SCDA: Spatially-Clustered Data Analysis

Contains functions for statistical data analysis based on spatially-clustered techniques. The package allows estimating the spatially-clustered spatial regression models presented in Cerqueti, Maranzano \& Mattera (2024), "Spatially-clustered spatial autoregressive models with application to agricultural market concentration in Europe", arXiv preprint 2407.15874 <doi:10.48550/arXiv.2407.15874>. Specifically, the current release allows the estimation of the spatially-clustered linear regression model (SCLM), the spatially-clustered spatial autoregressive model (SCSAR), the spatially-clustered spatial Durbin model (SCSEM), and the spatially-clustered linear regression model with spatially-lagged exogenous covariates (SCSLX). From release 0.0.2, the library contains functions to estimate spatial clustering based on Adiajacent Matrix K-Means (AMKM) as described in Zhou, Liu \& Zhu (2019), "Weighted adjacent matrix for K-means clustering", Multimedia Tools and Applications, 78 (23) <doi:10.1007/s11042-019-08009-x>.

Version: 0.0.2
Depends: R (≥ 3.5.0)
Imports: spatialreg, sp, spdep, utils, rlang, performance, stats, methods, dplyr, sf, NbClust, ggplot2, ggspatial
Suggests: tidyverse
Published: 2024-10-22
DOI: 10.32614/CRAN.package.SCDA
Author: Paolo Maranzano ORCID iD [aut, cre, cph], Raffaele Mattera ORCID iD [aut, cph], Camilla Lionetti [aut, cph], Francesco Caccia [aut, cph]
Maintainer: Paolo Maranzano <pmaranzano.ricercastatistica at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Language: en-US
Citation: SCDA citation info
CRAN checks: SCDA results

Documentation:

Reference manual: SCDA.pdf

Downloads:

Package source: SCDA_0.0.2.tar.gz
Windows binaries: r-devel: SCDA_0.0.2.zip, r-release: SCDA_0.0.2.zip, r-oldrel: SCDA_0.0.2.zip
macOS binaries: r-release (arm64): SCDA_0.0.2.tgz, r-oldrel (arm64): SCDA_0.0.2.tgz, r-release (x86_64): SCDA_0.0.2.tgz, r-oldrel (x86_64): SCDA_0.0.2.tgz
Old sources: SCDA archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SCDA to link to this page.