Population of the Czech Republic from the 2011 census, per district (okres). The results can be easily accessed from the comfort of your R session using the excellent package {czso} by Petr Bouchal.
As the population distributed highly unevenly a log scale is used.
library(RCzechia)
library(ggplot2)
library(readxl)
library(dplyr)
library(httr)
tf <- tempfile(fileext = ".xls") # a temporary xls file
GET("https://raw.githubusercontent.com/jlacko/RCzechia/master/data-raw/zvcr034.xls",
write_disk(tf))
## Response [https://raw.githubusercontent.com/jlacko/RCzechia/master/data-raw/zvcr034.xls]
## Date: 2024-03-04 13:47
## Status: 200
## Content-Type: application/octet-stream
## Size: 44.5 kB
## <ON DISK> /tmp/Rtmpa239co/file9a1ec35053513.xls
src <- read_excel(tf, range = "Data!B5:C97") # read in with original column names
colnames(src) <- c("NAZ_LAU1", "obyvatel") # meaningful names instead of the original ones
src <- src %>%
mutate(obyvatel = as.double(obyvatel)) %>%
# convert from text to number
mutate(NAZ_LAU1 = ifelse(NAZ_LAU1 == "Hlavní město Praha", "Praha", NAZ_LAU1))
# rename Prague (from The Capital to a regular city)
okresni_data <- RCzechia::okresy("low") %>% # data shapefile
inner_join(src, by = "NAZ_LAU1")
# key for data connection - note the use of inner (i.e. filtering) join
# report results
ggplot(data = okresni_data) +
geom_sf(aes(fill = obyvatel), colour = NA) +
geom_sf(data = RCzechia::republika("low"), color = "gray30", fill = NA) +
scale_fill_viridis_c(trans = "log", labels = scales::comma) +
labs(title = "Czech population",
fill = "population\n(log scale)") +
theme_bw() +
theme(legend.text.align = 1,
legend.title.align = 0.5)
Drawing a map: three semi-random landmarks on map, with rivers shown for better orientation.
To get the geocoded data frame function
RCzechia::geocode()
is used.
library(RCzechia)
library(ggplot2)
library(sf)
borders <- RCzechia::republika("low")
rivers <- subset(RCzechia::reky(), Major == T)
mista <- data.frame(misto = c("Kramářova vila",
"Arcibiskupské zahrady v Kroměříži",
"Hrad Bečov nad Teplou"),
adresa = c("Gogolova 212, Praha 1",
"Sněmovní náměstí 1, Kroměříž",
"nám. 5. května 1, Bečov nad Teplou"))
# from a string vector to sf spatial points object
POI <- RCzechia::geocode(mista$adresa)
class(POI) # in {sf} package format = spatial and data frame
## [1] "sf" "data.frame"
# report results
ggplot() +
geom_sf(data = POI, color = "red", shape = 4, size = 2) +
geom_sf(data = rivers, color = "steelblue", alpha = 0.5) +
geom_sf(data = borders, color = "grey30", fill = NA) +
labs(title = "Very Special Places") +
theme_bw()
Calculate distance between two spatial objects; the sf
package supports (via gdal) point to point, point to polygon and polygon
to polygon distances.
Calculating distance from Prague (#1 Czech city) to Brno (#2 Czech city).
library(dplyr)
library(RCzechia)
library(sf)
library(units)
obce <- RCzechia::obce_polygony()
praha <- subset(obce, NAZ_OBEC == "Praha")
brno <- subset(obce, NAZ_OBEC == "Brno")
vzdalenost <- sf::st_distance(praha, brno) %>%
units::set_units("kilometers") # easier to interpret than meters, miles or decimal degrees..
# report results
print(vzdalenost[1])
## 152.4636 [kilometers]
The metaphysical center of the Brno City is well known. But where is the geographical center?
The center is calculated using sf::st_centroid()
and
reversely geocoded via RCzechia::revgeo()
.
Note the use of reky("Brno")
to provide the parts of
Svitava and Svratka relevant to a map of Brno city.
library(dplyr)
library(RCzechia)
library(ggplot2)
library(sf)
# all districts
brno <- RCzechia::okresy() %>%
dplyr::filter(KOD_LAU1 == "CZ0642")
# calculate centroid
pupek_brna <- brno %>%
sf::st_transform(5514) %>% # planar CRS (eastings & northings)
sf::st_centroid(brno) # calculate central point of a polygon
# the revgeo() function takes a sf points data frame and returns it back
# with address data in "revgeocoded" column
adresa_pupku <- RCzechia::revgeo(pupek_brna) %>%
pull(revgeocoded)
# report results
print(adresa_pupku)
## [1] "Žižkova 513/22, Veveří, 61600 Brno"
ggplot() +
geom_sf(data = pupek_brna, col = "red", shape = 4) +
geom_sf(data = reky("Brno"), color = "skyblue3") +
geom_sf(data = brno, color = "grey50", fill = NA) +
labs(title = "Geographical Center of Brno") +
theme_bw()
Interactive maps are powerful tools for data visualization. They are
easy to produce with the leaflet
package.
Since Stamen Toner basemap no longer sparkles joy I have found a new favorite - the Positron by CartoDB.
Note: it is technically impossible to make html in vignette interactive (and for good reasons). As a consequence the result of code shown has been replaced by a static screenshot; the code itself is legit.
library(dplyr)
library(RCzechia)
library(leaflet)
library(czso)
# map metrics - number of unemployed in October 2020
metrika <- czso::czso_get_table("250169r20") %>%
filter(obdobi == "20201031" & vuk == "NEZ0004")
podklad <- RCzechia::obce_polygony() %>% # obce_polygony = municipalities in RCzechia package
inner_join(metrika, by = c("KOD_OBEC" = "uzemi_kod")) %>% # linking by key
filter(KOD_CZNUTS3 == "CZ071") # Olomoucký kraj
pal <- colorNumeric(palette = "viridis", domain = podklad$hodnota)
leaflet() %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(data = podklad,
fillColor = ~pal(hodnota),
fillOpacity = 0.75,
color = NA)
The Kartierung der Flora Mitteleuropas (KFME) grid is a commonly used technique in biogeography of the Central Europe. It uses a grid of 10×6 arc-minutes (in Central European latitudes this translates to near squares), with cells numbered from north to south and west to east.
A selection of the grid cells relevant for faunistical mapping of the Czech Republic is available in the RCzechia package.
This example covers a frequent use case:
RCzechia::geocode()
)sf::st_join
)library(RCzechia)
library(ggplot2)
library(dplyr)
library(sf)
obec <- "Humpolec" # a Czech location, as a string
# geolocate the place
place <- RCzechia::geocode(obec) %>%
filter(type == "Obec")
class(place) # a spatial data frame
## [1] "sf" "data.frame"
# ID of the KFME square containg place geocoded (via spatial join)
ctverec_id <- sf::st_join(RCzechia::KFME_grid(),
place, left = FALSE) %>% # not left = inner (filtering) join
pull(ctverec)
print(paste0("Location found in grid cell number ", ctverec_id, "."))
## [1] "Location found in grid cell number 6458."
# a single KFME square to be highlighted as a polygon
highlighted_cell <- KFME_grid() %>%
filter(ctverec == ctverec_id)
# report results
ggplot() +
geom_sf(data = RCzechia::republika(), size = .85) + # Czech borders
geom_sf(data = highlighted_cell, # a specific KFME cell ...
fill = "limegreen", alpha = .5) + # ... highlighted in lime green
geom_sf(data = KFME_grid(), size = .33, # all KFME grid cells, thin
color = "gray80", fill = NA) + # in gray and without fill
geom_sf(data = place, color = "red", pch = 4) + # X marks the spot!
labs(title = paste("Location", obec, "in grid cell number", ctverec_id)) +
theme_bw()
Understanding the lay of the land is important in many use cases in physical sciences; one of them is interpreting the flow of rivers.
Visualizing the slope & height of terrain is an important first step in understanding it.
Package RCzechia supports two versions of relief visualization:
This example covers the first option.
library(RCzechia)
library(ggplot2)
library(terra)
library(tidyterra)
library(dplyr)
# terrain cropped to "Czechia proper"
relief <- vyskopis("rayshaded", cropped = TRUE)
# report results
ggplot() +
tidyterra::geom_spatraster(data = relief) +
scale_fill_gradientn(colors = hcl.colors(50, "Grays"), # 50 shades of Gray...
na.value = NA,
guide = "none") +
geom_sf(data = subset(RCzechia::reky(), Major == T), # major rivers
color = "steelblue", alpha = .5) +
labs(title = "Czech Rivers & Their Basins",
fill = "Altitude") +
theme_bw() +
theme(axis.title = element_blank(),
legend.text.align = 1,
legend.title.align = 0.5)
Visualizing election results is one of typical use cases of the RCzechia package.
This example uses {rvest}
to scrape
the official table of results of the 2020 fall Senate elections from the
official site of the Czech Statistical Office, and display a map of the
party affiliation of the elected senator.
Since not all districts were up for election in this cycle two thirds of the map contain NA’s; that is expected behavior (the Czech senate elections are staggered, like in the US).
library(RCzechia)
library(ggplot2)
library(dplyr)
library(rvest)
# official result of elections from Czech Statistical Office
vysledky <- "https://www.volby.cz/pls/senat/se1111?xjazyk=CZ&xdatum=20201002&xv=7&xt=2" %>%
xml2::read_html() %>% # because rvest::html is deprecated
html_nodes(xpath = "//*[@id=\"se1111_t1\"]") %>% # get the table by its xpath
html_table(fill = T) %>%
.[[1]] %>%
dplyr::select(OBVOD = Obvod, strana = `Volebnístrana`) %>%
# pad OBVOD with zero to 2 places to align to RCzechia data format
mutate(OBVOD = stringr::str_pad(OBVOD, 2, side = "left", pad = "0"))
podklad <- RCzechia::senat_obvody("low") %>%
# match by key; left to preserve geometry of off cycle districts (NAs)
left_join(vysledky, by = "OBVOD")
ggplot() +
geom_sf(data = RCzechia::republika(), size = .85) + # Czech borders
geom_sf(data = podklad, aes(fill = strana)) +
labs(title = "Senate elections 2020") +
theme_bw()