CRAN Package Check Results for Package BioTIMEr

Last updated on 2025-12-19 23:49:41 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.3.0 12.46 253.01 265.47 OK
r-devel-linux-x86_64-debian-gcc 0.3.0 7.88 145.60 153.48 ERROR
r-devel-linux-x86_64-fedora-clang 0.3.0 21.00 293.16 314.16 ERROR
r-devel-linux-x86_64-fedora-gcc 0.3.0 19.00 445.08 464.08 ERROR
r-devel-windows-x86_64 0.3.0 13.00 246.00 259.00 OK
r-patched-linux-x86_64 0.3.0 10.62 212.80 223.42 OK
r-release-linux-x86_64 0.3.0 12.27 209.99 222.26 OK
r-release-macos-arm64 0.3.0 3.00 35.00 38.00 OK
r-release-macos-x86_64 0.3.0 10.00 287.00 297.00 OK
r-release-windows-x86_64 0.3.0 13.00 194.00 207.00 OK
r-oldrel-macos-arm64 0.3.0 3.00 70.00 73.00 OK
r-oldrel-macos-x86_64 0.3.0 10.00 279.00 289.00 OK
r-oldrel-windows-x86_64 0.3.0 21.00 257.00 278.00 OK

Check Details

Version: 0.3.0
Check: examples
Result: ERROR Running examples in ‘BioTIMEr-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: getAlphaMetrics > ### Title: Alpha diversity metrics > ### Aliases: getAlphaMetrics > > ### ** Examples > > # Mean and sd values of the metrics for several resamplings > gridding(BTsubset_meta, BTsubset_data) |> + resampling(measure = "BIOMASS", resamps = 2) |> + getAlphaMetrics(measure = "BIOMASS") |> + dplyr::summarise( + dplyr::across( + .cols = !resamp, + .fns = c(mean = mean, sd = sd)), + .by = c(assemblageID, YEAR)) |> + tidyr::pivot_longer( + col = dplyr::contains("_"), + names_to = c("metric", "stat"), + names_sep = "_", + names_transform = as.factor) |> + tidyr::pivot_wider(names_from = stat) |> + head(10) OK: all SL studies have 1 grid cell Warning: NA values found and removed. Only a subset of `x` is used. Error in `[.data.table`(x, j = `:=`(minsamp, data.table::uniqueN(SAMPLE_DESC)), : attempt access index 20/20 in VECTOR_ELT Calls: head ... resampling.default -> resampling_internal -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.3.0
Check: tests
Result: ERROR Running ‘testthat.R’ [48s/27s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > test_check("BioTIMEr") Loading required package: BioTIMEr Starting 2 test processes. > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell Saving _problems/test-resampling-10.R Saving _problems/test-resampling-11.R Saving _problems/test-resampling-37.R Saving _problems/test-resampling-46.R Saving _problems/test-resampling-60.R Saving _problems/test-resampling-85.R > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling_abundance.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling_abundance_biomass.R: OK: all SL studies have 1 grid cell > test-resampling_abundance_biomass_conservative.R: OK: all SL studies have 1 grid cell > test-resampling_biomass.R: OK: all SL studies have 1 grid cell [ FAIL 6 | WARN 5 | SKIP 20 | PASS 65 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test-metrics.R:59:3', 'test-metrics.R:82:3', 'test-metrics.R:95:3', 'test-metrics.R:107:3', 'test-metrics.R:120:3', 'test-workflow_alpha.R:3:3', 'test-workflow_beta.R:3:3', 'test-slopes.R:3:3', 'test-plots.R:4:3', 'test-scales.R:35:3', 'test-resampling.R:101:3', 'test-resampling_abundance.R:11:3', 'test-gridding.R:75:3', 'test-gridding.R:82:3', 'test-gridding.R:89:3', 'test-resampling_abundance_biomass.R:11:3', 'test-resampling_abundance_biomass_conservative.R:11:3', 'test-resampling_core.R:91:3', 'test-resampling_core.R:164:3', 'test-resampling_biomass.R:11:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-resampling.R:10:3'): resampling returns an object of same class as meta ── Expected `resdf <- resampling(test_df, measure = "BIOMASS")` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Error ('test-resampling.R:11:3'): resampling returns an object of same class as meta ── Error in `eval(code, test_env)`: object 'resdf' not found Backtrace: ▆ 1. └─testthat::expect_s3_class(resdf, "data.frame") at test-resampling.R:11:3 2. └─testthat::quasi_label(enquo(object)) 3. └─rlang::eval_bare(expr, quo_get_env(quo)) ── Failure ('test-resampling.R:34:3'): gridded object passed to resampling is not changed by reference ── Expected `{ ... }` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Failure ('test-resampling.R:40:3'): gridded object passed to resampling is not changed by reference ── Expected `{ ... }` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Failure ('test-resampling.R:53:3'): gridded object passed to resampling is not changed by reference ── Expected `{ ... }` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Error ('test-resampling.R:82:3'): resampling correctly excludes 1 year long studies ── Error in ``[.data.table`(x, j = `:=`(minsamp, data.table::uniqueN(SAMPLE_DESC)), keyby = c("assemblageID", "YEAR"))`: attempt access index 20/20 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(resampling(test_df_1y, "BIOMASS"), regexp = "Some 1-year-long studies were removed.") at test-resampling.R:82:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. ├─BioTIMEr::resampling(test_df_1y, "BIOMASS") 8. └─BioTIMEr:::resampling.default(test_df_1y, "BIOMASS") 9. └─BioTIMEr:::resampling_internal(...) 10. ├─...[] 11. └─data.table:::`[.data.table`(...) [ FAIL 6 | WARN 5 | SKIP 20 | PASS 65 ] Deleting unused snapshots: 'plots/themebiotime-plot.svg', 'scales/color-continuous-cool-false.svg', 'scales/color-continuous-cool-true.svg', 'scales/color-continuous-gradient-false.svg', 'scales/color-continuous-gradient-true.svg', 'scales/color-continuous-realms-false.svg', 'scales/color-continuous-realms-true.svg', 'scales/color-continuous-warm-false.svg', 'scales/color-continuous-warm-true.svg', 'scales/color-cool-false-false.svg', 'scales/color-cool-false-true.svg', 'scales/color-cool-true-false.svg', 'scales/color-cool-true-true.svg', 'scales/color-gradient-false-false.svg', 'scales/color-gradient-false-true.svg', 'scales/color-gradient-true-false.svg', 'scales/color-gradient-true-true.svg', 'scales/color-realms-false-false.svg', …, 'scales/fill-warm-true-false.svg', and 'scales/fill-warm-true-true.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.3.0
