreg class attribute. Note that a ts (fixed-
frequency) time series can be transformed into an equivalent zoo time series using as.zoo(), and back
again using as.ts(). Thus fixed-frequency time series can be handled by encapsulating them in zoo
objects. Similarly, a tseries irregularly spaced time series (class irts) can be transformed into a zoo

2The term SEXP comes from the Lisp community where it stands for Symbolic EXPression. Unlike Lisp everything is
not a list (or dotted pair) in R; vectors are used for faster computations. On the other hand, like Lisp a list structure is
used to represent function expressions.

time series and back again using as.zoo() and as.irts(), so this type of time series object can be
handled as well. The extensible time series class xts can be transformed and managed similarly.

There are two primary use cases. In the first R calls C++ functions that do most of the heavy
computation at the speed of compiled code, and R is primarily used to view and perform statistical
analysis on the results. In the second C++ code makes calls to R functions that are easily modified in an
interactive fashion. In the first case the goal is faster computations and in the second it is flexibility.

Note that when a call to a C++ function returns to R all objects created during the call are destroyed.
Thus if persistence is important it will have to be implemented outside of the C++ object system. Inter-
estingly, this can be done to some extent by exploiting special features of the R system, but we do not
discuss this here.

A straight-forward solution is to simply use R to maintain state and to recreate C++ objects as needed
during the calls. To limit the amount of copying involved in making repeated calls to C++ functions it is
possible to work directly with R’s address space, but this should be avoided since it is inconsistent with
the pass-by-value semantics of R.

The Rcepp library obviously uses internal information about R and for this reason there is the danger
that changes made to R will break Rcpp. Mitigating this risk is the fact that the R types modeled
are well-established and are unlikely to change in ways that would break existing R scripts. Another
mitigating factor is that the underlying Lisp-like structure of R is simple and unlikely to change (vectors,
lists, attributes, etc.). In the event that a class like zoo time series is changed by the addition of new
attributes, say, it would be relatively easy to update the corresponding C++ constructor and getSEXP ()
function to accommodate this change.?

The remainder of this paper is basically a User’s Guide for the Rcpp library. We explain in detail how
to build and test R packages that employ Rcpp under UNIX and Windows. To this end we have created
an R package named RcppTemplate that can be used as a template when creating your own packages.
It includes a test driver (RcppExample.cpp) that illustrates how to use all of the Rcpp classes. The
process of linking to external C++ libraries like QuantLib is also explained.

This document and the Repp Quick Reference can be displayed after loading the RcppTemplate
package by issuing the R commands showRcppDoc () and showRcppQuickRef (), respectively.

2 The RcppTemplate Package

The RcppTemplate package was designed to be used as a template for creating packages that make use
of C++ code or external libraries with the help of the Rcpp interface class library. Basically to create a
new package starting from the template package replace the name “RcppTemplate” everywhere it occurs
with your package name, then modify the source, data, demo, and documentation files as needed.*

To get started let’s download and run the template package sample code. We will use it to illustrate
how Rcpp is used. The RcppTemplate package is available at the official R web site, http://cran.r-
project.org. By navigating to the packages archive and going to the RcppTemplate package page
it an be checked that all packages have a source file named <PackageName>_<version>.tar.gz, and
most have a Windows binary with the same name except that “.tar.gz” is replaced with “.zip,” and a
MacOS X version where the suffix is “. tgz”. To submit your own package to the CRAN archive only the
source archive needs to be sent. This will be unpacked, checked, compiled, and installed, and all relevant
information about the package will appear on the package page.

The official reference on writing R extensions is Writing R Extensions, available at the CRAN site.
This document should be consulted for additional information about the C API that is the foundation
for Repp. It should be downloaded along with the source archive for ReppTemplate for later reference.

After installing R the RcppTemplate package can be installed directly from the CRAN archive by
using the R command:

3Given an R object x, use str(x) to look at its structure, and use attributes(x) to look at its attributes. This is the
information that drives the C++ constructor and is set by getSEXP().

4Remove the file inst/doc/RcppDoc.Rnw and its Makefile before starting work on your own package as this so-called
vignette file triggers extra processing at build time.

> install.packages ("RcppTemplate")

You will be presented with a list of host names from which the package can be downloaded. Select one
that is reasonably close. If you do not have permission to write to the directory where R was installed
you may be asked for permission to install the package into your personal file area (say yes, or change
the permissions on the R directory).

After installing the package it can be loaded using the 1library command, and the example function
RcppExample can be run as follows:

> library(RcppTemplate)
> example (RcppExample)

Actually, the function RcppExample takes a long list of parameters and it would be messy to make
an explicit call here. Instead we run the R code that appears as an example in the manual page for
RcppExample. This R code can be viewed by looking at the man page as follows:

> 7RcppExample

Scroll down to the “Examples:” section where you will find the actual call; it looks like:

result <- RcppExample(params, nlist, numvec,

RcppExample returns a list of objects and assigns this list to result.

Running the example code defines the variable result, and if you type this variable name on a line
by itself a list of names appears. These are the names of objects on the return list. To view the object
corresponding to a particular name, say zoo8, type:

> result$zoo8

The reason why just the object names are printed and not the object contents (when result was entered)
will be explained shortly. The object result$zoo8 is of class zoo, and if this expression is typed on a
line by itself the contents of this object are displayed.

Let’s scroll back up and take a look at the input parameters on the man page example. The params
parameter is just a list of name-value pairs, where the values can be strings, integers, or dates (if the
C++ code attempts to fetch a value that does not have the correct type an exception is thrown, and you
bounce back to R). The nlist parameter is very similar, and indeed this particular type is redundant
and should probably be removed. The nature of the numeric and string vector parameters should be
obvious.

To assign three consecutive days to datetimevec we start with the current time and add multiples
of 60 * 60 * 24, because R measures time in seconds for this type (POSIXt). On the other hand, to do the
same thing for the Date vector datevec this scaling is not necessary because R measures time in days
for this type. On the C++ side both date types measure time in the same units, and mixed comparisons
are allowed, with caveats.

The definitions of the factor myfactor and the data frame df should be clear (I assume the reader
has basic familiarity with R).

The zoots parameter is set equal to an irregularly spaced time series indexed by Dates.

The func parameter is an R function that simply checks the type of its arguments and returns a
vector, and the hypot function computes the distance to the origin. We will show how to call these
functions from C++ later.

3 Fetching R Data From the C++ side

So what does the C++ side of this call look like? Something like this:

RcppExport Rcpp_Example (SEXP params, SEXP nlist, SEXP numvec, SEXP numat,
SEXP df, SEXP datevec, SEXP datetimevec, SEXP stringvec,
SEXP fnvec, SEXP fnlist, SEXP zoots, SEXP myfactor) {
/** Skipping and paraphrasing--see RcppExample.cpp for the truth. */
RcppParams rparms(params) ;
RcppNumList nl(nlist);
RcppVector<double> vecD(numvec) ;
RcppMatrix<double> matD(nummat) ;
RcppFrame frame(df) ;
RcppFactor factor (myfactor);
RcppDate dateVec(datevec);
RcppZoo ts(zoots);
/** Omitting lots of stuff. =*/

All of the input parameters appear as SEXP’s, and the corresponding C++ objects can be constructed
easily from these SEXP’s as shown here.

We now have a number of C++ objects that model the input R data structures. These objects can
be used like this:

double tolerance = rparam.getDoubleValue("tolerance");
RcppDate startDate = rparam.getDateValue("startDate");
double x = matD(i,j);

string observationStr = factor.getObservationLevelStr(i);
int observationNum = factor.getObservationLevelNum(i);
int numObservations = factor.size();

vector<RcppColumn> cols = frame.getColumns();
RcppDateTime dt = cols[6].getDateTimeValue (row);

double ExcelVal = dt.numExcelPC();

vector<vector<double> > zoodata = ts.getDataMat();
vector<RcppDate> zooindex = ts.getIndDate();

vector<int> perm = ts.getSortPermutation() ;

// ordered rows: zooindex[perm[i]], zoodatal[perm[i]] [j]

The first few examples should be clear. In the case of RcppFactor factor levels are represented by
strings or by levels numbers, is in R, and the size of a factor is the total number of observations. Data
frames are basically a vector of columns (of type ReppColumn), and data is fetched naturally by column,
then by row, as in the case of the date-time variable dt.

Zoo objects can be indexed vectors or matrices (with indexed rows), and the permutation vector
needed to sort the data by the index is maintained for the case where the user creates the zoo object on
the C++ side (the data is already sorted when received from the R side so the permutation is the identity
in this case).

The value ExcelVal, if placed into an Excel spreadsheet on a PC and formatted as a date, would
display as the date and time corresponding to dt. This would not work under MacOS (at least not by
default). But this problem is solved by using dt.numExcelMac () instead. This returns the default value
used by Excel on a Mac. There is also dt.numJulian() and dt.getRValue(). The first function returns
the julian day number (fractional day part dropped), and the second function returns the value used
by R to represent this date object. All of these functions work for both RcppDate and RcppDateTime
(the latter is a subclass of the former). For convenience these functions are also implemented at the R

script level and included in the package namespace—see the man page for DateNum when RcppTemplate
is loaded.

Incidentally there are a few convenience functions that do things like return the weekday corresponding
to a particular date (values RcppDate: :Mon, RcppDate: : Tue, etc.), that find the next occurrence of a
particular weekday, or that find the n-th occurrence in a given month.

There is also a useful template function to_string(obj) that returns the string value of any object
that knows how to stream itself.

A Quick Reference on all of the Repp classes can be found in inst/doc/QuickReference.txt. It is
basically a stripped down version of Rcpp . hpp formatted to show all public methods and the relationship
between the classes. For more detail look at the comments in Rcpp.hpp and Rcpp.cpp. Locating these
source files is the next topic.

4 Package Structure and Source Code

As mentioned above the source archive (the .tar.gz file) can be downloaded from the CRAN site. It
can be extracted into the current directory using:

$ tar -xvzf RcppTemplate_<version>.tar.gz

Under Windows a tar command is available as part of the Rtools kit (see Section 7).

The root of the package directory tree will be named RcppTemplate, and the main components are
src: where your C++ source code should go, man: man page directory, R: R scripts that actually expose
your C++ functions, and RcppSrc: contains the Repp source code and should not be modified by you
(unless you find problems). There are also (optional) demo and inst directories. The first can contain
demo scripts that can be run using the R demo() command, and the second directory can contain
documentation, data, and license files that you want to be part of the installed package (note that the
source file directories are NOT part of the installed package or the Windows .zip file).

Other necessary parts of an R package are located in the root directory (named RcppTemplate).
These include the DESCRIPTION file and the NAMESPACE file, and for improved portability, a configure
script. The DESCRIPTION file gives a brief description of the package, version info, author, dependencies,
etc., and the NAMESPACE file lists the functions that you want exposed by this package (and not confused
with functions of the same name in other packages).

The NAMESPACE file shows the name of the dynamic library to be load when this package is loaded
(using the library command), and it also shows the exported R function names. These functions are
usually defined by scripts in the R subdirectory that are run when the package is loaded.

Recall that the function called in the example page was named RcppExample, not Rcpp_Example.
The first symbol is defined in the R script R/RcppExample.R, and the second symbol is defined in the
C++ code src/RcppExample. cpp and made available via the shared library ReppTemplate.so (or .dl1,
as the case may be). The R script is basically a wrapper around the call to the C++ function, which
looks like this (see R/RcppExample.R):

result <- .Call("Rcpp_Example", params, nlist, numvec, ...,
PACKAGE="RcppTemplate")
class(result) <- "RcppExample"

Here result is assigned the list of objects returned by the C++ code in Rcpp_Example, and then
this list is given the class attribute RcppExample. The purpose of the class attribute is to override the
default behavior of functions like print() that are automatically called when the name of a variable is
used in certain contexts. The default behavior of print() is to print everything recursively, and this would
generate too much output for a large object.

The work-around is to define print.RcppExample in the script file (and to export this name in the
NAMESPACE file). The result is that the command print(obj) when obj has class RcppExample results
in the call print.RcppExample (obj), a specialized function call for objects of this class. In this case it
simply prints the names of all of the objects on the list returned by Rcpp_Example, and not the contents
of those objects. This is what happens when the example is run: if after running the example you type
result on a line by itself this is equivalent to print (result), which is dispatched to print .RcppExample,
and the result is that a list of object names is displayed, but not the object contents.

As another example, consider a regular (fixed-frequency) zoo object. It has class c(’zooreg’,
’z00’), a vector of strings in this case, where the first string represents the “derived part” and the
second is the “base part.” The command print (obj) for an object of this type will get dispatched to
print.zooreg(obj) if this function is defined, otherwise it will be dispatched to print.zoo(obj) if
defined, otherwise it will be dispatched to print.default(obj). Of course, there is nothing special
about print here, and the same class-based dispatch mechanism works for any functions that are made
available via the NAMESPACE file.

Finally, let’s look at the source code for the Rcpp sample client application src/RcppExample. cpp.
The main function there is named Rcpp_Example, and you will note that there is a qualifier RcppExport
in front of the definition. This ensures that this function name is available when the package shared
library is loaded. The pattern that should be followed by C++ modules that are called by R (and that
use Repp) is shown in Figure 1.

#include "Rcpp.hpp"
using namespace std;
using namespace Rcpp;
RcppExport SEXP RcppSample (SEXP params, SEXP a) {
SEXP rl=R_NilValue; // Return this when there is nothing to return.
char* exceptionMesg=NULL;
try {
/** Create objects from SEXP’s and do some work. */
RcppResultSet rs; // result set
rs.add("namel", resultl); // add items to result set
rs.add("name2", result2);

rl = rs.getResultlList(); // done, get return list.
} catch(std::exception& ex) {

exceptionMesg = copyMessageToR(ex.what());
}
catch(...) A

exceptionMesg = copyMessageToR("unknown reason");
b
if (exceptionMesg != NULL)

error (exceptionMesg) ;
return rl;

Figure 1: Use pattern for Rcpp.

50ne improvement made for S4 classes is that method resolution works more like it does in the Common Lisp Object
System (CLOS) where the dispatch mechanism can depend on parameters of several different types.

The using namespace lines are optional. If you want to reduce namespace clutter you can remove
them and be more explicit: std: :vector, Rcpp: :RcppResultSet, etc. We have already discussed Rcpp-
Export, SEXP’s, and how to create C++ objects from SEXP’s. After all of the object creation and
calculations are done the results are returned as a list of objects with the help of the RcppResultSet
class (look at RcppExample.cpp).

Objects are added to the return list by overloaded add () methods (see the definition of RcppResultSet
in Repp.hpp). These methods call getSEXP () to get the corresponding SEXP pointer, and then add this
pointer to the list with the specified name attached.

The C++ try/catch mechanism works well in spite of the fact that R is not written in C++. The Rcpp
library does a fair amount of type checking, bounds checking, and other sanity checking and throws an
exception if there are problems. The message displayed by the catch clause can then be searched for in
the Rcpp source files to help identify the problem.

The sample file src/RcppExample. cpp illustrates how to use most of the Rcpp classes, and it actually
does something non-trivial with the input data: it computes a schedule of dates between two given dates
that fall on the n-th occurrence of a specified weekday.

The date conventions illustrated and explained in RcppExample.cpp are as follows

1. Dates can be instantiated from R SEXP’s as explained above, or from the C++ side by giving
month/day/year, and in the case of ReppDateTime, a fraction of day component, so .75 would
translate into 18:00 GMT, for example.

2. Subtracting two dates yields the number of days between them, and this applies to both date types,
and even to a mixture of the two types (must be interpreted with care due to time zones). The
result can include a fractional part down to a fraction of a second (in the case of RcppDateTime).

3. Increments to dates are in units of days, so date++ increases date by 1 day, and this applies to
both date types.

4. To add n seconds to an RcppDateTime object, add n/RcppDate: :DAYS2SECS days.

5. To inspect the underlying m/d/y or other information about an RcppDate or RcppDateTime, use
the RcppLocalTime class.

6. Both date types can be streamed in the usual way.

5 Calling R Functions from C++

There is a demo function in src/RcppExample.cpp that illustrates how to call R functions from C++.
The pattern is as follows. Assume that you have written an R function named vol that accepts two
real parameters, T and K, and returns a real-valued result. To call this function from C++ we must pass
vol as a parameter to the .Call function. On the C++ side we must know how many parameters the
function takes, as well as the types expected as parameters and return values.®

If the input SEXP is also named vol, then the RcppFunction object is created and used to call the
R function like this:”

ReppFunction f(vol,2);
f.setNextArg(getSEXP(T));
f.setNextArg(getSEXP(K));

6Like Lisp and Smalltalk, R objects are dynamically typed, so types are not as easily determined as they are on the
C++ side. It is important that R functions that are called from C++ check their input parameters and if the types are
invalid use the stop() function to issue an error message and terminate.

"We use Rprintf instead of the iostream library for debugging purposes because iostream does not work on some
systems (Windows), but this comes at a cost: Rprintf is not type-safe and if you pass it a std: :string where it expects a
char* R will crash—use c_str().

SEXP result = f.callR();
RcppVector<double> vec(result) ;
Rprintf ("Return value = %1f\n", vec(0));

Here the second parameter to the constructor is the number of arguments expected. The use of an
RcppVector to capture a single real value is not natural, but it works. Note that after every callR the
arguments are reset so they must be set again before the next callR. Data frames, time series, and other
supported types can be passed to (and returned from) R functions in the same way.

6 Building and Testing a Package Under UNIX

Under UNIX the RcppTemplate source package can be built and installed into a local directory named
Library.test as follows. Unpack the source archive, change directory to the parent of RcppTemplate,
and run:

$ mkdir Library.test
$ R CMD INSTALL -1 Library.test RcppTemplate

The directory Library.test will contain RcppTemplate, the root of the installed package, and under
this will appear a libs subdirectory containing the shared library for RcppTemplate.®
If you leave out the -1 Library.test part, the package is installed into the standard place, which is
what happens when you use install.packages (). Animportant advantage of using install.packages()
is that it can determine what packages this one depends on and download those packages automatically.
To run the package from this test location start R and type:

> library(RcppTemplate, lib.loc="Library.test")

Use a full path name if you are not immediately above Library.test. Even better, place the library
command in a function that is defined in your .Rprofile start-up file:

dotemplate <- function() {
library(RcppTemplate, lib.loc="/usr/home/work/Library.test")
example (RcppExample)

Change the pathname as needed. This saves a lot of typing and is useful while you are going through
the testing phase.

When you are satisfied that the package functions properly the package structure can be checked
using:

$ R CMD check RcppTemplate

This does a thorough consistency test and should be passed before submitting your package to CRAN.
If everything goes well the final source archive can be created for submission using:

$ R CMD build RcppTemplate

8Because the Repp library makes use of C++ templates it sometimes happens that there are undefined references when
you build the pacakge in this way and there are object and library files from a previous build. To resolve the problem
delete the binary files and build starting from a “clean” state.

This will create RcppTemplate_<version>.tar.gz, where the version is taken from the DESCRIPTION
file.

While it is possible to use a traditional Makefile to resolve dependencies and build the package, it
is simpler to use a Makevars file. The purpose of this file is to define PKG_CPPFLAGS and PKG_LIBS, and
to build the Rcpp library. The Makevars file (in the src subdirectory) that is automatically generated
by the configure script in the RcppTemplate package (based on Makevars.in) follows:

PKG_CPPFLAGS = -I../RcppSrc
PKG_LIBS = -L../RcppSrc -1lRcpp

Rcpplib = ../RcppSrc/libRcpp.a
RcppSrc = ../RcppSrc/Repp.cpp . ./RcppSrc/Repp.hpp
.PHONY: all

all: $(SHLIB)
$(SHLIB): $(RcppLib)
$(RcppLib): $(RcppSrc)

(cd ../RcppSrc; make)

The only part that may require changes based on the needs of your package are the first two lines, and
the primary purpose of the configure script is to make the necessary changes based on the system
configuration where it is run.

If you know what the compiler flags and library locations should be for your system you can simply
modify the first two lines appropriately and rename the configure script to configure.save, say, so
that Makevars is not overwritten.

Before submitting the package to CRAN the configure script will need to be modified so that any
necessary edits are made automatically and transparently to the package installer.” This does not work
under Windows, so instead there is a custom Makevars.win file—see next section.

For example, the directory inst/doc/QuantLib contains sample Makevars.in and Makevars.win
files that can be used to link against the QuantLib C++ quantitative finance library. It also contains an
example distributed with that library. The only changes made to the example were to replace the main ()
declaration with an Rcpp-styple entry point, and to replace all return values with R_NilValue. See the
README file in that directory for more information. The RQuantLib package illustrates how this can be
automated and extended.

7 Building and Testing a Package Under Windows

The procedure for building and testing R packages under Windows is very similar to the one under
UNIX, but this requires installing the following tools:

e The UNIX tools for R (Rtools) from http://www.murdoch-sutherland.com/Rtools,
e The MinGW GNU compiler,

e MikTeX (TeX for Windows),

e Microsoft’s HTML Help Workshop (used to make chm files)

The last two items are not essential for development purposes, but without them package documentation
will not be generated in certain formats. The first two items can be installed together because the Rtools
kit installation gives you the option of installing MinGW.

9This process only applies to UNIX and is obscure. Run autoheader in the package root directory to generate
src/config.hpp.in from configure.in. Then run autoconf to generate the configure script and src/config.hpp. The
package build process will start by running the configure script, and this will create src/Makevars by filling in the symbolic
values that appear in src/Makevars.in. The entire process is driven by the configure.in file, and this is not difficult to
follow. See the GNU docs on autoconf for more information.

10

To be sure that all necessary programs are found (and to easily update the process when you install
new versions) you could run a script like this one (setrpaths.bat):

set PATH=c:\Program Files\R\R-2.9.2;%PATHY,

set PATH=c:\Rtools\bin;%PATHY

set PATH=c:\Rtools\MinGW\bin;%PATHY

set PATH=c:\Rtools\perl\bin;PATH/,

set PATH=c:\Program Files\MikTeX 2.7\miktex\bin;%PATHY
set PATH=c:\Program Files\HTML Help Workshop;PATH/,

Of course, the names will have to be modified to match your system configuration and installed versions.
This would typically be run before each development session.

With the tools installed and the path variable set we can now install a test version of RcppTemplate in
Library.test just as we did in the UNIX case (see last section). This should not be done in directories
that have names with spaces in them like “My Documents” as this will probably cause the build to fail.
It should also be kept in mind that Windows uses backward slashes while UNIX uses forward slashes in
file name paths (the Rtools binaries accept slashes in either direction, but Windows tools tend to be less
accommodating).

The package check and package build process is also exactly the same as in the UNIX case. There is
no configure script for Windows, and instead an OS-specific Makevars.win file is used. Simply modify
the variables PKG_CPPFLAGS and PKG_LIBS as explained in the last section based on the needs of your
package.

Finally, a Windows binary (.zip file) can be created using:

$ R CMD --no-vignettes --force --binary --use-zip RcppTemplate

Note that it is not necessary to submit a Windows binary version to CRAN. The Windows binary will
be generated by CRAN from the submitted source archive (.tar.gz file).

Under Windows a package can be installed from a local zip file (instead of using install.packages()
to fetch it over the network) by using the menu option: Packages / Install from local zip files.

8 Package Demo and Data Files

Package demo scripts can be inserted into the demo subdirectory. These will typically be larger scripts
that do not fit naturally into man pages. To display the list of demo scripts available and then run one
use commands like:

demo (package="RcppTemplate")
demo (SincSurface)

The package has to be loaded for this to work. The demo descriptions displayed by the first command
must be inserted into demo/00Index.

The demo script Peacock.R illustrates two kinds of dependency that can occur. It depends on another
package named ReadImages that must be installed (from CRAN), and this package in turn depends on
a jpeg shared library that must be installed at the OS level.'?

Package data files, images, license files, and other information that you want to be part of the
installed package should go into the inst subdirectory. The RcppTemplate source package contains

10Under Windows you may need to add the shared library location to your search path (or place it in a system directory)
so that it will be found at run-time. Under UNIX you may need to use the ldconfig command to accomplish the same
objective.

11

inst/datasets/exam.txt. When the package is installed the root directory will contain datasets/exam. txt.
To access the file datasets/exam.txt in your scripts use code like:

myfile <- system.file(’datasets’, ’exam.txt’, package=’RcppTemplate’)
my.frame <- read.table(myfile, header=TRUE)

For more information see the help page for read.table(), for example.

9 R Package Preparation Checklist

To conclude, here is a summary of the steps necessary to create an R package:

e Place your C++ (or C or FORTRAN) source code into the src subdirectory. (Skip this and related
steps if your package contains only R scripts, no source code to be compiled.)

e Set the compiler flags in Makevars and Makevars.win so that any needed external include or
library directories will be found at build time. For improved portability (on UNIX platforms) use
the template Makevars. in together with a configure script.

e Update the information in DESCRIPTION to show package description, version, date, author, depen-
dencies, etc. It is important to include dependencies so that install.packages() knows what is
required. A long description can span several lines provided all lines after the first begin with a
space or a tab.

e Insert R scripts that define all of your package functions into the R subdirectory, and optionally
add demo scripts to the demo subdirectory and update demo/00Index.

e Update the NAMESPACE file to show the package shared library name and all exported function
names. A start-up message can be issued when the library and namespace are initialized by defining
a function named .onLoad.

e Insert specially formatted help pages (with .Rd suffix) into the man subdirectory. For example, the
RcppExample man page is man/RcppExample.Rd. As was done in this case, it is good practice to
include an examples section on each man page.

e Make sure the package and documentation are consistently defined by running the CRAN check
function, and when all is well use the build command to generate the source archive for distribution.

In addition to setting the compiler and linker flags the configure script can take care of other pre-
build tasks like copying license and version information into the inst subdirectory. For Windows an
OS-specific configure.win can be used (a UNIX-style shell script). For example, in the RcppTemplate
package the configure scripts copy the license and version information for Repp from its source directory
to the inst subdirectory. After the build this information can be found in the installed package root
directory, and in this way the end user can determine what version of Recpp was used to build the package
(important to know if there are problems).

Refer to the “Writing R Extensions” manual at the CRAN site for additional information on package
creation, man page formatting, and the R API.

12

