CRAN Package Check Results for Package DoubleML

Last updated on 2025-12-19 23:49:44 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.2 14.91 348.35 363.26 OK
r-devel-linux-x86_64-debian-gcc 1.0.2 9.53 92.93 102.46 ERROR
r-devel-linux-x86_64-fedora-clang 1.0.2 25.00 190.59 215.59 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0.2 23.00 193.80 216.80 ERROR
r-devel-windows-x86_64 1.0.2 15.00 399.00 414.00 OK
r-patched-linux-x86_64 1.0.2 14.57 318.93 333.50 OK
r-release-linux-x86_64 1.0.2 13.64 322.77 336.41 OK
r-release-macos-arm64 1.0.2 OK
r-release-macos-x86_64 1.0.2 9.00 358.00 367.00 OK
r-release-windows-x86_64 1.0.2 16.00 332.00 348.00 OK
r-oldrel-macos-arm64 1.0.2 OK
r-oldrel-macos-x86_64 1.0.2 9.00 354.00 363.00 OK
r-oldrel-windows-x86_64 1.0.2 21.00 437.00 458.00 OK

Check Details

Version: 1.0.2
Check: tests
Result: ERROR Running ‘testthat_regression_tests.R’ [33s/39s] Running the tests in ‘tests/testthat_regression_tests.R’ failed. Complete output: > library("testthat") > library("patrick") > library("DoubleML") > > testthat::test_check("DoubleML") Saving _problems/test-double_ml_cluster_not_implemented-13.R Saving _problems/test-double_ml_iivm-39.R Saving _problems/test-double_ml_iivm_binary_outcome-40.R Saving _problems/test-double_ml_iivm_parameter_passing-52.R Saving _problems/test-double_ml_iivm_parameter_passing-140.R Saving _problems/test-double_ml_iivm_parameter_passing-227.R Saving _problems/test-double_ml_iivm_parameter_passing-304.R Saving _problems/test-double_ml_iivm_trim-38.R Saving _problems/test-double_ml_iivm_tuning-76.R Saving _problems/test-double_ml_iivm_user_score-55.R Saving _problems/test-double_ml_irm-36.R Saving _problems/test-double_ml_irm_binary_outcome-40.R Saving _problems/test-double_ml_irm_loaded_mlr3learner-73.R Saving _problems/test-double_ml_irm_parameter_passing-50.R Saving _problems/test-double_ml_irm_parameter_passing-127.R Saving _problems/test-double_ml_irm_parameter_passing-127.R Saving _problems/test-double_ml_irm_parameter_passing-198.R Saving _problems/test-double_ml_irm_parameter_passing-260.R Saving _problems/test-double_ml_irm_trim-37.R Saving _problems/test-double_ml_irm_tuning-76.R Saving _problems/test-double_ml_irm_user_score-54.R Saving _problems/test-double_ml_pliv-36.R Saving _problems/test-double_ml_pliv_exception_handling-47.R Saving _problems/test-double_ml_pliv_one_way_cluster-56.R Saving _problems/test-double_ml_pliv_parameter_passing-54.R Saving _problems/test-double_ml_pliv_parameter_passing-150.R Saving _problems/test-double_ml_pliv_parameter_passing-240.R Saving _problems/test-double_ml_pliv_parameter_passing-321.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-40.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-82.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-121.R Saving _problems/test-double_ml_pliv_partial_functional_initializer_IVtype-41.R Saving _problems/test-double_ml_pliv_tuning-98.R Saving _problems/test-double_ml_pliv_tuning-188.R Saving _problems/test-double_ml_pliv_two_way_cluster-50.R Saving _problems/test-double_ml_pliv_user_score-66.R Saving _problems/test-double_ml_plr-36.R Saving _problems/test-double_ml_plr_classifier-50.R Saving _problems/test-double_ml_plr_classifier-130.R Saving _problems/test-double_ml_plr_classifier-143.R Saving _problems/test-double_ml_plr_exception_handling-116.R Saving _problems/test-double_ml_plr_exception_handling-177.R Saving _problems/test-double_ml_plr_export_preds-49.R Saving _problems/test-double_ml_plr_loaded_mlr3learner-66.R Saving _problems/test-double_ml_plr_multitreat-43.R Saving _problems/test-double_ml_plr_nocrossfit-58.R Saving _problems/test-double_ml_plr_nocrossfit-58.R Saving _problems/test-double_ml_plr_nonorth-74.R Saving _problems/test-double_ml_plr_p_adjust-69.R Saving _problems/test-double_ml_plr_parameter_passing-57.R Saving _problems/test-double_ml_plr_parameter_passing-160.R Saving _problems/test-double_ml_plr_parameter_passing-264.R Saving _problems/test-double_ml_plr_parameter_passing-353.R Saving _problems/test-double_ml_plr_rep_cross_fit-44.R Saving _problems/test-double_ml_plr_set_samples-53.R Saving _problems/test-double_ml_plr_tuning-95.R Saving _problems/test-double_ml_plr_tuning-95.R Saving _problems/test-double_ml_plr_user_score-48.R Saving _problems/test-double_ml_print-12.R Saving _problems/test-double_ml_ssm_mar-36.R Saving _problems/test-double_ml_ssm_nonignorable-36.R Saving _problems/test-double_ml_ssm_tuning-75.R Saving _problems/test-double_ml_ssm_tuning-75.R [ FAIL 63 | WARN 0 | SKIP 7 | PASS 296 ] ══ Skipped tests (7) ═══════════════════════════════════════════════════════════ • On CRAN (7): 'test-double_ml_datasets.R:15:1', 'test-double_ml_pliv_multi_z_parameter_passing.R:7:1', 'test-double_ml_pliv_partial_x.R:5:1', 'test-double_ml_pliv_partial_xz.R:7:1', 'test-double_ml_pliv_partial_xz_parameter_passing.R:5:1', 'test-double_ml_pliv_partial_z.R:5:1', 'test-double_ml_pliv_partial_z_parameter_passing.R:5:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-double_ml_cluster_not_implemented.R:13:3'): Not yet implemented cluster features ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─dml_pliv_cluster$fit() at test-double_ml_cluster_not_implemented.R:13:3 2. └─private$nuisance_est(private$get__smpls()) 3. └─private$nuisance_est_partialX(smpls, ...) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm.R:32:5'): Unit tests for IIVM: rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm.R:32:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_binary_outcome.R:32:5'): Unit tests for IIVM: log_reg_dml2_LATE_0.025 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_binary_outcome.R:32:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:41:5'): Unit tests for parameter passing of IIVM (oop vs fun): rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_parameter_passing.R:41:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:129:5'): Unit tests for parameter passing of IIVM (no cross-fitting) rpart_dml1_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_parameter_passing.R:129:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:227:5'): Unit tests for parameter passing of IIVM (fold-wise vs global) rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_iivm_obj$fit() at test-double_ml_iivm_parameter_passing.R:227:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:304:5'): Unit tests for parameter passing of IIVM (default vs explicit) rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_iivm_default$fit() at test-double_ml_iivm_parameter_passing.R:304:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_trim.R:31:5'): Unit tests for IIVM: rpart_dml2_LATE_truncate_0.05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_trim.R:31:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_tuning.R:76:5'): Unit tests for tuning of IIVM: rpart_dml2_LATE_TRUE_TRUE_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mliivm_obj_tuned$tune(...) at test-double_ml_iivm_tuning.R:76:5 3. └─private$nuisance_tuning(...) 4. └─DoubleML:::dml_tune(...) 5. └─base::lapply(...) 6. └─DoubleML (local) FUN(X[[i]], ...) 7. └─DoubleML:::tune_instance(tune_settings$tuner, x) 8. └─tuner$optimize(tuning_instance) 9. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 10. └─private$.optimizer$optimize(inst) 11. └─bbotk:::.__OptimizerBatch__optimize(...) 12. └─bbotk::optimize_batch_default(inst, self) 13. ├─base::tryCatch(...) 14. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 15. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 16. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 17. └─get_private(optimizer)$.optimize(instance) 18. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 19. └─inst$eval_batch(design$data) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_user_score.R:55:5'): Unit tests for IIVM, callable score: regr.rpart_classif.rpart_dml2_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mliivm_obj$fit() at test-double_ml_iivm_user_score.R:55:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm.R:32:5'): Unit tests for IRM: rpart_dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm.R:32:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_binary_outcome.R:35:5'): Unit tests for IRM: rpart_dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_binary_outcome.R:35:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_loaded_mlr3learner.R:73:5'): Unit tests for IRM: dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm$fit() at test-double_ml_irm_loaded_mlr3learner.R:73:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:41:5'): Unit tests for parameter passing of IRM (oop vs fun): rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:41:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:118:5'): Unit tests for parameter passing of IRM (no cross-fitting) rpart_dml1_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:118:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:118:5'): Unit tests for parameter passing of IRM (no cross-fitting) rpart_dml1_ATTE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:118:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:198:5'): Unit tests for parameter passing of IRM (fold-wise vs global) rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj$fit() at test-double_ml_irm_parameter_passing.R:198:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:260:5'): Unit tests for parameter passing of IRM (default vs explicit) rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_irm_default$fit() at test-double_ml_irm_parameter_passing.R:260:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_trim.R:31:5'): Unit tests for IRM: rpart_dml2_ATTE_truncate_0.05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_trim.R:31:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_tuning.R:76:5'): Unit tests for tuning of PLR: rpart_dml2_ATE_FALSE_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj_tuned$tune(...) at test-double_ml_irm_tuning.R:76:5 3. └─private$nuisance_tuning(...) 4. └─DoubleML:::dml_tune(...) 5. └─base::lapply(...) 6. └─DoubleML (local) FUN(X[[i]], ...) 7. └─DoubleML:::tune_instance(tune_settings$tuner, x) 8. └─tuner$optimize(tuning_instance) 9. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 10. └─private$.optimizer$optimize(inst) 11. └─bbotk:::.__OptimizerBatch__optimize(...) 12. └─bbotk::optimize_batch_default(inst, self) 13. ├─base::tryCatch(...) 14. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 15. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 16. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 17. └─get_private(optimizer)$.optimize(instance) 18. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 19. └─inst$eval_batch(g$data[inds]) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_user_score.R:54:5'): Unit tests for IRM, callable score: regr.rpart_classif.rpart_dml2_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj$fit() at test-double_ml_irm_user_score.R:54:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv.R:29:5'): Unit tests for PLIV: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv.R:29:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_exception_handling.R:46:3'): Unit tests for deprecation warnings of PLIV ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(dml_obj$tune(par_grids), regexp = msg) at test-double_ml_pliv_exception_handling.R:46:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─dml_obj$tune(par_grids) 7. └─super$tune(param_set, tune_settings, tune_on_folds) 8. └─private$nuisance_tuning(...) 9. └─private$nuisance_tuning_partialX(...) 10. └─DoubleML:::dml_tune(...) 11. └─base::lapply(...) 12. └─DoubleML (local) FUN(X[[i]], ...) 13. └─DoubleML:::tune_instance(tune_settings$tuner, x) 14. └─tuner$optimize(tuning_instance) 15. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 16. └─private$.optimizer$optimize(inst) 17. └─bbotk:::.__OptimizerBatch__optimize(...) 18. └─bbotk::optimize_batch_default(inst, self) 19. ├─base::tryCatch(...) 20. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 21. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 22. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 23. └─get_private(optimizer)$.optimize(instance) 24. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 25. └─inst$eval_batch(g$data[inds]) 26. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 27. └─self$objective$eval_many(xss_trafoed) 28. └─bbotk:::.__Objective__eval_many(...) 29. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 30. │ └─base::eval.parent(expr, n = 1L) 31. │ └─base::eval(expr, p) 32. │ └─base::eval(expr, p) 33. └─private$.eval_many(xss = xss, resampling = `<list>`) 34. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 35. └─mlr3::benchmark(...) 36. └─ResultData$new(grid, data_extra, store_backends = store_backends) 37. └─mlr3 (local) initialize(...) 38. └─mlr3:::.__ResultData__initialize(...) 39. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 40. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_one_way_cluster.R:56:5'): Unit tests for PLIV with one-way clustering: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_one_way_cluster.R:56:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:43:5'): Unit tests for parameter passing of PLIV (oop vs fun): regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv_parameter_passing.R:43:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:138:5'): Unit tests for parameter passing of PLIV (no cross-fitting) regr.rpart_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv_parameter_passing.R:138:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:240:5'): Unit tests for parameter passing of PLIV (fold-wise vs global) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_pliv_obj$fit() at test-double_ml_pliv_parameter_passing.R:240:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:321:5'): Unit tests for parameter passing of PLIV (default vs explicit) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_pliv_default$fit() at test-double_ml_pliv_parameter_passing.R:321:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:40:5'): Unit tests for PLIV (partialX functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_partial_functional_initializer.R:40:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:82:5'): Unit tests for PLIV (partialZ functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_partZ$fit() at test-double_ml_pliv_partial_functional_initializer.R:82:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialZ(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:121:5'): Unit tests for PLIV (partialXZ functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_partXZ$fit() at test-double_ml_pliv_partial_functional_initializer.R:121:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialXZ(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer_IVtype.R:41:5'): Unit tests for PLIV (partialX functional initialization): regr.lm_dml2_IV-type ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_partial_functional_initializer_IVtype.R:41:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_tuning.R:98:5'): Unit tests for tuning of PLIV dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj_tuned$tune(...) at test-double_ml_pliv_tuning.R:98:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─private$nuisance_tuning_partialX(...) 6. └─DoubleML:::dml_tune(...) 7. └─base::lapply(...) 8. └─DoubleML (local) FUN(X[[i]], ...) 9. └─DoubleML:::tune_instance(tune_settings$tuner, x) 10. └─tuner$optimize(tuning_instance) 11. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 12. └─private$.optimizer$optimize(inst) 13. └─bbotk:::.__OptimizerBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 21. └─inst$eval_batch(g$data[inds]) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_tuning.R:188:5'): Unit tests for tuning of PLIV (multiple Z) dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj_tuned$tune(...) at test-double_ml_pliv_tuning.R:188:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─private$nuisance_tuning_partialX(...) 6. └─DoubleML:::dml_tune(...) 7. └─base::lapply(...) 8. └─DoubleML (local) FUN(X[[i]], ...) 9. └─DoubleML:::tune_instance(tune_settings$tuner, x) 10. └─tuner$optimize(tuning_instance) 11. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 12. └─private$.optimizer$optimize(inst) 13. └─bbotk:::.__OptimizerBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 21. └─inst$eval_batch(g$data[inds]) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_two_way_cluster.R:50:5'): Unit tests for PLIV with two-way clustering: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_two_way_cluster.R:50:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_user_score.R:66:5'): Unit tests for PLIV, callable score: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_user_score.R:66:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr.R:30:5'): Unit tests for PLR: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr.R:30:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_classifier.R:44:7'): Unit tests for PLR with classifier for ml_m: regr.rpart_classif.rpart_regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_classifier.R:44:7 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Failure ('test-double_ml_plr_classifier.R:129:3'): Unit tests for exception handling of PLR with classifier for ml_m: ── `double_mlplr_obj$fit()` threw an error with unexpected message. Expected match: "Assertion on 'levels\\(data\\[\\[target\\]\\])' failed: .* set \\{'0','1'\\}" Actual message: "attempt access index 9/9 in VECTOR_ELT" Backtrace: ▆ 1. ├─testthat::expect_error(double_mlplr_obj$fit(), regexp = msg) at test-double_ml_plr_classifier.R:129:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─double_mlplr_obj$fit() 7. └─private$nuisance_est(private$get__smpls()) 8. └─DoubleML:::dml_cv_predict(...) 9. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Failure ('test-double_ml_plr_classifier.R:142:3'): Unit tests for exception handling of PLR with classifier for ml_m: ── `double_mlplr_obj$fit()` threw an error with unexpected message. Expected match: "Assertion on 'levels\\(data\\[\\[target\\]\\])' failed: .* set \\{'0','1'\\}" Actual message: "attempt access index 9/9 in VECTOR_ELT" Backtrace: ▆ 1. ├─testthat::expect_error(double_mlplr_obj$fit(), regexp = msg) at test-double_ml_plr_classifier.R:142:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─double_mlplr_obj$fit() 7. └─private$nuisance_est(private$get__smpls()) 8. └─DoubleML:::dml_cv_predict(...) 9. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_exception_handling.R:116:7'): Unit tests for exception handling of PLR: regr.lm_dml1_IV-type_FALSE_4_1_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_exception_handling.R:116:7 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_exception_handling.R:176:3'): Unit tests for deprecation warnings of PLR ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(dml_obj$tune(par_grids), regexp = msg) at test-double_ml_plr_exception_handling.R:176:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─dml_obj$tune(par_grids) 7. └─super$tune(param_set, tune_settings, tune_on_folds) 8. └─private$nuisance_tuning(...) 9. └─DoubleML:::dml_tune(...) 10. └─base::lapply(...) 11. └─DoubleML (local) FUN(X[[i]], ...) 12. └─DoubleML:::tune_instance(tune_settings$tuner, x) 13. └─tuner$optimize(tuning_instance) 14. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 15. └─private$.optimizer$optimize(inst) 16. └─bbotk:::.__OptimizerBatch__optimize(...) 17. └─bbotk::optimize_batch_default(inst, self) 18. ├─base::tryCatch(...) 19. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 20. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 21. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 22. └─get_private(optimizer)$.optimize(instance) 23. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 24. └─inst$eval_batch(g$data[inds]) 25. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 26. └─self$objective$eval_many(xss_trafoed) 27. └─bbotk:::.__Objective__eval_many(...) 28. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 29. │ └─base::eval.parent(expr, n = 1L) 30. │ └─base::eval(expr, p) 31. │ └─base::eval(expr, p) 32. └─private$.eval_many(xss = xss, resampling = `<list>`) 33. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 34. └─mlr3::benchmark(...) 35. └─ResultData$new(grid, data_extra, store_backends = store_backends) 36. └─mlr3 (local) initialize(...) 37. └─mlr3:::.__ResultData__initialize(...) 38. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 39. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_export_preds.R:49:5'): Unit tests for for the export of predictions: regr.rpart_regr.rpart_regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit(store_predictions = TRUE, store_models = TRUE) at test-double_ml_plr_export_preds.R:49:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_loaded_mlr3learner.R:66:5'): Unit tests for PLR: dml1_IV-type ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr$fit() at test-double_ml_plr_loaded_mlr3learner.R:66:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_multitreat.R:37:5'): Unit tests for PLR: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_multitreat.R:37:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nocrossfit.R:51:5'): Unit tests for PLR: regr.lm_dml2_partialling out_FALSE_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_nocrossfit.R:51:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nocrossfit.R:51:5'): Unit tests for PLR: regr.lm_dml2_partialling out_FALSE_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_nocrossfit.R:51:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nonorth.R:74:5'): Unit tests for PLR: regr.lm_dml1_non_orth_score_w_g_3_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_nonorth.R:74:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_p_adjust.R:69:5'): Unit tests for PLR: regr.rpart_dml1_partialling out_romano-wolf_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_p_adjust.R:69:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:48:5'): Unit tests for parameter passing of PLR (oop vs fun) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_parameter_passing.R:48:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:150:5'): Unit tests for parameter passing of PLR (no cross-fitting) regr.rpart_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_parameter_passing.R:150:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:264:5'): Unit tests for parameter passing of PLR (fold-wise vs global) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_parameter_passing.R:264:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:353:5'): Unit tests for parameter passing of PLR (default vs explicit) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_plr_default$fit() at test-double_ml_plr_parameter_passing.R:353:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_rep_cross_fit.R:38:5'): Unit tests for PLR: regr.lm_dml1_partialling out_5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_rep_cross_fit.R:38:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_set_samples.R:53:5'): PLR with external sample provision: regr.rpart_dml2_partialling out_2_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_set_samples.R:53:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_tuning.R:95:5'): Unit tests for tuning of PLR: regr.rpart_regr.rpart_dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj_tuned$tune(...) at test-double_ml_plr_tuning.R:95:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 20. └─inst$eval_batch(g$data[inds]) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_tuning.R:95:5'): Unit tests for tuning of PLR: regr.rpart_regr.rpart_dml2_partialling out_1_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj_tuned$tune(...) at test-double_ml_plr_tuning.R:95:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 20. └─inst$eval_batch(g$data[inds]) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_user_score.R:48:5'): Unit tests for PLR, callable score: regr.lm_dml1_3_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_user_score.R:48:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_print.R:12:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─dml_plr$fit() at test-double_ml_print.R:12:1 2. └─private$nuisance_est(private$get__smpls()) 3. └─DoubleML:::dml_cv_predict(...) 4. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_mar.R:32:5'): Unit tests for SSM, missing-at-random: cv_glmnet_dml1_missing-at-random_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_ssm(...) at test-double_ml_ssm_mar.R:32:5 3. └─DoubleML:::fit_nuisance_ssm(...) at ./helper-17-dml_ssm.R:22:5 4. └─mlr3::resample(task_pi, ml_pi, resampling_pi, store_models = TRUE) at ./helper-17-dml_ssm.R:147:5 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_nonignorable.R:32:5'): Unit tests for SSM, nonignorable nonresponse: cv_glmnet_dml1_nonignorable_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_ssm(...) at test-double_ml_ssm_nonignorable.R:32:5 3. └─DoubleML:::fit_nuisance_ssm(...) at ./helper-17-dml_ssm.R:22:5 4. └─mlr3::resample(...) at ./helper-17-dml_ssm.R:239:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_tuning.R:75:5'): Unit tests for tuning of SSM: rpart_dml2_missing-at-random_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlssm_obj_tuned$tune(...) at test-double_ml_ssm_tuning.R:75:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_tuning.R:75:5'): Unit tests for tuning of SSM: rpart_dml2_nonignorable_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlssm_obj_tuned$tune(...) at test-double_ml_ssm_tuning.R:75:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) [ FAIL 63 | WARN 0 | SKIP 7 | PASS 296 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0.2
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘Introduction_to_DoubleML.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘Introduction_to_DoubleML.Rmd’ --- re-building ‘getstarted.Rmd’ using rmarkdown Quitting from getstarted.Rmd:124-133 [unnamed-chunk-6] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 9/9 in VECTOR_ELT --- Backtrace: ▆ 1. └─obj_dml_plr_bonus$fit() 2. └─private$nuisance_est(private$get__smpls()) 3. └─DoubleML:::dml_cv_predict(...) 4. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'getstarted.Rmd' failed with diagnostics: attempt access index 9/9 in VECTOR_ELT --- failed re-building ‘getstarted.Rmd’ --- re-building ‘install.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘install.Rmd’ SUMMARY: processing the following file failed: ‘getstarted.Rmd’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0.2
Check: tests
Result: ERROR Running ‘testthat_regression_tests.R’ [71s/100s] Running the tests in ‘tests/testthat_regression_tests.R’ failed. Complete output: > library("testthat") > library("patrick") > library("DoubleML") > > testthat::test_check("DoubleML") Saving _problems/test-double_ml_cluster_not_implemented-13.R Saving _problems/test-double_ml_iivm-39.R Saving _problems/test-double_ml_iivm_binary_outcome-40.R Saving _problems/test-double_ml_iivm_parameter_passing-52.R Saving _problems/test-double_ml_iivm_parameter_passing-140.R Saving _problems/test-double_ml_iivm_parameter_passing-227.R Saving _problems/test-double_ml_iivm_parameter_passing-304.R Saving _problems/test-double_ml_iivm_trim-38.R Saving _problems/test-double_ml_iivm_tuning-76.R Saving _problems/test-double_ml_iivm_user_score-55.R Saving _problems/test-double_ml_irm-36.R Saving _problems/test-double_ml_irm_binary_outcome-40.R Saving _problems/test-double_ml_irm_loaded_mlr3learner-73.R Saving _problems/test-double_ml_irm_parameter_passing-50.R Saving _problems/test-double_ml_irm_parameter_passing-127.R Saving _problems/test-double_ml_irm_parameter_passing-127.R Saving _problems/test-double_ml_irm_parameter_passing-198.R Saving _problems/test-double_ml_irm_parameter_passing-260.R Saving _problems/test-double_ml_irm_trim-37.R Saving _problems/test-double_ml_irm_tuning-76.R Saving _problems/test-double_ml_irm_user_score-54.R Saving _problems/test-double_ml_pliv-36.R Saving _problems/test-double_ml_pliv_exception_handling-47.R Saving _problems/test-double_ml_pliv_one_way_cluster-56.R Saving _problems/test-double_ml_pliv_parameter_passing-54.R Saving _problems/test-double_ml_pliv_parameter_passing-150.R Saving _problems/test-double_ml_pliv_parameter_passing-240.R Saving _problems/test-double_ml_pliv_parameter_passing-321.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-40.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-82.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-121.R Saving _problems/test-double_ml_pliv_partial_functional_initializer_IVtype-41.R Saving _problems/test-double_ml_pliv_tuning-98.R Saving _problems/test-double_ml_pliv_tuning-188.R Saving _problems/test-double_ml_pliv_two_way_cluster-50.R Saving _problems/test-double_ml_pliv_user_score-66.R Saving _problems/test-double_ml_plr-36.R Saving _problems/test-double_ml_plr_classifier-50.R Saving _problems/test-double_ml_plr_classifier-130.R Saving _problems/test-double_ml_plr_classifier-143.R Saving _problems/test-double_ml_plr_exception_handling-116.R Saving _problems/test-double_ml_plr_exception_handling-177.R Saving _problems/test-double_ml_plr_export_preds-49.R Saving _problems/test-double_ml_plr_loaded_mlr3learner-66.R Saving _problems/test-double_ml_plr_multitreat-43.R Saving _problems/test-double_ml_plr_nocrossfit-58.R Saving _problems/test-double_ml_plr_nocrossfit-58.R Saving _problems/test-double_ml_plr_nonorth-74.R Saving _problems/test-double_ml_plr_p_adjust-69.R Saving _problems/test-double_ml_plr_parameter_passing-57.R Saving _problems/test-double_ml_plr_parameter_passing-160.R Saving _problems/test-double_ml_plr_parameter_passing-264.R Saving _problems/test-double_ml_plr_parameter_passing-353.R Saving _problems/test-double_ml_plr_rep_cross_fit-44.R Saving _problems/test-double_ml_plr_set_samples-53.R Saving _problems/test-double_ml_plr_tuning-95.R Saving _problems/test-double_ml_plr_tuning-95.R Saving _problems/test-double_ml_plr_user_score-48.R Saving _problems/test-double_ml_print-12.R Saving _problems/test-double_ml_ssm_mar-36.R Saving _problems/test-double_ml_ssm_nonignorable-36.R Saving _problems/test-double_ml_ssm_tuning-75.R Saving _problems/test-double_ml_ssm_tuning-75.R [ FAIL 63 | WARN 0 | SKIP 7 | PASS 296 ] ══ Skipped tests (7) ═══════════════════════════════════════════════════════════ • On CRAN (7): 'test-double_ml_datasets.R:15:1', 'test-double_ml_pliv_multi_z_parameter_passing.R:7:1', 'test-double_ml_pliv_partial_x.R:5:1', 'test-double_ml_pliv_partial_xz.R:7:1', 'test-double_ml_pliv_partial_xz_parameter_passing.R:5:1', 'test-double_ml_pliv_partial_z.R:5:1', 'test-double_ml_pliv_partial_z_parameter_passing.R:5:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-double_ml_cluster_not_implemented.R:13:3'): Not yet implemented cluster features ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─dml_pliv_cluster$fit() at test-double_ml_cluster_not_implemented.R:13:3 2. └─private$nuisance_est(private$get__smpls()) 3. └─private$nuisance_est_partialX(smpls, ...) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm.R:32:5'): Unit tests for IIVM: rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm.R:32:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_binary_outcome.R:32:5'): Unit tests for IIVM: log_reg_dml2_LATE_0.025 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_binary_outcome.R:32:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:41:5'): Unit tests for parameter passing of IIVM (oop vs fun): rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_parameter_passing.R:41:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:129:5'): Unit tests for parameter passing of IIVM (no cross-fitting) rpart_dml1_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_parameter_passing.R:129:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:227:5'): Unit tests for parameter passing of IIVM (fold-wise vs global) rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_iivm_obj$fit() at test-double_ml_iivm_parameter_passing.R:227:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:304:5'): Unit tests for parameter passing of IIVM (default vs explicit) rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_iivm_default$fit() at test-double_ml_iivm_parameter_passing.R:304:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_trim.R:31:5'): Unit tests for IIVM: rpart_dml2_LATE_truncate_0.05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_trim.R:31:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_tuning.R:76:5'): Unit tests for tuning of IIVM: rpart_dml2_LATE_TRUE_TRUE_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mliivm_obj_tuned$tune(...) at test-double_ml_iivm_tuning.R:76:5 3. └─private$nuisance_tuning(...) 4. └─DoubleML:::dml_tune(...) 5. └─base::lapply(...) 6. └─DoubleML (local) FUN(X[[i]], ...) 7. └─DoubleML:::tune_instance(tune_settings$tuner, x) 8. └─tuner$optimize(tuning_instance) 9. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 10. └─private$.optimizer$optimize(inst) 11. └─bbotk:::.__OptimizerBatch__optimize(...) 12. └─bbotk::optimize_batch_default(inst, self) 13. ├─base::tryCatch(...) 14. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 15. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 16. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 17. └─get_private(optimizer)$.optimize(instance) 18. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 19. └─inst$eval_batch(design$data) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_user_score.R:55:5'): Unit tests for IIVM, callable score: regr.rpart_classif.rpart_dml2_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mliivm_obj$fit() at test-double_ml_iivm_user_score.R:55:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm.R:32:5'): Unit tests for IRM: rpart_dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm.R:32:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_binary_outcome.R:35:5'): Unit tests for IRM: rpart_dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_binary_outcome.R:35:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_loaded_mlr3learner.R:73:5'): Unit tests for IRM: dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm$fit() at test-double_ml_irm_loaded_mlr3learner.R:73:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:41:5'): Unit tests for parameter passing of IRM (oop vs fun): rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:41:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:118:5'): Unit tests for parameter passing of IRM (no cross-fitting) rpart_dml1_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:118:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:118:5'): Unit tests for parameter passing of IRM (no cross-fitting) rpart_dml1_ATTE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:118:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:198:5'): Unit tests for parameter passing of IRM (fold-wise vs global) rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj$fit() at test-double_ml_irm_parameter_passing.R:198:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:260:5'): Unit tests for parameter passing of IRM (default vs explicit) rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_irm_default$fit() at test-double_ml_irm_parameter_passing.R:260:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_trim.R:31:5'): Unit tests for IRM: rpart_dml2_ATTE_truncate_0.05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_trim.R:31:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_tuning.R:76:5'): Unit tests for tuning of PLR: rpart_dml2_ATE_FALSE_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj_tuned$tune(...) at test-double_ml_irm_tuning.R:76:5 3. └─private$nuisance_tuning(...) 4. └─DoubleML:::dml_tune(...) 5. └─base::lapply(...) 6. └─DoubleML (local) FUN(X[[i]], ...) 7. └─DoubleML:::tune_instance(tune_settings$tuner, x) 8. └─tuner$optimize(tuning_instance) 9. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 10. └─private$.optimizer$optimize(inst) 11. └─bbotk:::.__OptimizerBatch__optimize(...) 12. └─bbotk::optimize_batch_default(inst, self) 13. ├─base::tryCatch(...) 14. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 15. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 16. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 17. └─get_private(optimizer)$.optimize(instance) 18. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 19. └─inst$eval_batch(g$data[inds]) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_user_score.R:54:5'): Unit tests for IRM, callable score: regr.rpart_classif.rpart_dml2_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj$fit() at test-double_ml_irm_user_score.R:54:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv.R:29:5'): Unit tests for PLIV: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv.R:29:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_exception_handling.R:46:3'): Unit tests for deprecation warnings of PLIV ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(dml_obj$tune(par_grids), regexp = msg) at test-double_ml_pliv_exception_handling.R:46:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─dml_obj$tune(par_grids) 7. └─super$tune(param_set, tune_settings, tune_on_folds) 8. └─private$nuisance_tuning(...) 9. └─private$nuisance_tuning_partialX(...) 10. └─DoubleML:::dml_tune(...) 11. └─base::lapply(...) 12. └─DoubleML (local) FUN(X[[i]], ...) 13. └─DoubleML:::tune_instance(tune_settings$tuner, x) 14. └─tuner$optimize(tuning_instance) 15. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 16. └─private$.optimizer$optimize(inst) 17. └─bbotk:::.__OptimizerBatch__optimize(...) 18. └─bbotk::optimize_batch_default(inst, self) 19. ├─base::tryCatch(...) 20. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 21. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 22. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 23. └─get_private(optimizer)$.optimize(instance) 24. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 25. └─inst$eval_batch(g$data[inds]) 26. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 27. └─self$objective$eval_many(xss_trafoed) 28. └─bbotk:::.__Objective__eval_many(...) 29. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 30. │ └─base::eval.parent(expr, n = 1L) 31. │ └─base::eval(expr, p) 32. │ └─base::eval(expr, p) 33. └─private$.eval_many(xss = xss, resampling = `<list>`) 34. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 35. └─mlr3::benchmark(...) 36. └─ResultData$new(grid, data_extra, store_backends = store_backends) 37. └─mlr3 (local) initialize(...) 38. └─mlr3:::.__ResultData__initialize(...) 39. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 40. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_one_way_cluster.R:56:5'): Unit tests for PLIV with one-way clustering: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_one_way_cluster.R:56:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:43:5'): Unit tests for parameter passing of PLIV (oop vs fun): regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv_parameter_passing.R:43:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:138:5'): Unit tests for parameter passing of PLIV (no cross-fitting) regr.rpart_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv_parameter_passing.R:138:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:240:5'): Unit tests for parameter passing of PLIV (fold-wise vs global) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_pliv_obj$fit() at test-double_ml_pliv_parameter_passing.R:240:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:321:5'): Unit tests for parameter passing of PLIV (default vs explicit) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_pliv_default$fit() at test-double_ml_pliv_parameter_passing.R:321:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:40:5'): Unit tests for PLIV (partialX functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_partial_functional_initializer.R:40:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:82:5'): Unit tests for PLIV (partialZ functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_partZ$fit() at test-double_ml_pliv_partial_functional_initializer.R:82:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialZ(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:121:5'): Unit tests for PLIV (partialXZ functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_partXZ$fit() at test-double_ml_pliv_partial_functional_initializer.R:121:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialXZ(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer_IVtype.R:41:5'): Unit tests for PLIV (partialX functional initialization): regr.lm_dml2_IV-type ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_partial_functional_initializer_IVtype.R:41:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_tuning.R:98:5'): Unit tests for tuning of PLIV dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj_tuned$tune(...) at test-double_ml_pliv_tuning.R:98:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─private$nuisance_tuning_partialX(...) 6. └─DoubleML:::dml_tune(...) 7. └─base::lapply(...) 8. └─DoubleML (local) FUN(X[[i]], ...) 9. └─DoubleML:::tune_instance(tune_settings$tuner, x) 10. └─tuner$optimize(tuning_instance) 11. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 12. └─private$.optimizer$optimize(inst) 13. └─bbotk:::.__OptimizerBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 21. └─inst$eval_batch(g$data[inds]) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_tuning.R:188:5'): Unit tests for tuning of PLIV (multiple Z) dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj_tuned$tune(...) at test-double_ml_pliv_tuning.R:188:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─private$nuisance_tuning_partialX(...) 6. └─DoubleML:::dml_tune(...) 7. └─base::lapply(...) 8. └─DoubleML (local) FUN(X[[i]], ...) 9. └─DoubleML:::tune_instance(tune_settings$tuner, x) 10. └─tuner$optimize(tuning_instance) 11. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 12. └─private$.optimizer$optimize(inst) 13. └─bbotk:::.__OptimizerBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 21. └─inst$eval_batch(g$data[inds]) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_two_way_cluster.R:50:5'): Unit tests for PLIV with two-way clustering: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_two_way_cluster.R:50:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_user_score.R:66:5'): Unit tests for PLIV, callable score: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_user_score.R:66:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr.R:30:5'): Unit tests for PLR: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr.R:30:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_classifier.R:44:7'): Unit tests for PLR with classifier for ml_m: regr.rpart_classif.rpart_regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_classifier.R:44:7 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Failure ('test-double_ml_plr_classifier.R:129:3'): Unit tests for exception handling of PLR with classifier for ml_m: ── `double_mlplr_obj$fit()` threw an error with unexpected message. Expected match: "Assertion on 'levels\\(data\\[\\[target\\]\\])' failed: .* set \\{'0','1'\\}" Actual message: "attempt access index 9/9 in VECTOR_ELT" Backtrace: ▆ 1. ├─testthat::expect_error(double_mlplr_obj$fit(), regexp = msg) at test-double_ml_plr_classifier.R:129:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─double_mlplr_obj$fit() 7. └─private$nuisance_est(private$get__smpls()) 8. └─DoubleML:::dml_cv_predict(...) 9. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Failure ('test-double_ml_plr_classifier.R:142:3'): Unit tests for exception handling of PLR with classifier for ml_m: ── `double_mlplr_obj$fit()` threw an error with unexpected message. Expected match: "Assertion on 'levels\\(data\\[\\[target\\]\\])' failed: .* set \\{'0','1'\\}" Actual message: "attempt access index 9/9 in VECTOR_ELT" Backtrace: ▆ 1. ├─testthat::expect_error(double_mlplr_obj$fit(), regexp = msg) at test-double_ml_plr_classifier.R:142:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─double_mlplr_obj$fit() 7. └─private$nuisance_est(private$get__smpls()) 8. └─DoubleML:::dml_cv_predict(...) 9. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_exception_handling.R:116:7'): Unit tests for exception handling of PLR: regr.lm_dml1_IV-type_FALSE_4_1_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_exception_handling.R:116:7 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_exception_handling.R:176:3'): Unit tests for deprecation warnings of PLR ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(dml_obj$tune(par_grids), regexp = msg) at test-double_ml_plr_exception_handling.R:176:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─dml_obj$tune(par_grids) 7. └─super$tune(param_set, tune_settings, tune_on_folds) 8. └─private$nuisance_tuning(...) 9. └─DoubleML:::dml_tune(...) 10. └─base::lapply(...) 11. └─DoubleML (local) FUN(X[[i]], ...) 12. └─DoubleML:::tune_instance(tune_settings$tuner, x) 13. └─tuner$optimize(tuning_instance) 14. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 15. └─private$.optimizer$optimize(inst) 16. └─bbotk:::.__OptimizerBatch__optimize(...) 17. └─bbotk::optimize_batch_default(inst, self) 18. ├─base::tryCatch(...) 19. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 20. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 21. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 22. └─get_private(optimizer)$.optimize(instance) 23. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 24. └─inst$eval_batch(g$data[inds]) 25. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 26. └─self$objective$eval_many(xss_trafoed) 27. └─bbotk:::.__Objective__eval_many(...) 28. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 29. │ └─base::eval.parent(expr, n = 1L) 30. │ └─base::eval(expr, p) 31. │ └─base::eval(expr, p) 32. └─private$.eval_many(xss = xss, resampling = `<list>`) 33. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 34. └─mlr3::benchmark(...) 35. └─ResultData$new(grid, data_extra, store_backends = store_backends) 36. └─mlr3 (local) initialize(...) 37. └─mlr3:::.__ResultData__initialize(...) 38. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 39. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_export_preds.R:49:5'): Unit tests for for the export of predictions: regr.rpart_regr.rpart_regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit(store_predictions = TRUE, store_models = TRUE) at test-double_ml_plr_export_preds.R:49:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_loaded_mlr3learner.R:66:5'): Unit tests for PLR: dml1_IV-type ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr$fit() at test-double_ml_plr_loaded_mlr3learner.R:66:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_multitreat.R:37:5'): Unit tests for PLR: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_multitreat.R:37:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nocrossfit.R:51:5'): Unit tests for PLR: regr.lm_dml2_partialling out_FALSE_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_nocrossfit.R:51:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nocrossfit.R:51:5'): Unit tests for PLR: regr.lm_dml2_partialling out_FALSE_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_nocrossfit.R:51:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nonorth.R:74:5'): Unit tests for PLR: regr.lm_dml1_non_orth_score_w_g_3_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_nonorth.R:74:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_p_adjust.R:69:5'): Unit tests for PLR: regr.rpart_dml1_partialling out_romano-wolf_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_p_adjust.R:69:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:48:5'): Unit tests for parameter passing of PLR (oop vs fun) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_parameter_passing.R:48:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:150:5'): Unit tests for parameter passing of PLR (no cross-fitting) regr.rpart_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_parameter_passing.R:150:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:264:5'): Unit tests for parameter passing of PLR (fold-wise vs global) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_parameter_passing.R:264:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:353:5'): Unit tests for parameter passing of PLR (default vs explicit) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_plr_default$fit() at test-double_ml_plr_parameter_passing.R:353:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_rep_cross_fit.R:38:5'): Unit tests for PLR: regr.lm_dml1_partialling out_5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_rep_cross_fit.R:38:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_set_samples.R:53:5'): PLR with external sample provision: regr.rpart_dml2_partialling out_2_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_set_samples.R:53:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_tuning.R:95:5'): Unit tests for tuning of PLR: regr.rpart_regr.rpart_dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj_tuned$tune(...) at test-double_ml_plr_tuning.R:95:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 20. └─inst$eval_batch(g$data[inds]) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_tuning.R:95:5'): Unit tests for tuning of PLR: regr.rpart_regr.rpart_dml2_partialling out_1_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj_tuned$tune(...) at test-double_ml_plr_tuning.R:95:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 20. └─inst$eval_batch(g$data[inds]) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_user_score.R:48:5'): Unit tests for PLR, callable score: regr.lm_dml1_3_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_user_score.R:48:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_print.R:12:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─dml_plr$fit() at test-double_ml_print.R:12:1 2. └─private$nuisance_est(private$get__smpls()) 3. └─DoubleML:::dml_cv_predict(...) 4. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_mar.R:32:5'): Unit tests for SSM, missing-at-random: cv_glmnet_dml1_missing-at-random_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_ssm(...) at test-double_ml_ssm_mar.R:32:5 3. └─DoubleML:::fit_nuisance_ssm(...) at ./helper-17-dml_ssm.R:22:5 4. └─mlr3::resample(task_pi, ml_pi, resampling_pi, store_models = TRUE) at ./helper-17-dml_ssm.R:147:5 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_nonignorable.R:32:5'): Unit tests for SSM, nonignorable nonresponse: cv_glmnet_dml1_nonignorable_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_ssm(...) at test-double_ml_ssm_nonignorable.R:32:5 3. └─DoubleML:::fit_nuisance_ssm(...) at ./helper-17-dml_ssm.R:22:5 4. └─mlr3::resample(...) at ./helper-17-dml_ssm.R:239:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_tuning.R:75:5'): Unit tests for tuning of SSM: rpart_dml2_missing-at-random_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlssm_obj_tuned$tune(...) at test-double_ml_ssm_tuning.R:75:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_tuning.R:75:5'): Unit tests for tuning of SSM: rpart_dml2_nonignorable_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlssm_obj_tuned$tune(...) at test-double_ml_ssm_tuning.R:75:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) [ FAIL 63 | WARN 0 | SKIP 7 | PASS 296 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0.2
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building ‘Introduction_to_DoubleML.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘Introduction_to_DoubleML.Rmd’ --- re-building ‘getstarted.Rmd’ using rmarkdown Quitting from getstarted.Rmd:124-133 [unnamed-chunk-6] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 9/9 in VECTOR_ELT --- Backtrace: ▆ 1. └─obj_dml_plr_bonus$fit() 2. └─private$nuisance_est(private$get__smpls()) 3. └─DoubleML:::dml_cv_predict(...) 4. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'getstarted.Rmd' failed with diagnostics: attempt access index 9/9 in VECTOR_ELT --- failed re-building ‘getstarted.Rmd’ --- re-building ‘install.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘install.Rmd’ SUMMARY: processing the following file failed: ‘getstarted.Rmd’ Error: Vignette re-building failed. Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.0.2
Check: tests
Result: ERROR Running ‘testthat_regression_tests.R’ [69s/98s] Running the tests in ‘tests/testthat_regression_tests.R’ failed. Complete output: > library("testthat") > library("patrick") > library("DoubleML") > > testthat::test_check("DoubleML") Saving _problems/test-double_ml_cluster_not_implemented-13.R Saving _problems/test-double_ml_iivm-39.R Saving _problems/test-double_ml_iivm_binary_outcome-40.R Saving _problems/test-double_ml_iivm_parameter_passing-52.R Saving _problems/test-double_ml_iivm_parameter_passing-140.R Saving _problems/test-double_ml_iivm_parameter_passing-227.R Saving _problems/test-double_ml_iivm_parameter_passing-304.R Saving _problems/test-double_ml_iivm_trim-38.R Saving _problems/test-double_ml_iivm_tuning-76.R Saving _problems/test-double_ml_iivm_user_score-55.R Saving _problems/test-double_ml_irm-36.R Saving _problems/test-double_ml_irm_binary_outcome-40.R Saving _problems/test-double_ml_irm_loaded_mlr3learner-73.R Saving _problems/test-double_ml_irm_parameter_passing-50.R Saving _problems/test-double_ml_irm_parameter_passing-127.R Saving _problems/test-double_ml_irm_parameter_passing-127.R Saving _problems/test-double_ml_irm_parameter_passing-198.R Saving _problems/test-double_ml_irm_parameter_passing-260.R Saving _problems/test-double_ml_irm_trim-37.R Saving _problems/test-double_ml_irm_tuning-76.R Saving _problems/test-double_ml_irm_user_score-54.R Saving _problems/test-double_ml_pliv-36.R Saving _problems/test-double_ml_pliv_exception_handling-47.R Saving _problems/test-double_ml_pliv_one_way_cluster-56.R Saving _problems/test-double_ml_pliv_parameter_passing-54.R Saving _problems/test-double_ml_pliv_parameter_passing-150.R Saving _problems/test-double_ml_pliv_parameter_passing-240.R Saving _problems/test-double_ml_pliv_parameter_passing-321.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-40.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-82.R Saving _problems/test-double_ml_pliv_partial_functional_initializer-121.R Saving _problems/test-double_ml_pliv_partial_functional_initializer_IVtype-41.R Saving _problems/test-double_ml_pliv_tuning-98.R Saving _problems/test-double_ml_pliv_tuning-188.R Saving _problems/test-double_ml_pliv_two_way_cluster-50.R Saving _problems/test-double_ml_pliv_user_score-66.R Saving _problems/test-double_ml_plr-36.R Saving _problems/test-double_ml_plr_classifier-50.R Saving _problems/test-double_ml_plr_classifier-130.R Saving _problems/test-double_ml_plr_classifier-143.R Saving _problems/test-double_ml_plr_exception_handling-116.R Saving _problems/test-double_ml_plr_exception_handling-177.R Saving _problems/test-double_ml_plr_export_preds-49.R Saving _problems/test-double_ml_plr_loaded_mlr3learner-66.R Saving _problems/test-double_ml_plr_multitreat-43.R Saving _problems/test-double_ml_plr_nocrossfit-58.R Saving _problems/test-double_ml_plr_nocrossfit-58.R Saving _problems/test-double_ml_plr_nonorth-74.R Saving _problems/test-double_ml_plr_p_adjust-69.R Saving _problems/test-double_ml_plr_parameter_passing-57.R Saving _problems/test-double_ml_plr_parameter_passing-160.R Saving _problems/test-double_ml_plr_parameter_passing-264.R Saving _problems/test-double_ml_plr_parameter_passing-353.R Saving _problems/test-double_ml_plr_rep_cross_fit-44.R Saving _problems/test-double_ml_plr_set_samples-53.R Saving _problems/test-double_ml_plr_tuning-95.R Saving _problems/test-double_ml_plr_tuning-95.R Saving _problems/test-double_ml_plr_user_score-48.R Saving _problems/test-double_ml_print-12.R Saving _problems/test-double_ml_ssm_mar-36.R Saving _problems/test-double_ml_ssm_nonignorable-36.R Saving _problems/test-double_ml_ssm_tuning-75.R Saving _problems/test-double_ml_ssm_tuning-75.R [ FAIL 63 | WARN 0 | SKIP 7 | PASS 296 ] ══ Skipped tests (7) ═══════════════════════════════════════════════════════════ • On CRAN (7): 'test-double_ml_datasets.R:15:1', 'test-double_ml_pliv_multi_z_parameter_passing.R:7:1', 'test-double_ml_pliv_partial_x.R:5:1', 'test-double_ml_pliv_partial_xz.R:7:1', 'test-double_ml_pliv_partial_xz_parameter_passing.R:5:1', 'test-double_ml_pliv_partial_z.R:5:1', 'test-double_ml_pliv_partial_z_parameter_passing.R:5:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-double_ml_cluster_not_implemented.R:13:3'): Not yet implemented cluster features ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─dml_pliv_cluster$fit() at test-double_ml_cluster_not_implemented.R:13:3 2. └─private$nuisance_est(private$get__smpls()) 3. └─private$nuisance_est_partialX(smpls, ...) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm.R:32:5'): Unit tests for IIVM: rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm.R:32:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_binary_outcome.R:32:5'): Unit tests for IIVM: log_reg_dml2_LATE_0.025 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_binary_outcome.R:32:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:41:5'): Unit tests for parameter passing of IIVM (oop vs fun): rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_parameter_passing.R:41:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:129:5'): Unit tests for parameter passing of IIVM (no cross-fitting) rpart_dml1_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_parameter_passing.R:129:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:227:5'): Unit tests for parameter passing of IIVM (fold-wise vs global) rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_iivm_obj$fit() at test-double_ml_iivm_parameter_passing.R:227:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_parameter_passing.R:304:5'): Unit tests for parameter passing of IIVM (default vs explicit) rpart_dml2_LATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_iivm_default$fit() at test-double_ml_iivm_parameter_passing.R:304:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_trim.R:31:5'): Unit tests for IIVM: rpart_dml2_LATE_truncate_0.05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irmiv(...) at test-double_ml_iivm_trim.R:31:5 3. └─DoubleML:::fit_nuisance_iivm(...) at ./helper-11-dml_iivm.R:23:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-11-dml_iivm.R:145:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_tuning.R:76:5'): Unit tests for tuning of IIVM: rpart_dml2_LATE_TRUE_TRUE_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mliivm_obj_tuned$tune(...) at test-double_ml_iivm_tuning.R:76:5 3. └─private$nuisance_tuning(...) 4. └─DoubleML:::dml_tune(...) 5. └─base::lapply(...) 6. └─DoubleML (local) FUN(X[[i]], ...) 7. └─DoubleML:::tune_instance(tune_settings$tuner, x) 8. └─tuner$optimize(tuning_instance) 9. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 10. └─private$.optimizer$optimize(inst) 11. └─bbotk:::.__OptimizerBatch__optimize(...) 12. └─bbotk::optimize_batch_default(inst, self) 13. ├─base::tryCatch(...) 14. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 15. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 16. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 17. └─get_private(optimizer)$.optimize(instance) 18. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 19. └─inst$eval_batch(design$data) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_iivm_user_score.R:55:5'): Unit tests for IIVM, callable score: regr.rpart_classif.rpart_dml2_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mliivm_obj$fit() at test-double_ml_iivm_user_score.R:55:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm.R:32:5'): Unit tests for IRM: rpart_dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm.R:32:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_binary_outcome.R:35:5'): Unit tests for IRM: rpart_dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_binary_outcome.R:35:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_loaded_mlr3learner.R:73:5'): Unit tests for IRM: dml1_ATTE_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm$fit() at test-double_ml_irm_loaded_mlr3learner.R:73:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:41:5'): Unit tests for parameter passing of IRM (oop vs fun): rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:41:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:118:5'): Unit tests for parameter passing of IRM (no cross-fitting) rpart_dml1_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:118:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:118:5'): Unit tests for parameter passing of IRM (no cross-fitting) rpart_dml1_ATTE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_parameter_passing.R:118:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:198:5'): Unit tests for parameter passing of IRM (fold-wise vs global) rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj$fit() at test-double_ml_irm_parameter_passing.R:198:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_parameter_passing.R:260:5'): Unit tests for parameter passing of IRM (default vs explicit) rpart_dml2_ATE_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_irm_default$fit() at test-double_ml_irm_parameter_passing.R:260:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_trim.R:31:5'): Unit tests for IRM: rpart_dml2_ATTE_truncate_0.05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_irm(...) at test-double_ml_irm_trim.R:31:5 3. └─DoubleML:::fit_nuisance_irm(...) at ./helper-10-dml_irm.R:21:5 4. └─mlr3::resample(task_m, ml_m, resampling_m, store_models = TRUE) at ./helper-10-dml_irm.R:138:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_tuning.R:76:5'): Unit tests for tuning of PLR: rpart_dml2_ATE_FALSE_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj_tuned$tune(...) at test-double_ml_irm_tuning.R:76:5 3. └─private$nuisance_tuning(...) 4. └─DoubleML:::dml_tune(...) 5. └─base::lapply(...) 6. └─DoubleML (local) FUN(X[[i]], ...) 7. └─DoubleML:::tune_instance(tune_settings$tuner, x) 8. └─tuner$optimize(tuning_instance) 9. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 10. └─private$.optimizer$optimize(inst) 11. └─bbotk:::.__OptimizerBatch__optimize(...) 12. └─bbotk::optimize_batch_default(inst, self) 13. ├─base::tryCatch(...) 14. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 15. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 16. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 17. └─get_private(optimizer)$.optimize(instance) 18. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 19. └─inst$eval_batch(g$data[inds]) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_irm_user_score.R:54:5'): Unit tests for IRM, callable score: regr.rpart_classif.rpart_dml2_1e-05 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlirm_obj$fit() at test-double_ml_irm_user_score.R:54:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv.R:29:5'): Unit tests for PLIV: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv.R:29:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_exception_handling.R:46:3'): Unit tests for deprecation warnings of PLIV ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(dml_obj$tune(par_grids), regexp = msg) at test-double_ml_pliv_exception_handling.R:46:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─dml_obj$tune(par_grids) 7. └─super$tune(param_set, tune_settings, tune_on_folds) 8. └─private$nuisance_tuning(...) 9. └─private$nuisance_tuning_partialX(...) 10. └─DoubleML:::dml_tune(...) 11. └─base::lapply(...) 12. └─DoubleML (local) FUN(X[[i]], ...) 13. └─DoubleML:::tune_instance(tune_settings$tuner, x) 14. └─tuner$optimize(tuning_instance) 15. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 16. └─private$.optimizer$optimize(inst) 17. └─bbotk:::.__OptimizerBatch__optimize(...) 18. └─bbotk::optimize_batch_default(inst, self) 19. ├─base::tryCatch(...) 20. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 21. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 22. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 23. └─get_private(optimizer)$.optimize(instance) 24. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 25. └─inst$eval_batch(g$data[inds]) 26. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 27. └─self$objective$eval_many(xss_trafoed) 28. └─bbotk:::.__Objective__eval_many(...) 29. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 30. │ └─base::eval.parent(expr, n = 1L) 31. │ └─base::eval(expr, p) 32. │ └─base::eval(expr, p) 33. └─private$.eval_many(xss = xss, resampling = `<list>`) 34. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 35. └─mlr3::benchmark(...) 36. └─ResultData$new(grid, data_extra, store_backends = store_backends) 37. └─mlr3 (local) initialize(...) 38. └─mlr3:::.__ResultData__initialize(...) 39. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 40. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_one_way_cluster.R:56:5'): Unit tests for PLIV with one-way clustering: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_one_way_cluster.R:56:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:43:5'): Unit tests for parameter passing of PLIV (oop vs fun): regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv_parameter_passing.R:43:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:138:5'): Unit tests for parameter passing of PLIV (no cross-fitting) regr.rpart_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_pliv(...) at test-double_ml_pliv_parameter_passing.R:138:5 3. └─DoubleML:::fit_nuisance_pliv(...) at ./helper-09-dml_pliv.R:22:5 4. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-09-dml_pliv.R:114:3 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:240:5'): Unit tests for parameter passing of PLIV (fold-wise vs global) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_pliv_obj$fit() at test-double_ml_pliv_parameter_passing.R:240:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_parameter_passing.R:321:5'): Unit tests for parameter passing of PLIV (default vs explicit) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_pliv_default$fit() at test-double_ml_pliv_parameter_passing.R:321:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:40:5'): Unit tests for PLIV (partialX functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_partial_functional_initializer.R:40:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:82:5'): Unit tests for PLIV (partialZ functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_partZ$fit() at test-double_ml_pliv_partial_functional_initializer.R:82:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialZ(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer.R:121:5'): Unit tests for PLIV (partialXZ functional initialization): regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_partXZ$fit() at test-double_ml_pliv_partial_functional_initializer.R:121:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialXZ(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_partial_functional_initializer_IVtype.R:41:5'): Unit tests for PLIV (partialX functional initialization): regr.lm_dml2_IV-type ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_partial_functional_initializer_IVtype.R:41:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_tuning.R:98:5'): Unit tests for tuning of PLIV dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj_tuned$tune(...) at test-double_ml_pliv_tuning.R:98:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─private$nuisance_tuning_partialX(...) 6. └─DoubleML:::dml_tune(...) 7. └─base::lapply(...) 8. └─DoubleML (local) FUN(X[[i]], ...) 9. └─DoubleML:::tune_instance(tune_settings$tuner, x) 10. └─tuner$optimize(tuning_instance) 11. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 12. └─private$.optimizer$optimize(inst) 13. └─bbotk:::.__OptimizerBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 21. └─inst$eval_batch(g$data[inds]) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_tuning.R:188:5'): Unit tests for tuning of PLIV (multiple Z) dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj_tuned$tune(...) at test-double_ml_pliv_tuning.R:188:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─private$nuisance_tuning_partialX(...) 6. └─DoubleML:::dml_tune(...) 7. └─base::lapply(...) 8. └─DoubleML (local) FUN(X[[i]], ...) 9. └─DoubleML:::tune_instance(tune_settings$tuner, x) 10. └─tuner$optimize(tuning_instance) 11. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 12. └─private$.optimizer$optimize(inst) 13. └─bbotk:::.__OptimizerBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 21. └─inst$eval_batch(g$data[inds]) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_two_way_cluster.R:50:5'): Unit tests for PLIV with two-way clustering: regr.lm_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_two_way_cluster.R:50:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_pliv_user_score.R:66:5'): Unit tests for PLIV, callable score: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlpliv_obj$fit() at test-double_ml_pliv_user_score.R:66:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─private$nuisance_est_partialX(smpls, ...) 5. └─DoubleML:::dml_cv_predict(...) 6. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 7. └─ResultData$new(data, data_extra, store_backends = store_backends) 8. └─mlr3 (local) initialize(...) 9. └─mlr3:::.__ResultData__initialize(...) 10. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 11. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr.R:30:5'): Unit tests for PLR: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr.R:30:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_classifier.R:44:7'): Unit tests for PLR with classifier for ml_m: regr.rpart_classif.rpart_regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_classifier.R:44:7 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Failure ('test-double_ml_plr_classifier.R:129:3'): Unit tests for exception handling of PLR with classifier for ml_m: ── `double_mlplr_obj$fit()` threw an error with unexpected message. Expected match: "Assertion on 'levels\\(data\\[\\[target\\]\\])' failed: .* set \\{'0','1'\\}" Actual message: "attempt access index 9/9 in VECTOR_ELT" Backtrace: ▆ 1. ├─testthat::expect_error(double_mlplr_obj$fit(), regexp = msg) at test-double_ml_plr_classifier.R:129:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─double_mlplr_obj$fit() 7. └─private$nuisance_est(private$get__smpls()) 8. └─DoubleML:::dml_cv_predict(...) 9. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Failure ('test-double_ml_plr_classifier.R:142:3'): Unit tests for exception handling of PLR with classifier for ml_m: ── `double_mlplr_obj$fit()` threw an error with unexpected message. Expected match: "Assertion on 'levels\\(data\\[\\[target\\]\\])' failed: .* set \\{'0','1'\\}" Actual message: "attempt access index 9/9 in VECTOR_ELT" Backtrace: ▆ 1. ├─testthat::expect_error(double_mlplr_obj$fit(), regexp = msg) at test-double_ml_plr_classifier.R:142:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─double_mlplr_obj$fit() 7. └─private$nuisance_est(private$get__smpls()) 8. └─DoubleML:::dml_cv_predict(...) 9. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_exception_handling.R:116:7'): Unit tests for exception handling of PLR: regr.lm_dml1_IV-type_FALSE_4_1_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_exception_handling.R:116:7 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_exception_handling.R:176:3'): Unit tests for deprecation warnings of PLR ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(dml_obj$tune(par_grids), regexp = msg) at test-double_ml_plr_exception_handling.R:176:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─dml_obj$tune(par_grids) 7. └─super$tune(param_set, tune_settings, tune_on_folds) 8. └─private$nuisance_tuning(...) 9. └─DoubleML:::dml_tune(...) 10. └─base::lapply(...) 11. └─DoubleML (local) FUN(X[[i]], ...) 12. └─DoubleML:::tune_instance(tune_settings$tuner, x) 13. └─tuner$optimize(tuning_instance) 14. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 15. └─private$.optimizer$optimize(inst) 16. └─bbotk:::.__OptimizerBatch__optimize(...) 17. └─bbotk::optimize_batch_default(inst, self) 18. ├─base::tryCatch(...) 19. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 20. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 21. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 22. └─get_private(optimizer)$.optimize(instance) 23. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 24. └─inst$eval_batch(g$data[inds]) 25. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 26. └─self$objective$eval_many(xss_trafoed) 27. └─bbotk:::.__Objective__eval_many(...) 28. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 29. │ └─base::eval.parent(expr, n = 1L) 30. │ └─base::eval(expr, p) 31. │ └─base::eval(expr, p) 32. └─private$.eval_many(xss = xss, resampling = `<list>`) 33. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 34. └─mlr3::benchmark(...) 35. └─ResultData$new(grid, data_extra, store_backends = store_backends) 36. └─mlr3 (local) initialize(...) 37. └─mlr3:::.__ResultData__initialize(...) 38. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 39. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_export_preds.R:49:5'): Unit tests for for the export of predictions: regr.rpart_regr.rpart_regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit(store_predictions = TRUE, store_models = TRUE) at test-double_ml_plr_export_preds.R:49:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_loaded_mlr3learner.R:66:5'): Unit tests for PLR: dml1_IV-type ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr$fit() at test-double_ml_plr_loaded_mlr3learner.R:66:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_multitreat.R:37:5'): Unit tests for PLR: regr.lm_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_multitreat.R:37:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nocrossfit.R:51:5'): Unit tests for PLR: regr.lm_dml2_partialling out_FALSE_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_nocrossfit.R:51:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nocrossfit.R:51:5'): Unit tests for PLR: regr.lm_dml2_partialling out_FALSE_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_nocrossfit.R:51:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_nonorth.R:74:5'): Unit tests for PLR: regr.lm_dml1_non_orth_score_w_g_3_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_nonorth.R:74:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_p_adjust.R:69:5'): Unit tests for PLR: regr.rpart_dml1_partialling out_romano-wolf_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_p_adjust.R:69:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:48:5'): Unit tests for parameter passing of PLR (oop vs fun) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_parameter_passing.R:48:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:150:5'): Unit tests for parameter passing of PLR (no cross-fitting) regr.rpart_dml1_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr_multitreat(...) at test-double_ml_plr_parameter_passing.R:150:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:89:7 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:264:5'): Unit tests for parameter passing of PLR (fold-wise vs global) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_parameter_passing.R:264:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_parameter_passing.R:353:5'): Unit tests for parameter passing of PLR (default vs explicit) regr.rpart_dml2_partialling out ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─dml_plr_default$fit() at test-double_ml_plr_parameter_passing.R:353:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_rep_cross_fit.R:38:5'): Unit tests for PLR: regr.lm_dml1_partialling out_5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_plr(...) at test-double_ml_plr_rep_cross_fit.R:38:5 3. └─DoubleML:::fit_plr_single_split(...) at ./helper-08-dml_plr.R:22:5 4. └─DoubleML:::fit_nuisance_plr(...) at ./helper-08-dml_plr.R:141:3 5. └─mlr3::resample(task_l, ml_l, resampling_l, store_models = TRUE) at ./helper-08-dml_plr.R:225:3 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_set_samples.R:53:5'): PLR with external sample provision: regr.rpart_dml2_partialling out_2_1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_set_samples.R:53:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_tuning.R:95:5'): Unit tests for tuning of PLR: regr.rpart_regr.rpart_dml2_partialling out_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj_tuned$tune(...) at test-double_ml_plr_tuning.R:95:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 20. └─inst$eval_batch(g$data[inds]) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_tuning.R:95:5'): Unit tests for tuning of PLR: regr.rpart_regr.rpart_dml2_partialling out_1_TRUE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj_tuned$tune(...) at test-double_ml_plr_tuning.R:95:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 20. └─inst$eval_batch(g$data[inds]) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_plr_user_score.R:48:5'): Unit tests for PLR, callable score: regr.lm_dml1_3_2 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlplr_obj$fit() at test-double_ml_plr_user_score.R:48:5 3. └─private$nuisance_est(private$get__smpls()) 4. └─DoubleML:::dml_cv_predict(...) 5. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_print.R:12:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─dml_plr$fit() at test-double_ml_print.R:12:1 2. └─private$nuisance_est(private$get__smpls()) 3. └─DoubleML:::dml_cv_predict(...) 4. └─mlr3::resample(task_pred, ml_learner, resampling_smpls, store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_mar.R:32:5'): Unit tests for SSM, missing-at-random: cv_glmnet_dml1_missing-at-random_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_ssm(...) at test-double_ml_ssm_mar.R:32:5 3. └─DoubleML:::fit_nuisance_ssm(...) at ./helper-17-dml_ssm.R:22:5 4. └─mlr3::resample(task_pi, ml_pi, resampling_pi, store_models = TRUE) at ./helper-17-dml_ssm.R:147:5 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_nonignorable.R:32:5'): Unit tests for SSM, nonignorable nonresponse: cv_glmnet_dml1_nonignorable_0 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─DoubleML:::dml_ssm(...) at test-double_ml_ssm_nonignorable.R:32:5 3. └─DoubleML:::fit_nuisance_ssm(...) at ./helper-17-dml_ssm.R:22:5 4. └─mlr3::resample(...) at ./helper-17-dml_ssm.R:239:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_tuning.R:75:5'): Unit tests for tuning of SSM: rpart_dml2_missing-at-random_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlssm_obj_tuned$tune(...) at test-double_ml_ssm_tuning.R:75:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test-double_ml_ssm_tuning.R:75:5'): Unit tests for tuning of SSM: rpart_dml2_nonignorable_1_FALSE ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─rlang::eval_tidy(code, test_args) 2. └─double_mlssm_obj_tuned$tune(...) at test-double_ml_ssm_tuning.R:75:5 3. └─super$tune(param_set, tune_settings, tune_on_folds) 4. └─private$nuisance_tuning(...) 5. └─DoubleML:::dml_tune(...) 6. └─base::lapply(...) 7. └─DoubleML (local) FUN(X[[i]], ...) 8. └─DoubleML:::tune_instance(tune_settings$tuner, x) 9. └─tuner$optimize(tuning_instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) [ FAIL 63 | WARN 0 | SKIP 7 | PASS 296 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc