Last updated on 2025-12-19 23:49:54 CET.
| Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
|---|---|---|---|---|---|---|
| r-devel-linux-x86_64-debian-clang | 0.0.8 | 12.37 | 267.82 | 280.19 | OK | |
| r-devel-linux-x86_64-debian-gcc | 0.0.8 | 8.05 | 203.19 | 211.24 | ERROR | |
| r-devel-linux-x86_64-fedora-clang | 0.0.8 | 21.00 | 444.26 | 465.26 | ERROR | |
| r-devel-linux-x86_64-fedora-gcc | 0.0.8 | 19.00 | 543.94 | 562.94 | ERROR | |
| r-devel-windows-x86_64 | 0.0.8 | 13.00 | 427.00 | 440.00 | OK | |
| r-patched-linux-x86_64 | 0.0.8 | 12.09 | 262.64 | 274.73 | OK | |
| r-release-linux-x86_64 | 0.0.8 | 11.88 | 281.95 | 293.83 | OK | |
| r-release-macos-arm64 | 0.0.8 | OK | ||||
| r-release-macos-x86_64 | 0.0.8 | 7.00 | 362.00 | 369.00 | OK | |
| r-release-windows-x86_64 | 0.0.8 | 12.00 | 401.00 | 413.00 | OK | |
| r-oldrel-macos-arm64 | 0.0.8 | OK | ||||
| r-oldrel-macos-x86_64 | 0.0.8 | 7.00 | 377.00 | 384.00 | OK | |
| r-oldrel-windows-x86_64 | 0.0.8 | 19.00 | 576.00 | 595.00 | OK |
Version: 0.0.8
Check: examples
Result: ERROR
Running examples in ‘mlexperiments-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: performance
> ### Title: performance
> ### Aliases: performance
>
> ### ** Examples
>
> dataset <- do.call(
+ cbind,
+ c(sapply(paste0("col", 1:6), function(x) {
+ rnorm(n = 500)
+ },
+ USE.NAMES = TRUE,
+ simplify = FALSE
+ ),
+ list(target = sample(0:1, 500, TRUE))
+ ))
>
> fold_list <- splitTools::create_folds(
+ y = dataset[, 7],
+ k = 3,
+ type = "stratified",
+ seed = 123
+ )
>
> glm_optimization <- mlexperiments::MLCrossValidation$new(
+ learner = LearnerGlm$new(),
+ fold_list = fold_list,
+ seed = 123
+ )
>
> glm_optimization$learner_args <- list(family = binomial(link = "logit"))
> glm_optimization$predict_args <- list(type = "response")
> glm_optimization$performance_metric_args <- list(
+ positive = "1",
+ negative = "0"
+ )
> glm_optimization$performance_metric <- list(
+ auc = metric("AUC"), sensitivity = metric("TPR"),
+ specificity = metric("TNR")
+ )
> glm_optimization$return_models <- TRUE
>
> # set data
> glm_optimization$set_data(
+ x = data.matrix(dataset[, -7]),
+ y = dataset[, 7]
+ )
>
> cv_results <- glm_optimization$execute()
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
>
> # predictions
> preds <- mlexperiments::predictions(
+ object = glm_optimization,
+ newdata = data.matrix(dataset[, -7]),
+ na.rm = FALSE,
+ ncores = 2L,
+ type = "response"
+ )
Error in `[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), :
attempt access index 3/3 in VECTOR_ELT
Calls: <Anonymous> -> [ -> [.data.table
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.0.8
Check: tests
Result: ERROR
Running ‘testthat.R’ [139s/409s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> Sys.setenv("OMP_THREAD_LIMIT" = 2)
> Sys.setenv("Ncpu" = 2)
>
> library(testthat)
> library(mlexperiments)
>
> test_check("mlexperiments")
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold4
CV fold: Fold5
Testing for identical folds in 2 and 1.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
Saving _problems/test-glm_predictions-79.R
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerLm'.
Saving _problems/test-glm_predictions-188.R
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 26.376 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.648 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 25.608 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.706 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
Registering parallel backend using 2 cores.
Running initial scoring function 4 times in 2 thread(s)... 11.683 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.553 seconds
3) Running FUN 2 times in 2 thread(s)... 2.751 seconds
CV fold: Fold1
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 12.683 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.719 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold2
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 14.009 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.745 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 14.634 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.696 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 25.918 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.747 seconds
3) Running FUN 2 times in 2 thread(s)... 4.149 seconds
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 11.625 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.591 seconds
3) Running FUN 2 times in 2 thread(s)... 2.433 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 12.188 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.729 seconds
3) Running FUN 2 times in 2 thread(s)... 2.383 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 12.205 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.814 seconds
3) Running FUN 2 times in 2 thread(s)... 2.036 seconds
CV fold: Fold1
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold2
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold3
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 4.123 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.704 seconds
3) Running FUN 2 times in 2 thread(s)... 0.362 seconds
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 4.698 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.631 seconds
3) Running FUN 2 times in 2 thread(s)... 0.59 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 3.486 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.606 seconds
3) Running FUN 2 times in 2 thread(s)... 0.672 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 3.563 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.755 seconds
3) Running FUN 2 times in 2 thread(s)... 0.453 seconds
CV fold: Fold1
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold2
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold3
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
[ FAIL 2 | WARN 0 | SKIP 1 | PASS 68 ]
══ Skipped tests (1) ═══════════════════════════════════════════════════════════
• On CRAN (1): 'test-lints.R:10:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-glm_predictions.R:73:5'): test predictions, binary - glm ───────
Error in ``[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), sd = stats::sd(as.numeric(.SD), na.rm = na.rm)), .SDcols = colnames(res), by = seq_len(nrow(res)))`: attempt access index 5/5 in VECTOR_ELT
Backtrace:
▆
1. └─mlexperiments::predictions(...) at test-glm_predictions.R:73:5
2. ├─...[]
3. └─data.table:::`[.data.table`(...)
── Error ('test-glm_predictions.R:182:5'): test predictions, regression - lm ───
Error in ``[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), sd = stats::sd(as.numeric(.SD), na.rm = na.rm)), .SDcols = colnames(res), by = seq_len(nrow(res)))`: attempt access index 5/5 in VECTOR_ELT
Backtrace:
▆
1. └─mlexperiments::predictions(...) at test-glm_predictions.R:182:5
2. ├─...[]
3. └─data.table:::`[.data.table`(...)
[ FAIL 2 | WARN 0 | SKIP 1 | PASS 68 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.0.8
Check: examples
Result: ERROR
Running examples in ‘mlexperiments-Ex.R’ failed
The error most likely occurred in:
> ### Name: performance
> ### Title: performance
> ### Aliases: performance
>
> ### ** Examples
>
> dataset <- do.call(
+ cbind,
+ c(sapply(paste0("col", 1:6), function(x) {
+ rnorm(n = 500)
+ },
+ USE.NAMES = TRUE,
+ simplify = FALSE
+ ),
+ list(target = sample(0:1, 500, TRUE))
+ ))
>
> fold_list <- splitTools::create_folds(
+ y = dataset[, 7],
+ k = 3,
+ type = "stratified",
+ seed = 123
+ )
>
> glm_optimization <- mlexperiments::MLCrossValidation$new(
+ learner = LearnerGlm$new(),
+ fold_list = fold_list,
+ seed = 123
+ )
>
> glm_optimization$learner_args <- list(family = binomial(link = "logit"))
> glm_optimization$predict_args <- list(type = "response")
> glm_optimization$performance_metric_args <- list(
+ positive = "1",
+ negative = "0"
+ )
> glm_optimization$performance_metric <- list(
+ auc = metric("AUC"), sensitivity = metric("TPR"),
+ specificity = metric("TNR")
+ )
> glm_optimization$return_models <- TRUE
>
> # set data
> glm_optimization$set_data(
+ x = data.matrix(dataset[, -7]),
+ y = dataset[, 7]
+ )
>
> cv_results <- glm_optimization$execute()
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
>
> # predictions
> preds <- mlexperiments::predictions(
+ object = glm_optimization,
+ newdata = data.matrix(dataset[, -7]),
+ na.rm = FALSE,
+ ncores = 2L,
+ type = "response"
+ )
Error in `[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), :
attempt access index 3/3 in VECTOR_ELT
Calls: <Anonymous> -> [ -> [.data.table
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc
Version: 0.0.8
Check: tests
Result: ERROR
Running ‘testthat.R’ [5m/15m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> Sys.setenv("OMP_THREAD_LIMIT" = 2)
> Sys.setenv("Ncpu" = 2)
>
> library(testthat)
> library(mlexperiments)
>
> test_check("mlexperiments")
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold4
CV fold: Fold5
Testing for identical folds in 2 and 1.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
Saving _problems/test-glm_predictions-79.R
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerLm'.
Saving _problems/test-glm_predictions-188.R
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 75.409 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.954 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 77.037 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.66 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
Registering parallel backend using 2 cores.
