MMVBVS: Missing Multivariate Bayesian Variable Selection
A variable selection tool for multivariate normal variables with missing-at-random values using Bayesian Hierarchical Model.
Visualization functions show the posterior distribution of gamma (inclusion variables) and beta (coefficients).
Users can also visualize the heatmap of the posterior mean of covariance matrix.
Kim, T. Nicolae, D. (2019) <https://github.com/tk382/MMVBVS/blob/master/workingpaper.pdf>.
Guan, Y. Stephens, M. (2011) <doi:10.1214/11-AOAS455>.
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=MMVBVS
to link to this page.