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘introduction.qmd’ using html <1b>[31m processing file: introduction.qmd <1b>[39mBTsubset_meta package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>m_<08>e_<08>t_<08>a_<08>d_<08>a_<08>t_<08>a _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of the metadata from BioTIME _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_meta _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_meta` A data frame with 12 rows and 25 columns: STUDY_ID BioTIME study unique identifier REALM Realm of study location, i.e. Marine CLIMATE Climate of study location, i.e. Temperate HABITAT Habitat of study location, i.e. Rivers PROTECTED_AREA Binary variable indicating if the study is within a protected area BIOME_MAP Biome of study location (taken from the WWF biomes, i.e. Temperate broadleaf and mixed forests TAXA High level taxonomic identity of study species, i.e. Fish ORGANISMS More detailed information on taxonomy, i.e. woody plants TITLE Title of study as identified in original source AB_BIO A, B or AB to designate abundance only, biomass only or both DATA_POINTS Number of unique data points in study, e.g. 10 data points spanning 15 years = 10 START_YEAR First year of study END_YEAR Last year of study CENT_LAT Central latitude taken from the convex hull around all study coordinates CENT_LONG Central longitude taken from the convex hull around all study coordinates NUMBER_OF_SPECIES Number of distinct species in study NUMBER_OF_SAMPLES Number of distinct samples in study NUMBER_LAT_LONG Number of distinct geographic coordinates in study TOTAL Total number of records in study GRAIN_SIZE_TEXT Grain size described in text, i.e. size of forest plots AREA_SQ_KM Total area of study in km2 DATE_STUDY_ADDED Date that the study was added to the database ABUNDANCE_TYPE Type of abundance, i.e. count BIOMASS_TYPE Type of biomass, i.e. weight SAMPLE_DESC Concatenation of descriptors comprising the unique sampling event _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> BTsubset_data package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of data from BioTIME temporal surveys. _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_data _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_data` A data frame with 81,084 rows and 17 columns: ID_ALL_RAW_DATA Unique BioTIME identifier for record ABUNDANCE Double representing the abundance for the record (see metadata for details of ABUNDANCE_TYPE BIOMASS Double representing the biomass for the record (see metadata for details of BIOMASS_TYPE ID_SPECIES Unique identifier linking to the species table SAMPLE_DESC Concatenation of variables comprising unique sampling event LATITUDE Latitude of record LONGITUDE Longitude of record DEPTH Depth or elevation of record if available DAY Numerical day of record MONTH Numerical value of month for record, i.e. January=1 YEAR Year of record STUDY_ID BioTIME study unique identifier newID Validated species identifier key valid_name Highest taxonomic resolution of individual, preferred is genus and species resolution Level of resolution, i.e. 'species' represented by genus and species taxon Higher level taxonomic grouping, i.e. Fish _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> Vignettes with name or keyword or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::introduction Introduction to BioTIMEr Type 'vignette(PKG::FOO)' to inspect entries 'PKG::FOO'. Help files with alias or concept or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::BTsubset_data BioTIME subset BioTIMEr::BTsubset_meta BioTIME subset metadata BioTIMEr::BioTIMEr-package BioTIMEr: Tools to Use and Explore the 'BioTIME' Database Aliases: BioTIMEr, BioTIMEr-package BioTIMEr::getLinearRegressions Get Linear Regressions BioTIME BioTIMEr::gridding gridding BioTIME data BioTIMEr::gridding_internal gridding BioTIME data BioTIMEr::plotSlopes Plot slopes BioTIME BioTIMEr::resampling Rarefy BioTIME data to an equal number of samples per year BioTIMEr::resampling_core Rarefy BioTIME data Applies sample-based rarefaction to standardise the number of samples per year within a cell-level time series. BioTIMEr::scale_color_biotime Scale construction for ggplot use Aliases: scale_color_biotime, scale_colour_biotime, scale_fill_biotime BioTIMEr::themeBioTIME ggplot2 theme for BioTIME plots Aliases: themeBioTIME Type '?PKG::FOO' to inspect entries 'PKG::FOO', or 'TYPE?PKG::FOO' for entries like 'PKG::FOO-TYPE'. <1b>[31mError in `[.data.table`(x, j = `:=`(minsamp, data.table::uniqueN(SAMPLE_DESC)), : attempt access index 20/20 in VECTOR_ELT Calls: .main ... resampling.default -> resampling_internal -> [ -> [.data.table Quitting from introduction.qmd:265-274 [resampling_ex1] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 20/20 in VECTOR_ELT --- Backtrace: ▆ 1. ├─BioTIMEr::resampling(...) 2. └─BioTIMEr:::resampling.default(...) 3. └─BioTIMEr:::resampling_internal(...) 4. ├─...[] 5. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Execution halted <1b>[39m<1b>[33mWARN: Error encountered when rendering files<1b>[39m Error: processing vignette 'introduction.qmd' failed with diagnostics: ! Error running quarto CLI from R. Caused by error in `quarto_render()`: ✖ Error returned by quarto CLI. ----------------------------- processing file: introduction.qmd BTsubset_meta package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>m_<08>e_<08>t_<08>a_<08>d_<08>a_<08>t_<08>a _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of the metadata from BioTIME _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_meta _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_meta` A data frame with 12 rows and 25 columns: STUDY_ID BioTIME study unique identifier REALM Realm of study location, i.e. Marine CLIMATE Climate of study location, i.e. Temperate HABITAT Habitat of study location, i.e. Rivers PROTECTED_AREA Binary variable indicating if the study is within a protected area BIOME_MAP Biome of study location (taken from the WWF biomes, i.e. Temperate broadleaf and mixed forests TAXA High level taxonomic identity of study species, i.e. Fish ORGANISMS More detailed information on taxonomy, i.e. woody plants TITLE Title of study as identified in original source AB_BIO A, B or AB to designate abundance only, biomass only or both DATA_POINTS Number of unique data points in study, e.g. 10 data points spanning 15 years = 10 START_YEAR First year of study END_YEAR Last year of study CENT_LAT Central latitude taken from the convex hull around all study coordinates CENT_LONG Central longitude taken from the convex hull around all study coordinates NUMBER_OF_SPECIES Number of distinct species in study NUMBER_OF_SAMPLES Number of distinct samples in study NUMBER_LAT_LONG Number of distinct geographic coordinates in study TOTAL Total number of records in study GRAIN_SIZE_TEXT Grain size described in text, i.e. size of forest plots AREA_SQ_KM Total area of study in km2 DATE_STUDY_ADDED Date that the study was added to the database ABUNDANCE_TYPE Type of abundance, i.e. count BIOMASS_TYPE Type of biomass, i.e. weight SAMPLE_DESC Concatenation of descriptors comprising the unique sampling event _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> BTsubset_data package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of data from BioTIME temporal surveys. _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_data _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_data` A data frame with 81,084 rows and 17 columns: ID_ALL_RAW_DATA Unique BioTIME identifier for record ABUNDANCE Double representing the abundance for the record (see metadata for details of ABUNDANCE_TYPE BIOMASS Double representing the biomass for the record (see metadata for details of BIOMASS_TYPE ID_SPECIES Unique identifier linking to the species table SAMPLE_DESC Concatenation of variables comprising unique sampling event LATITUDE Latitude of record LONGITUDE Longitude of record DEPTH Depth or elevation of record if available DAY Numerical day of record MONTH Numerical value of month for record, i.e. January=1 YEAR Year of record STUDY_ID BioTIME study unique identifier newID Validated species identifier key valid_name Highest taxonomic resolution of individual, preferred is genus and species resolution Level of resolution, i.e. 'species' represented by genus and species taxon Higher level taxonomic grouping, i.e. Fish _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> Vignettes with name or keyword or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::introduction Introduction to BioTIMEr Type 'vignette(PKG::FOO)' to inspect entries 'PKG::FOO'. Help files with alias or concept or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::BTsubset_data BioTIME subset BioTIMEr::BTsubset_meta BioTIME subset metadata BioTIMEr::BioTIMEr-package BioTIMEr: Tools to Use and Explore the 'BioTIME' Database Aliases: BioTIMEr, BioTIMEr-package BioTIMEr::getLinearRegressions Get Linear Regressions BioTIME BioTIMEr::gridding gridding BioTIME data BioTIMEr::gridding_internal gridding BioTIME data BioTIMEr::plotSlopes Plot slopes BioTIME BioTIMEr::resampling Rarefy BioTIME data to an equal number of samples per year BioTIMEr::resampling_core Rarefy BioTIME data Applies sample-based rarefaction to standardise the number of samples per year within a cell-level time series. BioTIMEr::scale_color_biotime Scale construction for ggplot use Aliases: scale_color_biotime, scale_colour_biotime, scale_fill_biotime BioTIMEr::themeBioTIME ggplot2 theme for BioTIME plots Aliases: themeBioTIME Type '?PKG::FOO' to inspect entries 'PKG::FOO', or 'TYPE?PKG::FOO' for entries like 'PKG::FOO-TYPE'. <1b>[31mError in `[.data.table`(x, j = `:=`(minsamp,<1b>[39m <1b>[31mdata.table::uniqueN(SAMPLE_DESC)), :<1b>[39m attempt access index 20/20 in VECTOR_ELT Calls: .main ... resampling.default -> resampling_internal -> [ -> [.data.table Quitting from introduction.qmd:265-274 [resampling_ex1] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 20/20 in VECTOR_ELT --- Backtrace: ▆ 1. ├─BioTIMEr::resampling(...) 2. └─BioTIMEr:::resampling.default(...) 3. └─BioTIMEr:::resampling_internal(...) 4. ├─...[] 5. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Execution halted <1b>[33mWARN: Error encountered when rendering files<1b>[39m Caused by error: ! System command 'quarto' failed --- failed re-building ‘introduction.qmd’ SUMMARY: processing the following file failed: ‘introduction.qmd’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.3.0
Check: examples
Result: ERROR Running examples in ‘BioTIMEr-Ex.R’ failed The error most likely occurred in: > ### Name: getAlphaMetrics > ### Title: Alpha diversity metrics > ### Aliases: getAlphaMetrics > > ### ** Examples > > # Mean and sd values of the metrics for several resamplings > gridding(BTsubset_meta, BTsubset_data) |> + resampling(measure = "BIOMASS", resamps = 2) |> + getAlphaMetrics(measure = "BIOMASS") |> + dplyr::summarise( + dplyr::across( + .cols = !resamp, + .fns = c(mean = mean, sd = sd)), + .by = c(assemblageID, YEAR)) |> + tidyr::pivot_longer( + col = dplyr::contains("_"), + names_to = c("metric", "stat"), + names_sep = "_", + names_transform = as.factor) |> + tidyr::pivot_wider(names_from = stat) |> + head(10) OK: all SL studies have 1 grid cell Warning: NA values found and removed. Only a subset of `x` is used. Error in `[.data.table`(x, j = `:=`(minsamp, data.table::uniqueN(SAMPLE_DESC)), : attempt access index 20/20 in VECTOR_ELT Calls: head ... resampling.default -> resampling_internal -> [ -> [.data.table Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 0.3.0
Check: tests
Result: ERROR Running ‘testthat.R’ [89s/65s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > test_check("BioTIMEr") Loading required package: BioTIMEr Starting 2 test processes. > test-gridding.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell Saving _problems/test-resampling-10.R Saving _problems/test-resampling-11.R Saving _problems/test-resampling-37.R Saving _problems/test-resampling-46.R Saving _problems/test-resampling-60.R Saving _problems/test-resampling-85.R > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling_abundance.R: OK: all SL studies have 1 grid cell > test-resampling_abundance_biomass.R: OK: all SL studies have 1 grid cell > test-resampling_abundance_biomass_conservative.R: OK: all SL studies have 1 grid cell > test-resampling_biomass.R: OK: all SL studies have 1 grid cell [ FAIL 6 | WARN 5 | SKIP 20 | PASS 65 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test-metrics.R:59:3', 'test-metrics.R:82:3', 'test-metrics.R:95:3', 'test-metrics.R:107:3', 'test-metrics.R:120:3', 'test-workflow_alpha.R:3:3', 'test-workflow_beta.R:3:3', 'test-slopes.R:3:3', 'test-plots.R:4:3', 'test-scales.R:35:3', 'test-resampling.R:101:3', 'test-gridding.R:75:3', 'test-gridding.R:82:3', 'test-gridding.R:89:3', 'test-resampling_abundance.R:11:3', 'test-resampling_abundance_biomass.R:11:3', 'test-resampling_abundance_biomass_conservative.R:11:3', 'test-resampling_core.R:91:3', 'test-resampling_core.R:164:3', 'test-resampling_biomass.R:11:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-resampling.R:10:3'): resampling returns an object of same class as meta ── Expected `resdf <- resampling(test_df, measure = "BIOMASS")` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Error ('test-resampling.R:11:3'): resampling returns an object of same class as meta ── Error in `eval(code, test_env)`: object 'resdf' not found Backtrace: ▆ 1. └─testthat::expect_s3_class(resdf, "data.frame") at test-resampling.R:11:3 2. └─testthat::quasi_label(enquo(object)) 3. └─rlang::eval_bare(expr, quo_get_env(quo)) ── Failure ('test-resampling.R:34:3'): gridded object passed to resampling is not changed by reference ── Expected `{ ... }` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Failure ('test-resampling.R:40:3'): gridded object passed to resampling is not changed by reference ── Expected `{ ... }` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Failure ('test-resampling.R:53:3'): gridded object passed to resampling is not changed by reference ── Expected `{ ... }` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Error ('test-resampling.R:82:3'): resampling correctly excludes 1 year long studies ── Error in ``[.data.table`(x, j = `:=`(minsamp, data.table::uniqueN(SAMPLE_DESC)), keyby = c("assemblageID", "YEAR"))`: attempt access index 20/20 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(resampling(test_df_1y, "BIOMASS"), regexp = "Some 1-year-long studies were removed.") at test-resampling.R:82:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. ├─BioTIMEr::resampling(test_df_1y, "BIOMASS") 8. └─BioTIMEr:::resampling.default(test_df_1y, "BIOMASS") 9. └─BioTIMEr:::resampling_internal(...) 10. ├─...[] 11. └─data.table:::`[.data.table`(...) [ FAIL 6 | WARN 5 | SKIP 20 | PASS 65 ] Deleting unused snapshots: 'plots/themebiotime-plot.svg', 'scales/color-continuous-cool-false.svg', 'scales/color-continuous-cool-true.svg', 'scales/color-continuous-gradient-false.svg', 'scales/color-continuous-gradient-true.svg', 'scales/color-continuous-realms-false.svg', 'scales/color-continuous-realms-true.svg', 'scales/color-continuous-warm-false.svg', 'scales/color-continuous-warm-true.svg', 'scales/color-cool-false-false.svg', 'scales/color-cool-false-true.svg', 'scales/color-cool-true-false.svg', 'scales/color-cool-true-true.svg', 'scales/color-gradient-false-false.svg', 'scales/color-gradient-false-true.svg', 'scales/color-gradient-true-false.svg', 'scales/color-gradient-true-true.svg', 'scales/color-realms-false-false.svg', …, 'scales/fill-warm-true-false.svg', and 'scales/fill-warm-true-true.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.3.0
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building ‘introduction.qmd’ using html <1b>[31m processing file: introduction.qmd <1b>[39mBTsubset_meta package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>m_<08>e_<08>t_<08>a_<08>d_<08>a_<08>t_<08>a _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of the metadata from BioTIME _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_meta _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_meta` A data frame with 12 rows and 25 columns: STUDY_ID BioTIME study unique identifier REALM Realm of study location, i.e. Marine CLIMATE Climate of study location, i.e. Temperate HABITAT Habitat of study location, i.e. Rivers PROTECTED_AREA Binary variable indicating if the study is within a protected area BIOME_MAP Biome of study location (taken from the WWF biomes, i.e. Temperate broadleaf and mixed forests TAXA High level taxonomic identity of study species, i.e. Fish ORGANISMS More detailed information on taxonomy, i.e. woody plants TITLE Title of study as identified in original source AB_BIO A, B or AB to designate abundance only, biomass only or both DATA_POINTS Number of unique data points in study, e.g. 10 data points spanning 15 years = 10 START_YEAR First year of study END_YEAR Last year of study CENT_LAT Central latitude taken from the convex hull around all study coordinates CENT_LONG Central longitude taken from the convex hull around all study coordinates NUMBER_OF_SPECIES Number of distinct species in study NUMBER_OF_SAMPLES Number of distinct samples in study NUMBER_LAT_LONG Number of distinct geographic coordinates in study TOTAL Total number of records in study GRAIN_SIZE_TEXT Grain size described in text, i.e. size of forest plots AREA_SQ_KM Total area of study in km2 DATE_STUDY_ADDED Date that the study was added to the database ABUNDANCE_TYPE Type of abundance, i.e. count BIOMASS_TYPE Type of biomass, i.e. weight SAMPLE_DESC Concatenation of descriptors comprising the unique sampling event _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> BTsubset_data package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of data from BioTIME temporal surveys. _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_data _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_data` A data frame with 81,084 rows and 17 columns: ID_ALL_RAW_DATA Unique BioTIME identifier for record ABUNDANCE Double representing the abundance for the record (see metadata for details of ABUNDANCE_TYPE BIOMASS Double representing the biomass for the record (see metadata for details of BIOMASS_TYPE ID_SPECIES Unique identifier linking to the species table SAMPLE_DESC Concatenation of variables comprising unique sampling event LATITUDE Latitude of record LONGITUDE Longitude of record DEPTH Depth or elevation of record if available DAY Numerical day of record MONTH Numerical value of month for record, i.e. January=1 YEAR Year of record STUDY_ID BioTIME study unique identifier newID Validated species identifier key valid_name Highest taxonomic resolution of individual, preferred is genus and species resolution Level of resolution, i.e. 'species' represented by genus and species taxon Higher level taxonomic grouping, i.e. Fish _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> Vignettes with name or keyword or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::introduction Introduction to BioTIMEr Type 'vignette(PKG::FOO)' to inspect entries 'PKG::FOO'. Help files with alias or concept or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::BTsubset_data BioTIME subset BioTIMEr::BTsubset_meta BioTIME subset metadata BioTIMEr::BioTIMEr-package BioTIMEr: Tools to Use and Explore the 'BioTIME' Database Aliases: BioTIMEr, BioTIMEr-package BioTIMEr::getLinearRegressions Get Linear Regressions BioTIME BioTIMEr::gridding gridding BioTIME data BioTIMEr::gridding_internal gridding BioTIME data BioTIMEr::plotSlopes Plot slopes BioTIME BioTIMEr::resampling Rarefy BioTIME data to an equal number of samples per year BioTIMEr::resampling_core Rarefy BioTIME data Applies sample-based rarefaction to standardise the number of samples per year within a cell-level time series. BioTIMEr::scale_color_biotime Scale construction for ggplot use Aliases: scale_color_biotime, scale_colour_biotime, scale_fill_biotime BioTIMEr::themeBioTIME ggplot2 theme for BioTIME plots Aliases: themeBioTIME Type '?PKG::FOO' to inspect entries 'PKG::FOO', or 'TYPE?PKG::FOO' for entries like 'PKG::FOO-TYPE'. <1b>[31mError in `[.data.table`(x, j = `:=`(minsamp, data.table::uniqueN(SAMPLE_DESC)), : attempt access index 20/20 in VECTOR_ELT C<1b>[39m<1b>[31malls: .main ... resampling.default -> resampling_internal -> [ -> [.data.table Quitting from introduction.qmd:265-274 [resampling_ex1] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 20/20 in VECTOR_ELT --- Backtrace: ▆ 1. ├─BioTIMEr::resampling(...) 2. └─BioTIMEr:::resampling.default(...) 3. └─BioTIMEr:::resampling_internal(...) 4. ├─...[] 5. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Execution halted <1b>[39mError: processing vignette 'introduction.qmd' failed with diagnostics: ! Error running quarto CLI from R. Caused by error in `quarto_render()`: ✖ Error returned by quarto CLI. ----------------------------- processing file: introduction.qmd BTsubset_meta package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>m_<08>e_<08>t_<08>a_<08>d_<08>a_<08>t_<08>a _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of the metadata from BioTIME _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_meta _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_meta` A data frame with 12 rows and 25 columns: STUDY_ID BioTIME study unique identifier REALM Realm of study location, i.e. Marine CLIMATE Climate of study location, i.e. Temperate HABITAT Habitat of study location, i.e. Rivers PROTECTED_AREA Binary variable indicating if the study is within a protected area BIOME_MAP Biome of study location (taken from the WWF biomes, i.e. Temperate broadleaf and mixed forests TAXA High level taxonomic identity of study species, i.e. Fish ORGANISMS More detailed information on taxonomy, i.e. woody plants TITLE Title of study as identified in original source AB_BIO A, B or AB to designate abundance only, biomass only or both DATA_POINTS Number of unique data points in study, e.g. 10 data points spanning 15 years = 10 START_YEAR First year of study END_YEAR Last year of study CENT_LAT Central latitude taken from the convex hull around all study coordinates CENT_LONG Central longitude taken from the convex hull around all study coordinates NUMBER_OF_SPECIES Number of distinct species in study NUMBER_OF_SAMPLES Number of distinct samples in study NUMBER_LAT_LONG Number of distinct geographic coordinates in study TOTAL Total number of records in study GRAIN_SIZE_TEXT Grain size described in text, i.e. size of forest plots AREA_SQ_KM Total area of study in km2 DATE_STUDY_ADDED Date that the study was added to the database ABUNDANCE_TYPE Type of abundance, i.e. count BIOMASS_TYPE Type of biomass, i.e. weight SAMPLE_DESC Concatenation of descriptors comprising the unique sampling event _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> BTsubset_data package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of data from BioTIME temporal surveys. _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_data _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_data` A data frame with 81,084 rows and 17 columns: ID_ALL_RAW_DATA Unique BioTIME identifier for record ABUNDANCE Double representing the abundance for the record (see metadata for details of ABUNDANCE_TYPE BIOMASS Double representing the biomass for the record (see metadata for details of BIOMASS_TYPE ID_SPECIES Unique identifier linking to the species table SAMPLE_DESC Concatenation of variables comprising unique sampling event LATITUDE Latitude of record LONGITUDE Longitude of record DEPTH Depth or elevation of record if available DAY Numerical day of record MONTH Numerical value of month for record, i.e. January=1 YEAR Year of record STUDY_ID BioTIME study unique identifier newID Validated species identifier key valid_name Highest taxonomic resolution of individual, preferred is genus and species resolution Level of resolution, i.e. 'species' represented by genus and species taxon Higher level taxonomic grouping, i.e. Fish _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> Vignettes with name or keyword or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::introduction Introduction to BioTIMEr Type 'vignette(PKG::FOO)' to inspect entries 'PKG::FOO'. Help files with alias or concept or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::BTsubset_data BioTIME subset BioTIMEr::BTsubset_meta BioTIME subset metadata BioTIMEr::BioTIMEr-package BioTIMEr: Tools to Use and Explore the 'BioTIME' Database Aliases: BioTIMEr, BioTIMEr-package BioTIMEr::getLinearRegressions Get Linear Regressions BioTIME BioTIMEr::gridding gridding BioTIME data BioTIMEr::gridding_internal gridding BioTIME data BioTIMEr::plotSlopes Plot slopes BioTIME BioTIMEr::resampling Rarefy BioTIME data to an equal number of samples per year BioTIMEr::resampling_core Rarefy BioTIME data Applies sample-based rarefaction to standardise the number of samples per year within a cell-level time series. BioTIMEr::scale_color_biotime Scale construction for ggplot use Aliases: scale_color_biotime, scale_colour_biotime, scale_fill_biotime BioTIMEr::themeBioTIME ggplot2 theme for BioTIME plots Aliases: themeBioTIME Type '?PKG::FOO' to inspect entries 'PKG::FOO', or 'TYPE?PKG::FOO' for entries like 'PKG::FOO-TYPE'. <1b>[31mError in `[.data.table`(x, j = `:=`(minsamp,<1b>[39m <1b>[31mdata.table::uniqueN(SAMPLE_DESC)), :<1b>[39m attempt access index 20/20 in VECTOR_ELT C<1b>[31malls: .main ... resampling.default -> resampling_internal -> [ -><1b>[39m <1b>[31m[.data.table<1b>[39m Quitting from introduction.qmd:265-274 [resampling_ex1] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 20/20 in VECTOR_ELT --- Backtrace: ▆ 1. ├─BioTIMEr::resampling(...) 2. └─BioTIMEr:::resampling.default(...) 3. └─BioTIMEr:::resampling_internal(...) 4. ├─...[] 5. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Execution halted Caused by error: ! System command 'quarto' failed --- failed re-building ‘introduction.qmd’ SUMMARY: processing the following file failed: ‘introduction.qmd’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.3.0
Check: tests
Result: ERROR Running ‘testthat.R’ [73s/52s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > test_check("BioTIMEr") Loading required package: BioTIMEr Starting 2 test processes. > test-gridding.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell > test-gridding.R: OK: all SL studies have 1 grid cell > test-resampling_abundance.R: OK: all SL studies have 1 grid cell > test-resampling.R: OK: all SL studies have 1 grid cell Saving _problems/test-resampling-10.R Saving _problems/test-resampling-11.R Saving _problems/test-resampling-37.R Saving _problems/test-resampling-46.R Saving _problems/test-resampling-60.R Saving _problems/test-resampling-85.R > test-resampling_abundance_biomass.R: OK: all SL studies have 1 grid cell > test-resampling_biomass.R: OK: all SL studies have 1 grid cell > test-resampling_abundance_biomass_conservative.R: OK: all SL studies have 1 grid cell [ FAIL 6 | WARN 5 | SKIP 20 | PASS 65 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test-metrics.R:59:3', 'test-metrics.R:82:3', 'test-metrics.R:95:3', 'test-metrics.R:107:3', 'test-metrics.R:120:3', 'test-workflow_alpha.R:3:3', 'test-workflow_beta.R:3:3', 'test-slopes.R:3:3', 'test-plots.R:4:3', 'test-scales.R:35:3', 'test-gridding.R:75:3', 'test-gridding.R:82:3', 'test-gridding.R:89:3', 'test-resampling_abundance.R:11:3', 'test-resampling.R:101:3', 'test-resampling_abundance_biomass.R:11:3', 'test-resampling_biomass.R:11:3', 'test-resampling_abundance_biomass_conservative.R:11:3', 'test-resampling_core.R:91:3', 'test-resampling_core.R:164:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-resampling.R:10:3'): resampling returns an object of same class as meta ── Expected `resdf <- resampling(test_df, measure = "BIOMASS")` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Error ('test-resampling.R:11:3'): resampling returns an object of same class as meta ── Error in `eval(code, test_env)`: object 'resdf' not found Backtrace: ▆ 1. └─testthat::expect_s3_class(resdf, "data.frame") at test-resampling.R:11:3 2. └─testthat::quasi_label(enquo(object)) 3. └─rlang::eval_bare(expr, quo_get_env(quo)) ── Failure ('test-resampling.R:34:3'): gridded object passed to resampling is not changed by reference ── Expected `{ ... }` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Failure ('test-resampling.R:40:3'): gridded object passed to resampling is not changed by reference ── Expected `{ ... }` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Failure ('test-resampling.R:53:3'): gridded object passed to resampling is not changed by reference ── Expected `{ ... }` not to throw any errors. Actually got a <simpleError> with message: attempt access index 20/20 in VECTOR_ELT ── Error ('test-resampling.R:82:3'): resampling correctly excludes 1 year long studies ── Error in ``[.data.table`(x, j = `:=`(minsamp, data.table::uniqueN(SAMPLE_DESC)), keyby = c("assemblageID", "YEAR"))`: attempt access index 20/20 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(resampling(test_df_1y, "BIOMASS"), regexp = "Some 1-year-long studies were removed.") at test-resampling.R:82:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. ├─BioTIMEr::resampling(test_df_1y, "BIOMASS") 8. └─BioTIMEr:::resampling.default(test_df_1y, "BIOMASS") 9. └─BioTIMEr:::resampling_internal(...) 10. ├─...[] 11. └─data.table:::`[.data.table`(...) [ FAIL 6 | WARN 5 | SKIP 20 | PASS 65 ] Deleting unused snapshots: 'plots/themebiotime-plot.svg', 'scales/color-continuous-cool-false.svg', 'scales/color-continuous-cool-true.svg', 'scales/color-continuous-gradient-false.svg', 'scales/color-continuous-gradient-true.svg', 'scales/color-continuous-realms-false.svg', 'scales/color-continuous-realms-true.svg', 'scales/color-continuous-warm-false.svg', 'scales/color-continuous-warm-true.svg', 'scales/color-cool-false-false.svg', 'scales/color-cool-false-true.svg', 'scales/color-cool-true-false.svg', 'scales/color-cool-true-true.svg', 'scales/color-gradient-false-false.svg', 'scales/color-gradient-false-true.svg', 'scales/color-gradient-true-false.svg', 'scales/color-gradient-true-true.svg', 'scales/color-realms-false-false.svg', …, 'scales/fill-warm-true-false.svg', and 'scales/fill-warm-true-true.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.3.0
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building ‘introduction.qmd’ using html <1b>[31m processing file: introduction.qmd <1b>[39mBTsubset_meta package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>m_<08>e_<08>t_<08>a_<08>d_<08>a_<08>t_<08>a _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of the metadata from BioTIME _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_meta _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_meta` A data frame with 12 rows and 25 columns: STUDY_ID BioTIME study unique identifier REALM Realm of study location, i.e. Marine CLIMATE Climate of study location, i.e. Temperate HABITAT Habitat of study location, i.e. Rivers PROTECTED_AREA Binary variable indicating if the study is within a protected area BIOME_MAP Biome of study location (taken from the WWF biomes, i.e. Temperate broadleaf and mixed forests TAXA High level taxonomic identity of study species, i.e. Fish ORGANISMS More detailed information on taxonomy, i.e. woody plants TITLE Title of study as identified in original source AB_BIO A, B or AB to designate abundance only, biomass only or both DATA_POINTS Number of unique data points in study, e.g. 10 data points spanning 15 years = 10 START_YEAR First year of study END_YEAR Last year of study CENT_LAT Central latitude taken from the convex hull around all study coordinates CENT_LONG Central longitude taken from the convex hull around all study coordinates NUMBER_OF_SPECIES Number of distinct species in study NUMBER_OF_SAMPLES Number of distinct samples in study NUMBER_LAT_LONG Number of distinct geographic coordinates in study TOTAL Total number of records in study GRAIN_SIZE_TEXT Grain size described in text, i.e. size of forest plots AREA_SQ_KM Total area of study in km2 DATE_STUDY_ADDED Date that the study was added to the database ABUNDANCE_TYPE Type of abundance, i.e. count BIOMASS_TYPE Type of biomass, i.e. weight SAMPLE_DESC Concatenation of descriptors comprising the unique sampling event _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> BTsubset_data package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of data from BioTIME temporal surveys. _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_data _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_data` A data frame with 81,084 rows and 17 columns: ID_ALL_RAW_DATA Unique BioTIME identifier for record ABUNDANCE Double representing the abundance for the record (see metadata for details of ABUNDANCE_TYPE BIOMASS Double representing the biomass for the record (see metadata for details of BIOMASS_TYPE ID_SPECIES Unique identifier linking to the species table SAMPLE_DESC Concatenation of variables comprising unique sampling event LATITUDE Latitude of record LONGITUDE Longitude of record DEPTH Depth or elevation of record if available DAY Numerical day of record MONTH Numerical value of month for record, i.e. January=1 YEAR Year of record STUDY_ID BioTIME study unique identifier newID Validated species identifier key valid_name Highest taxonomic resolution of individual, preferred is genus and species resolution Level of resolution, i.e. 'species' represented by genus and species taxon Higher level taxonomic grouping, i.e. Fish _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> Vignettes with name or keyword or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::introduction Introduction to BioTIMEr Type 'vignette(PKG::FOO)' to inspect entries 'PKG::FOO'. Help files with alias or concept or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::BTsubset_data BioTIME subset BioTIMEr::BTsubset_meta BioTIME subset metadata BioTIMEr::BioTIMEr-package BioTIMEr: Tools to Use and Explore the 'BioTIME' Database Aliases: BioTIMEr, BioTIMEr-package BioTIMEr::getLinearRegressions Get Linear Regressions BioTIME BioTIMEr::gridding gridding BioTIME data BioTIMEr::gridding_internal gridding BioTIME data BioTIMEr::plotSlopes Plot slopes BioTIME BioTIMEr::resampling Rarefy BioTIME data to an equal number of samples per year BioTIMEr::resampling_core Rarefy BioTIME data Applies sample-based rarefaction to standardise the number of samples per year within a cell-level time series. BioTIMEr::scale_color_biotime Scale construction for ggplot use Aliases: scale_color_biotime, scale_colour_biotime, scale_fill_biotime BioTIMEr::themeBioTIME ggplot2 theme for BioTIME plots Aliases: themeBioTIME Type '?PKG::FOO' to inspect entries 'PKG::FOO', or 'TYPE?PKG::FOO' for entries like 'PKG::FOO-TYPE'. <1b>[31mError in `[.data.table`(x, j = `:=`(minsamp, data.table::uniqueN(SAMPLE_DESC)), : attempt access index 20/20 in VECTOR_ELT Calls: .main ... resampling.default -> resampling_internal -> [ -> [.data.table <1b>[39m<1b>[31m Quitting from introduction.qmd:265-274 [resampling_ex1] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 20/20 in VECTOR_ELT --- Backtrace: ▆ 1. ├─BioTIMEr::resampling(...) 2. └─BioTIMEr:::resampling.default(...) 3. └─BioTIMEr:::resampling_internal(...) 4. ├─...[] 5. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Execution halted <1b>[39mError: processing vignette 'introduction.qmd' failed with diagnostics: ! Error running quarto CLI from R. Caused by error in `quarto_render()`: ✖ Error returned by quarto CLI. ----------------------------- processing file: introduction.qmd BTsubset_meta package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>m_<08>e_<08>t_<08>a_<08>d_<08>a_<08>t_<08>a _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of the metadata from BioTIME _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_meta _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_meta` A data frame with 12 rows and 25 columns: STUDY_ID BioTIME study unique identifier REALM Realm of study location, i.e. Marine CLIMATE Climate of study location, i.e. Temperate HABITAT Habitat of study location, i.e. Rivers PROTECTED_AREA Binary variable indicating if the study is within a protected area BIOME_MAP Biome of study location (taken from the WWF biomes, i.e. Temperate broadleaf and mixed forests TAXA High level taxonomic identity of study species, i.e. Fish ORGANISMS More detailed information on taxonomy, i.e. woody plants TITLE Title of study as identified in original source AB_BIO A, B or AB to designate abundance only, biomass only or both DATA_POINTS Number of unique data points in study, e.g. 10 data points spanning 15 years = 10 START_YEAR First year of study END_YEAR Last year of study CENT_LAT Central latitude taken from the convex hull around all study coordinates CENT_LONG Central longitude taken from the convex hull around all study coordinates NUMBER_OF_SPECIES Number of distinct species in study NUMBER_OF_SAMPLES Number of distinct samples in study NUMBER_LAT_LONG Number of distinct geographic coordinates in study TOTAL Total number of records in study GRAIN_SIZE_TEXT Grain size described in text, i.e. size of forest plots AREA_SQ_KM Total area of study in km2 DATE_STUDY_ADDED Date that the study was added to the database ABUNDANCE_TYPE Type of abundance, i.e. count BIOMASS_TYPE Type of biomass, i.e. weight SAMPLE_DESC Concatenation of descriptors comprising the unique sampling event _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> BTsubset_data package:BioTIMEr R Documentation _<08>B_<08>i_<08>o_<08>T_<08>I_<08>M_<08>E _<08>s_<08>u_<08>b_<08>s_<08>e_<08>t _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: A subset of data from BioTIME temporal surveys. _<08>U_<08>s_<08>a_<08>g_<08>e: BTsubset_data _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: ## `BTsubset_data` A data frame with 81,084 rows and 17 columns: ID_ALL_RAW_DATA Unique BioTIME identifier for record ABUNDANCE Double representing the abundance for the record (see metadata for details of ABUNDANCE_TYPE BIOMASS Double representing the biomass for the record (see metadata for details of BIOMASS_TYPE ID_SPECIES Unique identifier linking to the species table SAMPLE_DESC Concatenation of variables comprising unique sampling event LATITUDE Latitude of record LONGITUDE Longitude of record DEPTH Depth or elevation of record if available DAY Numerical day of record MONTH Numerical value of month for record, i.e. January=1 YEAR Year of record STUDY_ID BioTIME study unique identifier newID Validated species identifier key valid_name Highest taxonomic resolution of individual, preferred is genus and species resolution Level of resolution, i.e. 'species' represented by genus and species taxon Higher level taxonomic grouping, i.e. Fish _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: <https://biotime.st-andrews.ac.uk/download.php> Vignettes with name or keyword or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::introduction Introduction to BioTIMEr Type 'vignette(PKG::FOO)' to inspect entries 'PKG::FOO'. Help files with alias or concept or title matching 'BioTIMEr' using fuzzy matching: BioTIMEr::BTsubset_data BioTIME subset BioTIMEr::BTsubset_meta BioTIME subset metadata BioTIMEr::BioTIMEr-package BioTIMEr: Tools to Use and Explore the 'BioTIME' Database Aliases: BioTIMEr, BioTIMEr-package BioTIMEr::getLinearRegressions Get Linear Regressions BioTIME BioTIMEr::gridding gridding BioTIME data BioTIMEr::gridding_internal gridding BioTIME data BioTIMEr::plotSlopes Plot slopes BioTIME BioTIMEr::resampling Rarefy BioTIME data to an equal number of samples per year BioTIMEr::resampling_core Rarefy BioTIME data Applies sample-based rarefaction to standardise the number of samples per year within a cell-level time series. BioTIMEr::scale_color_biotime Scale construction for ggplot use Aliases: scale_color_biotime, scale_colour_biotime, scale_fill_biotime BioTIMEr::themeBioTIME ggplot2 theme for BioTIME plots Aliases: themeBioTIME Type '?PKG::FOO' to inspect entries 'PKG::FOO', or 'TYPE?PKG::FOO' for entries like 'PKG::FOO-TYPE'. <1b>[31mError in `[.data.table`(x, j = `:=`(minsamp,<1b>[39m <1b>[31mdata.table::uniqueN(SAMPLE_DESC)), :<1b>[39m attempt access index 20/20 in VECTOR_ELT Calls: .main ... resampling.default -> resampling_internal -> [ -> [.data.table Quitting from introduction.qmd:265-274 [resampling_ex1] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 20/20 in VECTOR_ELT --- Backtrace: ▆ 1. ├─BioTIMEr::resampling(...) 2. └─BioTIMEr:::resampling.default(...) 3. └─BioTIMEr:::resampling_internal(...) 4. ├─...[] 5. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Execution halted Caused by error: ! System command 'quarto' failed --- failed re-building ‘introduction.qmd’ SUMMARY: processing the following file failed: ‘introduction.qmd’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc