Load libraries that will be used.
Set some parameters.
Set a working seed for random numbers
Create the secret key and the polynomials a and e, which will go into the public key
# generate a secret key
s = GenSecretKey(n)
# generate a
a = GenA(n, q)
# generate the error
e = GenError(n)
Generate the public key.
Create polynomials for the encryption
Now create to messages to multiply.
Encrypt the two messages (i.e. genete the ct0 and ct1 part for each m1 and m2).
m1_ct0 = EncryptPoly0(m1, pk0, u, e1, p, pm, q)
m1_ct1 = EncryptPoly1( pk1, u, e2, pm, q)
m2_ct0 = EncryptPoly0(m2, pk0, u, e1, p, pm, q)
m2_ct1 = EncryptPoly1( pk1, u, e2, pm, q)
Multiply the encrypted messages.
multi_ct0 = m1_ct0 * m2_ct0 * (p/q)
multi_ct0 = multi_ct0 %% pm
multi_ct0 = CoefMod(multi_ct0, q)
multi_ct0 = round(multi_ct0)
multi_ct1 = (m1_ct0 * m2_ct1 + m1_ct1 * m2_ct0) * (p/q)
multi_ct1 = multi_ct1 %% pm
multi_ct1 = CoefMod(multi_ct1, q)
multi_ct1 = round(multi_ct1)
multi_ct2 = (m1_ct1 * m2_ct1) * (p/q)
multi_ct2 = multi_ct2 %% pm
multi_ct2 = CoefMod(multi_ct2, q)
multi_ct2 = round(multi_ct2)
Decrypt the multiple