with_regions
argumentUse the with_regions
argument in convertGDP
to convert aggregated GDP data, e.g. regional-level data.
The default value is NULL
, but if passed a data-frame
with a country-to-region mapping, then custom regional codons will be
recognized. The data-frame should have two columns, one named “iso3c”
with iso3c country codes, and one named “region” with the corresponding
region codes. The conversion of regional values is then undertaken by
disaggregating the regions to a country level (using the mapping and
weighed by the GDP (in $PPP) shares of countries within that region in
the base year of unit_in
).
library(GDPuc)
my_gdp <- tibble::tibble(
iso3c = "EUR",
year = 2010:2014,
value = 100:104
)
my_mapping_data_frame <- tibble::tibble(
iso3c = c("DEU", "FRA", "ESP", "ITA"),
region = "EUR"
)
convertGDP(
gdp = my_gdp,
unit_in = "constant 2005 Int$PPP",
unit_out = "constant 2017 Int$PPP",
with_regions = my_mapping_data_frame,
verbose = TRUE
)
#> ℹ Converting GDP with conversion factors from wb_wdi:
#> constant 2005 Int$PPP → constant 2005 LCU
#> 2005 PPP conversion factors in (LCU per international $) used:
#> DEU: 0.872721
#> ESP: 0.769508
#> FRA: 0.916458
#> ITA: 0.855139
#> constant 2005 LCU → constant 2017 LCU
#> 2017 value of base 2005 GDP deflators in (constant 2017 LCU per constant 2005
#> LCU) used:
#> DEU: 1.17967
#> ESP: 1.1273
#> FRA: 1.14739
#> ITA: 1.18511
#> constant 2017 LCU → constant 2017 Int$PPP
#> 2017 PPP conversion factors in (LCU per international $) used:
#> DEU: 0.744783
#> ESP: 0.630839
#> FRA: 0.770109
#> ITA: 0.689895
#> # A tibble: 5 × 3
#> iso3c year value
#> <chr> <int> <dbl>
#> 1 EUR 2010 140.
#> 2 EUR 2011 141.
#> 3 EUR 2012 142.
#> 4 EUR 2013 144.
#> 5 EUR 2014 145.