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Abstract

This vignette gives a brief overview of the functions developed in Bacon(2008) to evaluate the perfor-
mance and risk of portfolios that are included in PerformanceAnalytics and how to use them. There
are some tables at the end which give a quick overview of similar functions. The page number next to
each function is the location of the function in Bacon (2008)

## Loading required package: xts
## Loading required package: zoo

##
## Attaching package: ’zoo’

## The following objects are masked from ’package:base’:
##
## as.Date, as.Date.numeric

##
## Attaching package: ’PerformanceAnalytics’

## The following object is masked from ’package:graphics’:
##
# legend

Risk Measure
Mean absolute deviation (p.62)

To calculate Mean absolute deviation we take the sum of the absolute value of the difference between the
returns and the mean of the returns and we divide it by the number of returns.
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MeanAbsoluteDeviation =

where n is the number of observations of the entire series, r; is the return in month 7 and 7 is the mean
return

data(portfolio_bacon)
print (MeanAbsoluteDeviation(portfolio_bacon[,1])) #exzpected 0.0310

## [1] 0.03108333



Frequency (p.64)
Gives the period of the return distribution (i.e. 12 if monthly return, 4 if quarterly return)

data(portfolio_bacon)
print (Frequency(portfolio_bacon[,1])) #ezpected 12

## [1] 12

Sharpe Ratio (p.64)

The Sharpe ratio is simply the return per unit of risk (represented by variability). In the classic case, the
unit of risk is the standard deviation of the returns.

(Ra — Ry)
VO (Ra—Ry)

data(managers)
SharpeRatio(managers[,1,drop=FALSE], Rf=.035/12, FUN="StdDev")

## HAM1
## StdDev Sharpe (Rf=0.3%, p=95%): 0.3201889

Risk-adjusted return: MSquared (p.67)

M? is a risk adjusted return useful to judge the size of relative performance between different portfolios.
With it you can compare portfolios with different levels of risk.

M2:rp—l—SR*(aM—ap):(rp—rp)*Z—M—l—rF
P

where rp is the portfolio return annualized, o, is the market risk and op is the portfolio risk

data(portfolio_bacon)
print (MSquared(portfolio_bacon[,1], portfolio_bacon[,2])) #ezpected 0.1068

## benchmark.return....
## benchmark.return.... 0.10062

MSquared Excess (p.68)

excess is the quantity above the standard M. There is a geometric excess return which is better for Bacon
and an arithmetic excess return

1+ M?
1+0

M?excess(arithmetic) = M* — b

M?excess(geometric) = -1

where M? is MSquared and b is the benchmark annualized return (normally denoted as r, in most other
texts).



data(portfolio_bacon)
print (MSquaredExcess (portfolio_bacon[,1], portfolio_bacon[,2])) #ezpected -0.00998

## benchmark.return....
## benchmark.return.... -0.01553103

print (MSquaredExcess (portfolio_bacon[,1], portfolio_bacon[,2], Method="arithmetic")) #expected -0.011

## benchmark.return....
## benchmark.return.... -0.01736344

Regression analysis
Regression equation (p.71)

rp=a+B*xb+e
### Regression alpha (p.71)

“Alpha” purports to be a measure of a manager’s skill by measuring the portion of the managers returns
that are not attributable to “Beta”, or the portion of performance attributable to a benchmark.

data(managers)
print (CAPM.alpha(managers[,1,drop=FALSE], managers[,8,drop=FALSE], Rf=.035/12))

## [1] 0.005960609

Regression beta (p.71)

CAPM Beta is the beta of an asset to the variance and covariance of an initial portfolio. Used to determine
diversification potential.

data(managers)
CAPM.beta(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE], Rf = managers[, "US 3m TR

## [1] 0.3383942

Regression epsilon (p.71)

The regression epsilon is an error term measuring the vertical distance between the return predicted by the
equation and the real result.

€ =Tp—ay — Bpxb

where is «, the regression alpha, 3, is the regression beta, r, is the portfolio return and b is the benchmark
return.



data(managers)
print (CAPM.epsilon(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.013

## [1] -0.01313932

Jensen’s alpha (p.72)

The Jensen’s alpha is the intercept of the regression equation in the Capital Asset Pricing Model and is in
effect the excess return adjusted for systematic risk.

o=y =1y =By b ry)

where 7y is the risk free rate, 3, is the regression beta, r, is the portfolio return and b is the benchmark
return

data(portfolio_bacon)
print (CAPM. jensenAlpha(portfolio_bacon[,1], portfolio_bacon[,2])) #ezpected -0.01/4

## [1] -0.01416944

Systematic Risk (p.75)
Systematic risk as defined by Bacon(2008) is the product of beta by market risk. Be careful ! It’s not the

same definition as the one given by Michael Jensen. Market risk is the standard deviation of the benchmark.
The systematic risk is annualized

Os = B * Om
where o, is the systematic risk, g is the regression beta, and o, is the market risk

data(portfolio_bacon)
print (SystematicRisk(portfolio_bacon[,1], portfolio_bacon[,2])) #ezpected 0.013

## [1] 0.132806

Specific Risk (p.75)
Specific risk is the standard deviation of the error term in the regression equation.

data(portfolio_bacon)
print (SpecificRisk(portfolio_bacon[,1], portfolio_bacon[,2])) #ezpected 0.0329

## [1] 0.03293109



Total Risk (p.75)

The square of total risk is the sum of the square of systematic risk and the square of specific risk. Specific
risk is the standard deviation of the error term in the regression equation. Both terms are annualized to
calculate total risk.

Total Risk = \/SystematicRisk® + Speci ficRisk>

data(portfolio_bacon)
print(TotalRisk(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.0134

## [1] 0.136828

Treynor ratio (p.75)

The Treynor ratio is similar to the Sharpe Ratio, except it uses beta as the volatility measure (to divide the
investment’s excess return over the beta).

(Ra — Ry)
/Ba,b

TreynorRatio =

data(managers)
print (round (TreynorRatio(managers[,1,drop=FALSE], managers[,8,drop=FALSE], Rf=.035/12),4))

## [1] 0.2528

Modified Treynor ratio (p.77)
To calculate modified Treynor ratio, we divide the numerator by the systematic risk instead of the beta.

data(portfolio_bacon)
print (TreynorRatio(portfolio_bacon[,1], portfolio_bacon[,2], modified = TRUE)) #ezpected 1.677

## [1] 0.7806747

Appraisal ratio (or Treynor-Black ratio) (p.77)

Appraisal ratio is the Jensen’s alpha adjusted for specific risk. The numerator is divided by specific risk
instead of total risk.

@
Appraisalratio = —
O¢

where « is the Jensen’s alpha, o, is the specific risk.

data(portfolio_bacon)
print (AppraisalRatio(portfolio_bacon[,1], portfolio_bacon[,2], method="appraisal")) #exzpected -0.430

## [1] -0.4302756



Modified Jensen (p.77)

Modified Jensen’s alpha is Jensen’s alpha divided by beta.
e pe 12 o
ModifiedJensen'salpha = B

where « is the Jensen’s alpha and [ is the regression beta

data(portfolio_bacon)
print (AppraisalRatio(portfolio_bacon[,1], portfolio_bacon[,2], method="modified"))

## [1] -0.01418576

Fama decomposition (p.77)

Fama beta is a beta used to calculate the loss of diversification. It is made so that the systematic risk is
equivalent to the total portfolio risk.

op
pr="2
oM

where op is the portfolio standard deviation and oj; is the market risk

data(portfolio_bacon)
print (FamaBeta(portfolio_bacon[,1], portfolio_bacon[,2])) #ezpected 1.03

## portfolio.monthly.return....
## portfolio.monthly.return.... 1.030395

Selectivity (p.78)

Selectivity is the same as Jensen’s alpha

Selectivity =1, — 1y — Bp* (b—ry)

where r; is the risk free rate, 8, is the regression beta, r, is the portfolio return and b is the benchmark
return

data(portfolio_bacon)
print(Selectivity(portfolio_bacon[,1], portfolio_bacon[,2])) #ezpected -0.0141

## [1] -0.01416944



Net selectivity (p.78)

Net selectivity is the remaining selectivity after deducting the amount of return require to justify not being
fully diversified

Netselectivity = a — d

where « is the selectivity and d is the diversification

If net selectivity is negative the portfolio manager has not justified the loss of diversification

data(portfolio_bacon)
print (NetSelectivity(portfolio_bacon[,1], portfolio_bacon[,2])) #ezpected -0.017

## portfolio.monthly.return....
## portfolio.monthly.return.... -0.0178912

Relative Risk
Tracking error (p.78)

A measure of the unexplained portion of performance relative to a benchmark.

Tracking error is calculated by taking the square root of the average of the squared deviations between the
investment’s returns and the benchmark’s returns, then multiplying the result by the square root of the scale
of the returns.

(Ro — Rp)?
TrackingError = \/Z
len(R,)V scale

where R, is the investment’s return, R} is the benchmark’s return and scale is the number of observations
of the entire series

data(managers)
TrackingError (managers[,1,drop=FALSE], managers[,8,drop=FALSE])

## [1] 0.1131667

Information ratio (p.80)

The Active Premium divided by the Tracking Error.

ActivePremium

InformationRatio =
/ TrackingError

This relates the degree to which an investment has beaten the benchmark to the consistency with which the
investment has beaten the benchmark.

data(managers)
InformationRatio(managers[, "HAM1" ,drop=FALSE], managers[, "SP500 TR", drop=FALSE])

## [1] 0.3604125



Return Distribution
Skewness (p.83)

measures the deformation from a normal deformation

n

Skewness = 1 * Z(

n :
=1

’I"i*F

)3
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where . is the number of return, . is the mean of the return distribution, . is its standard deviation and is
its sample standard deviation

data(managers)
skewness (managers)

## HAM1 HAM2 HAM3 HAM4 HAMS HAM6 EDHEC LS EQ SP500 TR US 10
## Skewness -0.6588445 1.45804 0.7908285 -0.4310631 0.07380869 -0.2799993 0.01773013 -0.5531032 -0.404

Sample skewness (p.84)

n

o n ri—T.3
SampleSkewness = —(n Sy p— * Z( )

o
i=1 Sp

where n is the number of returns, 7 is the mean of the return distribution, op is its standard deviation and
op is its sample standard deviation

data(portfolio_bacon)
print (skewness(portfolio_bacon[,1], method="sample")) #ezpected -0.09

## [1] -0.09398414

Kurtosis (p.84)

Kurtosis measures the weight or returns in the tails of the distribution relative to standard deviation.

ri—T

1 n
Kurtosis(moment) = i Z(
i=1

)4

op

where n is the number of returns, 7 is the mean of the return distribution, op is its standard deviation and
op is its sample standard deviation

data(portfolio_bacon)
print (kurtosis(portfolio_bacon[,1], method="moment")) #ezpected 2.43

## [1] 2.432454



Excess kurtosis (p.85)

ri—T

) -3

1 n
E Kurtosis = —
wcessKurtosis = — g (

g
-1 °F

where n is the number of returns, 7 is the mean of the return distribution, op is its standard deviation and
op is its sample standard deviation

data(portfolio_bacon)
print (kurtosis(portfolio_bacon[,1], method="excess")) #ezpected -0.57

## [1] -0.5675462

Sample kurtosis (p.85)

. n*(n+1) " =Ty
Samplekurtoszs-(n_l)*(n_2)*(n_3)*2( . )

where n is the number of returns, 7 is the mean of the return distribution, op is its standard deviation and
op is its sample standard deviation

data(portfolio_bacon)
print (kurtosis(portfolio_bacon[,1], method="sample")) #ezpected 3.03

## [1] 3.027405

Sample excess kurtosis (p.85)

nx(n+1) . & i =Ty 3% (n—1)2
(n=1)%x(n—2)%(n—3) Z( OSP) (n—2)*(n—23)

Sampleexcesskurtosis =

=1

where n is the number of returns, 7 is the mean of the return distribution, op is its standard deviation and
op is its sample standard deviation

data(portfolio_bacon)
print (kurtosis(portfolio_bacon[,1], method="sample_excess")) #expected -0.41

## [1] -0.4076603

Drawdown
Pain index (p.89)

The pain index is the mean value of the drawdowns over the entire analysis period. The measure is similar to
the Ulcer index except that the drawdowns are not squared. Also, it’s different than the average drawdown,
in that the numerator is the total number of observations rather than the number of drawdowns. Visually,
the pain index is the area of the region that is enclosed by the horizontal line at zero percent and the
drawdown line in the Drawdown chart.



=~ | Dj |
Painindexr = Z —

‘ n
=1

where n is the number of observations of the entire series, D} is the drawdown since previous peak in period
i

data(portfolio_bacon)
print (PainIndex(portfolio_baconl[,1])) #ezpected 0.04

#it portfolio.monthly.return....
## Pain Index 0.0390113

Calmar ratio (p.89)

Calmar ratio is another method of creating a risk-adjusted measure for ranking investments similar to the
Sharpe ratio.

data(managers)
CalmarRatio(managers[,1,drop=FALSE])

## HAM1
## Calmar Ratio 0.9061697

Sterling ratio (p.89)

Sterling ratio is another method of creating a risk-adjusted measure for ranking investments similar to the
Sharpe ratio.

data(managers)
SterlingRatio(managers([,1,drop=FALSE])

## HAM1
## Sterling Ratio (Excess = 10%) 0.5462542

Burke ratio (p.90)

To calculate Burke ratio we take the difference between the portfolio return and the risk free rate and we
divide it by the square root of the sum of the square of the drawdowns.

Tp —TF
d 2
\/ Zt:l Dt

where d is the number of drawdowns, rp is the portfolio return, rp is the risk free rate and D; the
drawdown.

BurkeRatio =

tth

data(portfolio_bacon)
print (BurkeRatio(portfolio_bacon[,1])) #ezpected 0.7/

## [1] 0.7447309
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Modified Burke ratio (p.91)

To calculate the modified Burke ratio we just multiply the Burke ratio by the square root of the number of
data points.

rp—Trgp
T B
t=1 n

where n is the number of observations of the entire series, d is number of drawdowns, rp is the portfolio
return, 7 is the risk free rate and D, the ' drawdown.

Modified BurkeRatio =

data(portfolio_bacon)
print (BurkeRatio(portfolio_bacon[,1], modified = TRUE)) #exzpected 3.65

## [1] 3.648421

Martin ratio (p.91)

To calculate Martin ratio we divide the difference of the portfolio return and the risk free rate by the Ulcer
index

rp —Tfp
Y, 2
=1 n

where rp is the portfolio return, rg is the risk free rate, n is the number of observations of the entire series,
D} is the drawdown since previous peak in period 1.

MartinRatio =

data(portfolio_bacon)
print (MartinRatio(portfolio_bacon[,1])) #ezpected 1.70

## portfolio.monthly.return....
## Ulcer Index 1.70772

Pain ratio (p.91)

To calculate Pain ratio we divide the difference of the portfolio return and the risk free rate by the Pain
index

. . rp—TF
Painratio = ————
| Djl

=1 n

where rp is the portfolio return, rp is the risk free rate, n is the number of observations of the entire series,
D; is the drawdown since previous peak in period i.

data(portfolio_bacon)
print (PainRatio(portfolio_bacon[,1])) #ezpected 2.66

## portfolio.monthly.return....
## Pain Index 2.657647
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Downside risk
Downside risk (p.92)

Downside deviation, similar to semi deviation, eliminates positive returns when calculating risk. Instead of
using the mean return or zero, it uses the Minimum Acceptable Return as proposed by Sharpe (which may
be the mean historical return or zero). It measures the variability of underperformance below a minimum
target rate. The downside variance is the square of the downside potential.

n . o 2
DownsideDeviation(R, MAR) = dprar = E min|(R; - MAR), 0]
n
t=1

n

min[(R; — MAR),0]?
3 [( ), 0]

DownsideVariance(R, MAR) =

n
t=1

DownsidePotential(R, MAR) =

t

n

" min[(R; — MAR), 0]
=1

where n is either the number of observations of the entire series or the number of observations in the subset
of the series falling below the MAR.

data(portfolio_bacon)
MAR = 0.5
DownsideDeviation(portfolio_bacon[,1], MAR) #ezpected 0.493

## [,1]
## [1,]1 0.492524

DownsidePotential (portfolio_bacon[,1], MAR) #exzpected 0.491

#it [,1]
## [1,] 0.491

UpsideRisk (p.92)

Upside Risk is the similar to semideviation taking the return above the Minimum Acceptable Return instead
of using the mean return or zero.

UpsideRisk(R, MAR) =

" maz[(R, — MAR),0]2
3 [( . ), 0]

t=1

3

max[(R: — MAR) 0]?

UpsideVariance(R, MAR) = Z

t=1

max|( MAR) 0]

UpsidePotential(R, MAR) = Z
t=1

where n is either the number of observations of the entire series or the number of observations in the subset
of the series falling above the MAR.
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data(portfolio_bacon)
MAR = 0.005
print (UpsideRisk(portfolio_bacon[,1], MAR, stat="risk")) #ezpected 0.02937

## [1] 0.02937332

print (UpsideRisk(portfolio_bacon[,1], MAR, stat="variance")) #ezpected 0.08628

## [1] 0.0008627917

print (UpsideRisk(portfolio_bacon[,1], MAR, stat="potential")) #ezpected 0.01771
## [1] 0.01770833

Downside frequency (p.94)

To calculate Downside Frequency, we take the subset of returns that are less than the target (or Minimum
Acceptable Returns (MAR)) returns and divide the length of this subset by the total number of returns.

n .
R, — MAR),0
DownsideFrequency(R, MAR) = Z mén( ;{ 7 .0
¢

t=1

where n is the number of observations of the entire series.
data(portfolio_bacon)

MAR = 0.005
print (DownsideFrequency(portfolio_bacon[,1], MAR)) #exzpected 0.458

## [1] 0.4583333

Bernardo and Ledoit ratio (p.95)

To calculate Bernardo and Ledoit ratio we take the sum of the subset of returns that are above 0 and we
divide it by the opposite of the sum of the subset of returns that are below 0

7 2y maz(Ry, 0)

BernardoLedoit Ratio(R) = "=
= i1 max(—Ry,0)

where n is the number of observations of the entire series

data(portfolio_bacon)
print (BernardoLedoitRatio(portfolio_bacon[,1])) #ezpected 1.78

## [1] 1.779783
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d ratio (p.95)

The d ratio is similar to the Bernardo Ledoit ratio but inverted and taking into account the frequency of
positive and negative returns.

It has values between zero and infinity. It can be used to rank the performance of portfolios. The lower the
d ratio the better the performance, a value of zero indicating there are no returns less than zero and a value
of infinity indicating there are no returns greater than zero.

ng * Yy max(—Ry,0)

D y =
Ratio(R) Ny * Y 1 maz(Ry, 0)

where n is the number of observations of the entire series, ng is the number of observations less than zero
and n,, is the number of observations greater than zero

data(portfolio_bacon)
print (DRatio(portfolio_bacon[,1])) #ezpected 0.401

## [1] 0.4013329

Omega-Sharpe ratio (p.95)
The Omega-Sharpe ratio is a conversion of the omega ratio to a ranking statistic in familiar form to the
Sharpe ratio.

To calculate the Omega-Sharpe ration we subtract the target (or Minimum Acceptable Returns (MAR))
return from the portfolio return and we divide it by the opposite of the Downside Deviation.

OmegaSharpeRatio(R, MAR) = — TZ;(CLT» )
t=1 n 7

where n is the number of observations of the entire series
data(portfolio_bacon)

MAR = 0.005
print (OmegaSharpeRatio(portfolio_bacon[,1], MAR)) #ezpected 0.29

#it [,1]
## [1,] 0.2917933

Sortino ratio (p.96)

Sortino proposed an improvement on the Sharpe Ratio to better account for skill and excess performance
by using only downside semivariance as the measure of risk.

(R, — MAR)

SortinoRatio =
OMAR

where dpsar is the DownsideDeviation.
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data(managers)
round(SortinoRatio(managers[, 11),4)

H## HAM1
## Sortino Ratio (MAR = 0%) 0.7649

Kappa (p.96)

Introduced by Kaplan and Knowles (2004), Kappa is a generalized downside risk-adjusted performance
measure.

To calculate it, we take the difference of the mean of the distribution to the target and we divide it by the
l-root of the lth lower partial moment. To calculate the 1th lower partial moment we take the subset of
returns below the target and we sum the differences of the target to these returns. We then return return
this sum divided by the length of the whole distribution.

data(portfolio_bacon)

MAR = 0.005

1=2

print (Kappa(portfolio_bacon[,1], MAR, 1)) #exzpected 0.157

## [1] 0.1566371

Upside potential ratio (p.97)

Sortino proposed an improvement on the Sharpe Ratio to better account for skill and excess performance
by using only downside semivariance as the measure of risk. That measure is the Sortino ratio. This
function, Upside Potential Ratio, was a further improvement, extending the measurement of only upside on
the numerator, and only downside of the denominator of the ratio equation.

> oiei (B — MAR)

UPR =
OMAR

where dpar is the DownsideDeviation.

data(edhec)
UpsidePotentialRatio(edhec[, 6], MAR=.05/12) #5 percent/yr MAR

## Event Driven
## Upside Potential (MAR = 0.4%) 0.5840163

Volatility skewness (p.97)

Volatility skewness is a similar measure to omega but using the second partial moment. It’s the ratio of the
upside variance compared to the downside variance.

2
VolatilitySkewness(R, MAR) = ¥
9D

where oy is the Upside risk and op is the Downside Risk

15



data(portfolio_bacon)
MAR = 0.005
print(VolatilitySkewness(portfolio_bacon[,1], MAR, stat="volatility")) #expected 1.32

#it [,1]
## [1,] 1.323046

Variability skewness (p.98)
Variability skewness is the ratio of the upside risk compared to the downside risk.

VariabilitySkewness(R, MAR) = u

oD

where oy is the Upside risk and op is the Downside Risk

data(portfolio_bacon)
MAR = 0.005
print(VolatilitySkewness(portfolio_bacon[,1], MAR, stat="variability")) #exzpected 1.15

# [,1]
## [1,] 1.150238

Adjusted Sharpe ratio (p.99)

Adjusted Sharpe ratio was introduced by Pezier and White (2006) to adjusts for skewness and kurtosis by
incorporating a penalty factor for negative skewness and excess kurtosis.

K -3

AdjustedSharpeRatio = SR [1+ (=) * SR — (T

)+ SR?]

S|

where SR is the Sharpe Ratio with data annualized,S is the skewness and K is the kurtosis

data(portfolio_bacon)
print (AdjustedSharpeRatio(portfolio_bacon[,1])) #ezpected 0.81

## portfolio.monthly.return....
## Annualized Sharpe Ratio (Rf=0%) 0.7591435

Skewness-kurtosis ratio (p.99)

Skewness-Kurtosis ratio is the division of Skewness by Kurtosis. It is used in conjunction with the Sharpe
ratio to rank portfolios. The higher the rate the better.

SkewnessKurtosisRatio(r, MAR) =

=| @

where S is the skewness and K is the Kurtosis
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data(portfolio_bacon)
print (SkewnessKurtosisRatio(portfolio_bacon[,1])) #exzpected -0.034

## [1] -0.03394204

Prospect ratio (p.100)

Prospect ratio is a ratio used to penalize loss since most people feel loss greater than gain

LS (Max(r;,0) 4 2.25 « Min(r;,0) — MAR
rospect Ratio(R) = w * iy (Maz(ri, 0) * Min(r;, 0) )

0D

where n is the number of observations of the entire series, M AR is the minimum acceptable return and op
is the downside risk

data(portfolio_bacon)
MAR = 0.05
print (ProspectRatio(portfolio_bacon[,1], MAR)) #ezpected -0.13/4

## [,1]

## [1,] -0.1347065

Return adjusted for downside risk
M Squared for Sortino (p.102)

M squared for Sortino is a calculated for Downside risk instead of Total Risk

Mg = rp + Sortinoratio * (cpy — op)

where M2 is MSquared for Sortino, rp is the annualized portfolio return, opM is the benchmark annualized
downside risk and D is the portfolio annualized downside risk

data(portfolio_bacon)

MAR = 0.005
print (M2Sortino(portfolio_bacon[,1], portfolio_bacon[,2], MAR)) #ezpected 0.1035

## portfolio.monthly.return....
## Sortino Ratio (MAR = 0.5%) 0.1034799

Omega excess return (p.103)

Omega excess return is another form of downside risk-adjusted return. It is calculated by multiplying the
downside variance of the style benchmark by 3 times the style beta.

w=rp—3%PBs*0ap

where w is omega excess return, Bg is style beta, op is the portfolio annualized downside risk and o; D is
the benchmark annualized downside risk.
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data(portfolio_bacon)
MAR = 0.005

print (OmegaExcessReturn(portfolio_bacon[,1], portfolio_bacon[,2], MAR)) #expected 0.0805

#i#t [,1]
## [1,] 0.08053795

Tables

Variability risk

Table of Mean absolute difference, Monthly standard deviation and annualized standard deviation

data(managers)
table.Variability(managers[,1:8])

## HAM1  HAM2 HAM3 HAM4 HAM5  HAM6 EDHEC LS EQ SP500 TR
## Mean Absolute deviation 0.0182 0.0268 0.0268 0.0410 0.0329 0.0187 0.0159 0.0333
## monthly Std Dev 0.0256 0.0367 0.0365 0.0532 0.0457 0.0238 0.0205 0.0433
## Annualized Std Dev 0.0888 0.1272 0.1265 0.1843 0.1584 0.0825 0.0708 0.1500

Specific risk

Table of specific risk, systematic risk and total risk

data(managers)
table.SpecificRisk(managers[,1:8], managers[,8])

## HAM1  HAM2 HAM3 HAM4 HAM5  HAM6 EDHEC LS EQ SP500 TR
## Specific Risk 0.0664 NA 0.0946 0.1521 NA NA NA 0.00
## Systematic Risk 0.0586 0.0515 0.0836 0.1032 0.0477 0.0486 0.0503 0.15
## Total Risk 0.0886 NA 0.1262 0.1838 NA NA NA 0.15

Information risk

Table of Tracking error, Annualized tracking error and Information ratio

data(managers)
table.InformationRatio(managers[,1:8], managers[,8])

#i# HAM1  HAM2 HAM3 HAM4 HAM5  HAM6 EDHEC LS EQ SP500 TR
## Tracking Error 0.0327 0.0443 0.0334 0.0461 0.0520 0.0326 0.0326 0
## Annualised Tracking Error 0.1132 0.1534 0.1159 0.1597 0.1800 0.1128 0.1130 0
## Information Ratio 0.3604 0.5060 0.4701 0.1549 0.1212 0.6723 0.2985 NaN
Distributions

Table of Monthly standard deviation, Skewness, Sample standard deviation, Kurtosis, Excess kurtosis, Sam-

ple Skewness and Sample excess kurtosis
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data(managers)

table.Distributions(managers[,1:8])

##

## monthly Std Dev
## Skewness

## Kurtosis

## Excess kurtosis
## Sample skewness

## Sample excess kurtosis

Drawdowns

HAM1
0.0256
-0.6588
5.3616
2.3616
-0.6741
2.5004

HAM2
.0367
.4580
.3794
.3794
.4937
.5270

N~ N O+~ O

HAM3
.0365
.7908
.6829
.6829
.8091
.8343

N O N O OO

HAM4
0.0532
-0.4311
3.8632
0.8632
-0.4410
0.9437

HAMS
.0457
.0738
.3143
.3143
.0768
.5541

N O DN O OO

HAM6 EDHEC LS EQ SP500 TR

.0238
.2800
.6511
.3489
.2936
L2778

.0205
.0177
.9105
.9105
.0182
.0013

= O O w o O

0.0433
0.5531
3.5598
0.5598
0.5659
0.6285

Table of Calmar ratio, Sterling ratio, Burke ratio, Pain index, Ulcer index, Pain ratio and Martin ratio

data(managers)

table.DrawdownsRatio(managers[,1:8])

##

## Sterling ratio
## Calmar ratio
## Burke ratio

## Pain index

## Ulcer index

## Pain ratio

## Martin ratio

W o0 O O O o o

Downside risk

HAM1

.5463
.9062
.6593
.0157
.0362
L7789
. 7992

= N O O O O O

HAM2
.5139
.7281
.8970
.0642
.1000
L7187
.T473

= N OO OO O

.3884
.5226
.6079
.0674
L1114
.2438
.3572

HAM3

= =2, O OO O O

.3136
L4227
.1998
.0739
.1125
.6443
.0798

HAM4

O OO O O O o

.0847
.1096
.1008
.1452
.1828
.2570
.2042

HAMS

s NO O R RO

HAM6 EDHEC LS EQ SP500 TR
0.
.2163
.2191
.1226
.1893
.7891
.5112

L7678
. 7425
.0788
.0183
.0299
.4837
.5928

.5688
.0982
.8452
.0178
.0325
.6466
.6345

W o OO O+~ O

O O O O OO

1768

Table of Monthly downside risk, Annualized downside risk, Downside potential, Omega, Sortino ratio, Upside
potential, Upside potential ratio and Omega-Sharpe ratio

data(managers)

table.DownsideRiskRatio(managers[,1:8])

##
## monthly downside

## Annualised downside risk

risk

## Downside potential

## Omega
## Sortino ratio
## Upside potential

## Upside potential ratio

## Omega-sharpe ratio

Sharpe ratio

HAM1
0.0145
0.0504
0.0051
3.1907
0.7649
0.0162
0.7503
2.1907

HAM2
.0116
.0401
.0061
.3041
.2220
.0203
.2078
.3041

NNO -, WOOOo

HAM3
.0174
.0601
.0079
.5803
L7172
.0203
.0852
.5803

=, O ONOOO

HAM4
.0341
.1180
.0159
.6920
.3234
.0269
.8009
.6920

O O OO O OO

HAMS
.0304
.1054
.0145
.2816
.1343
.0186
. 7557
.2816

O O OO O OO

Table of Annualized Return, Annualized Std Dev, and Annualized Sharpe
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N, OO WwWOOoOOo

HAM6 EDHEC LS EQ SP500 TR

.0121
.0421
.0054
.0436
.9102
.0165
.0003
.0436

N~ OO WwOOOo

.0098
.0341
.0041
.3186
.9691
.0137
.1136
.3186

0

O OO O OO

.0283
.0980
.0132
.6581
.3064
.0218
.71563
.6581



data(managers)
table.AnnualizedReturns (managers[,1:8])

## HAM1  HAM2 HAM3 HAM4 HAMS5  HAM6 EDHEC LS EQ SP500 TR
## Annualized Return 0.1375 0.1747 0.1512 0.1215 0.0373 0.1373 0.1180 0.0967
## Annualized Std Dev 0.0888 0.1272 0.1265 0.1843 0.1584 0.0825 0.0708 0.1500
## Annualized Sharpe (Rf=0%) 1.5491 1.3732 1.1955 0.6592 0.2356 1.6642 1.6657  0.6449
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