Running initial scoring function 4 times in 2 thread(s)... 29.606 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.937 seconds
3) Running FUN 2 times in 2 thread(s)... 10.967 seconds
CV fold: Fold1
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 34.584 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.896 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold2
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 23.424 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.281 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 35.142 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.429 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 40.728 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.139 seconds
3) Running FUN 2 times in 2 thread(s)... 7.196 seconds
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 22.844 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.087 seconds
3) Running FUN 2 times in 2 thread(s)... 4.535 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 24.945 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.651 seconds
3) Running FUN 2 times in 2 thread(s)... 3.887 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 23.217 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.89 seconds
3) Running FUN 2 times in 2 thread(s)... 3.093 seconds
CV fold: Fold1
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold2
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold3
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 7.897 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.636 seconds
3) Running FUN 2 times in 2 thread(s)... 0.767 seconds
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.308 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.338 seconds
3) Running FUN 2 times in 2 thread(s)... 0.682 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 10.865 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.748 seconds
3) Running FUN 2 times in 2 thread(s)... 0.75 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 9.606 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.309 seconds
3) Running FUN 2 times in 2 thread(s)... 1.017 seconds
CV fold: Fold1
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold2
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold3
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
[ FAIL 2 | WARN 0 | SKIP 1 | PASS 68 ]
══ Skipped tests (1) ═══════════════════════════════════════════════════════════
• On CRAN (1): 'test-lints.R:10:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-glm_predictions.R:73:5'): test predictions, binary - glm ───────
Error in ``[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), sd = stats::sd(as.numeric(.SD), na.rm = na.rm)), .SDcols = colnames(res), by = seq_len(nrow(res)))`: attempt access index 5/5 in VECTOR_ELT
Backtrace:
▆
1. └─mlexperiments::predictions(...) at test-glm_predictions.R:73:5
2. ├─...[]
3. └─data.table:::`[.data.table`(...)
── Error ('test-glm_predictions.R:182:5'): test predictions, regression - lm ───
Error in ``[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), sd = stats::sd(as.numeric(.SD), na.rm = na.rm)), .SDcols = colnames(res), by = seq_len(nrow(res)))`: attempt access index 5/5 in VECTOR_ELT
Backtrace:
▆
1. └─mlexperiments::predictions(...) at test-glm_predictions.R:182:5
2. ├─...[]
3. └─data.table:::`[.data.table`(...)
[ FAIL 2 | WARN 0 | SKIP 1 | PASS 68 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.0.8
Check: tests
Result: ERROR
Running ‘testthat.R’ [7m/24m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> Sys.setenv("OMP_THREAD_LIMIT" = 2)
> Sys.setenv("Ncpu" = 2)
>
> library(testthat)
> library(mlexperiments)
>
> test_check("mlexperiments")
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold4
CV fold: Fold5
Testing for identical folds in 2 and 1.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
Saving _problems/test-glm_predictions-79.R
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerLm'.
Saving _problems/test-glm_predictions-188.R
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 99.061 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.665 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 85.516 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.875 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
Registering parallel backend using 2 cores.
Running initial scoring function 4 times in 2 thread(s)... 46.057 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.529 seconds
3) Running FUN 2 times in 2 thread(s)... 20.908 seconds
CV fold: Fold1
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 49.965 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.532 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold2
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 78.971 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 3.12 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 53.476 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.073 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 61.195 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.238 seconds
3) Running FUN 2 times in 2 thread(s)... 10.223 seconds
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 30.468 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.429 seconds
3) Running FUN 2 times in 2 thread(s)... 6.573 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 28.927 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.783 seconds
3) Running FUN 2 times in 2 thread(s)... 6.49 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 32.498 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2 seconds
3) Running FUN 2 times in 2 thread(s)... 6.386 seconds
CV fold: Fold1
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold2
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold3
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 10.015 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.141 seconds
3) Running FUN 2 times in 2 thread(s)... 0.872 seconds
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.577 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.938 seconds
3) Running FUN 2 times in 2 thread(s)... 0.971 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.225 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.129 seconds
3) Running FUN 2 times in 2 thread(s)... 1.004 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 9.742 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.484 seconds
3) Running FUN 2 times in 2 thread(s)... 0.723 seconds
CV fold: Fold1
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold2
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold3
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
[ FAIL 2 | WARN 0 | SKIP 1 | PASS 68 ]
══ Skipped tests (1) ═══════════════════════════════════════════════════════════
• On CRAN (1): 'test-lints.R:10:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-glm_predictions.R:73:5'): test predictions, binary - glm ───────
Error in ``[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), sd = stats::sd(as.numeric(.SD), na.rm = na.rm)), .SDcols = colnames(res), by = seq_len(nrow(res)))`: attempt access index 5/5 in VECTOR_ELT
Backtrace:
▆
1. └─mlexperiments::predictions(...) at test-glm_predictions.R:73:5
2. ├─...[]
3. └─data.table:::`[.data.table`(...)
── Error ('test-glm_predictions.R:182:5'): test predictions, regression - lm ───
Error in ``[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), sd = stats::sd(as.numeric(.SD), na.rm = na.rm)), .SDcols = colnames(res), by = seq_len(nrow(res)))`: attempt access index 5/5 in VECTOR_ELT
Backtrace:
▆
1. └─mlexperiments::predictions(...) at test-glm_predictions.R:182:5
2. ├─...[]
3. └─data.table:::`[.data.table`(...)
[ FAIL 2 | WARN 0 | SKIP 1 | PASS 68 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc