Estimate, analyse, test, and study linear, nonlinear, hierarchical and multi-group structural equation models using composite-based approaches and procedures, including estimation techniques such as partial least squares path modeling (PLS-PM) and its derivatives (PLSc, OrdPLSc, robustPLSc), generalized structured component analysis (GSCA), generalized structured component analysis with uniqueness terms (GSCAm), generalized canonical correlation analysis (GCCA), principal component analysis (PCA), factor score regression (FSR) using sum score, regression or Bartlett scores (including bias correction using Croon’s approach), as well as several tests and typical postestimation procedures (e.g., verify admissibility of the estimates, assess the model fit, test the model fit, compute confidence intervals, compare groups, etc.).
testCVPAT()
function implements the cross-validated
predictive ability test (CVPAT)
predict()
function is now able to predict
categorical indicators (a procedure known as OrdPLScPredict).
Use singular value decomposition in GSCAm to deal with large datasets, which allows for large datasets (thanks to Heungsun Hwang)
The package is available on CRAN:
install.packages("cSEM")
To install the development version use:
# install.packages("devtools")
::install_github("M-E-Rademaker/cSEM") devtools
The best place to get started is the cSEM-website.
The basic usage is illustrated below.
Usully, using cSEM
is the same 3 step procedure:
- Pick a dataset and specify a model using lavaan syntax
- Use
csem()
- Apply one of the postestimation functions listed below on the resulting object.
There are five major postestimation verbs, three test family functions and three do-family of function:
assess()
: assess the model using common quality
criteriainfer()
: calculate common inferential quantities
(e.g., standard errors, confidence intervals)predict()
: predict endogenous indicator valuessummarize()
: summarize the resultsverify()
: verify admissibility of the estimatesTests are performed by using the test family of functions. Currently, the following tests are implemented:
testOMF()
: performs a test for overall model fittestMICOM()
: performs a test for composite measurement
invariancetestMGD()
: performs several tests to assess
multi-group differencestestHausman()
: performs the regression-based Hausman
test to test for endogeneityOther miscellaneous postestimation functions belong do the do-family of functions. Currently, three do functions are implemented:
doIPMA()
: performs an importance-performance matrix
analysisdoNonlinearEffectsAnalysis()
: performs a nonlinear
effects analysis such as floodlight and surface analysisdoRedundancyAnalysis()
: performs a redundancy
analysisAll functions require a cSEMResults
object.
Models are defined using lavaan syntax
with some slight modifications (see the Specifying
a model section on the cSEM-website). For
illustration we use the build-in and well-known
satisfaction
dataset.
require(cSEM)
## Note: The operator "<~" tells cSEM that the construct to its left is modeled
## as a composite.
## The operator "=~" tells cSEM that the construct to its left is modeled
## as a common factor.
## The operator "~" tells cSEM which are the dependent (left-hand side) and
## independent variables (right-hand side).
<- "
model # Structural model
EXPE ~ IMAG
QUAL ~ EXPE
VAL ~ EXPE + QUAL
SAT ~ IMAG + EXPE + QUAL + VAL
LOY ~ IMAG + SAT
# Composite model
IMAG <~ imag1 + imag2 + imag3
EXPE <~ expe1 + expe2 + expe3
QUAL <~ qual1 + qual2 + qual3 + qual4 + qual5
VAL <~ val1 + val2 + val3
# Reflective measurement model
SAT =~ sat1 + sat2 + sat3 + sat4
LOY =~ loy1 + loy2 + loy3 + loy4
"
The estimation is conducted using the csem()
function.
# Estimate using defaults
<- csem(.data = satisfaction, .model = model)
res res
## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
## Estimation was successful.
##
## The result is a list of class cSEMResults with list elements:
##
## - Estimates
## - Information
##
## To get an overview or help type:
##
## - ?cSEMResults
## - str(<object-name>)
## - listviewer::jsondedit(<object-name>, mode = 'view')
##
## If you wish to access the list elements directly type e.g.
##
## - <object-name>$Estimates
##
## Available postestimation commands:
##
## - assess(<object-name>)
## - infer(<object-name)
## - predict(<object-name>)
## - summarize(<object-name>)
## - verify(<object-name>)
## ________________________________________________________________________________
This is equal to:
csem(
.data = satisfaction,
.model = model,
.approach_cor_robust = "none",
.approach_nl = "sequential",
.approach_paths = "OLS",
.approach_weights = "PLS-PM",
.conv_criterion = "diff_absolute",
.disattenuate = TRUE,
.dominant_indicators = NULL,
.estimate_structural = TRUE,
.id = NULL,
.iter_max = 100,
.normality = FALSE,
.PLS_approach_cf = "dist_squared_euclid",
.PLS_ignore_structural_model = FALSE,
.PLS_modes = NULL,
.PLS_weight_scheme_inner = "path",
.reliabilities = NULL,
.starting_values = NULL,
.tolerance = 1e-05,
.resample_method = "none",
.resample_method2 = "none",
.R = 499,
.R2 = 199,
.handle_inadmissibles = "drop",
.user_funs = NULL,
.eval_plan = "sequential",
.seed = NULL,
.sign_change_option = "none"
)
The result is always a named list of class
cSEMResults
.
To access list elements use $
:
$Estimates$Loading_estimates
res$Information$Model res
A useful tool to examine a list is the listviewer
package. If you are new to cSEM
this might be a good
way to familiarize yourself with the structure of a
cSEMResults
object.
::jsonedit(res, mode = "view") # requires the listviewer package. listviewer
Apply postestimation functions:
## Get a summary
summarize(res)
## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
## General information:
## ------------------------
## Estimation status = Ok
## Number of observations = 250
## Weight estimator = PLS-PM
## Inner weighting scheme = "path"
## Type of indicator correlation = Pearson
## Path model estimator = OLS
## Second-order approach = NA
## Type of path model = Linear
## Disattenuated = Yes (PLSc)
##
## Construct details:
## ------------------
## Name Modeled as Order Mode
##
## IMAG Composite First order "modeB"
## EXPE Composite First order "modeB"
## QUAL Composite First order "modeB"
## VAL Composite First order "modeB"
## SAT Common factor First order "modeA"
## LOY Common factor First order "modeA"
##
## ----------------------------------- Estimates ----------------------------------
##
## Estimated path coefficients:
## ============================
## Path Estimate Std. error t-stat. p-value
## EXPE ~ IMAG 0.4714 NA NA NA
## QUAL ~ EXPE 0.8344 NA NA NA
## VAL ~ EXPE 0.0457 NA NA NA
## VAL ~ QUAL 0.7013 NA NA NA
## SAT ~ IMAG 0.2450 NA NA NA
## SAT ~ EXPE -0.0172 NA NA NA
## SAT ~ QUAL 0.2215 NA NA NA
## SAT ~ VAL 0.5270 NA NA NA
## LOY ~ IMAG 0.1819 NA NA NA
## LOY ~ SAT 0.6283 NA NA NA
##
## Estimated loadings:
## ===================
## Loading Estimate Std. error t-stat. p-value
## IMAG =~ imag1 0.6306 NA NA NA
## IMAG =~ imag2 0.9246 NA NA NA
## IMAG =~ imag3 0.9577 NA NA NA
## EXPE =~ expe1 0.7525 NA NA NA
## EXPE =~ expe2 0.9348 NA NA NA
## EXPE =~ expe3 0.7295 NA NA NA
## QUAL =~ qual1 0.7861 NA NA NA
## QUAL =~ qual2 0.9244 NA NA NA
## QUAL =~ qual3 0.7560 NA NA NA
## QUAL =~ qual4 0.7632 NA NA NA
## QUAL =~ qual5 0.7834 NA NA NA
## VAL =~ val1 0.9518 NA NA NA
## VAL =~ val2 0.8056 NA NA NA
## VAL =~ val3 0.6763 NA NA NA
## SAT =~ sat1 0.9243 NA NA NA
## SAT =~ sat2 0.8813 NA NA NA
## SAT =~ sat3 0.7127 NA NA NA
## SAT =~ sat4 0.7756 NA NA NA
## LOY =~ loy1 0.9097 NA NA NA
## LOY =~ loy2 0.5775 NA NA NA
## LOY =~ loy3 0.9043 NA NA NA
## LOY =~ loy4 0.4917 NA NA NA
##
## Estimated weights:
## ==================
## Weight Estimate Std. error t-stat. p-value
## IMAG <~ imag1 0.0156 NA NA NA
## IMAG <~ imag2 0.4473 NA NA NA
## IMAG <~ imag3 0.6020 NA NA NA
## EXPE <~ expe1 0.2946 NA NA NA
## EXPE <~ expe2 0.6473 NA NA NA
## EXPE <~ expe3 0.2374 NA NA NA
## QUAL <~ qual1 0.2370 NA NA NA
## QUAL <~ qual2 0.4712 NA NA NA
## QUAL <~ qual3 0.1831 NA NA NA
## QUAL <~ qual4 0.1037 NA NA NA
## QUAL <~ qual5 0.2049 NA NA NA
## VAL <~ val1 0.7163 NA NA NA
## VAL <~ val2 0.2202 NA NA NA
## VAL <~ val3 0.2082 NA NA NA
## SAT <~ sat1 0.3209 NA NA NA
## SAT <~ sat2 0.3059 NA NA NA
## SAT <~ sat3 0.2474 NA NA NA
## SAT <~ sat4 0.2692 NA NA NA
## LOY <~ loy1 0.3834 NA NA NA
## LOY <~ loy2 0.2434 NA NA NA
## LOY <~ loy3 0.3812 NA NA NA
## LOY <~ loy4 0.2073 NA NA NA
##
## Estimated indicator correlations:
## =================================
## Correlation Estimate Std. error t-stat. p-value
## imag1 ~~ imag2 0.6437 NA NA NA
## imag1 ~~ imag3 0.5433 NA NA NA
## imag2 ~~ imag3 0.7761 NA NA NA
## expe1 ~~ expe2 0.5353 NA NA NA
## expe1 ~~ expe3 0.4694 NA NA NA
## expe2 ~~ expe3 0.5467 NA NA NA
## qual1 ~~ qual2 0.6053 NA NA NA
## qual1 ~~ qual3 0.5406 NA NA NA
## qual1 ~~ qual4 0.5662 NA NA NA
## qual1 ~~ qual5 0.5180 NA NA NA
## qual2 ~~ qual3 0.6187 NA NA NA
## qual2 ~~ qual4 0.6517 NA NA NA
## qual2 ~~ qual5 0.6291 NA NA NA
## qual3 ~~ qual4 0.4752 NA NA NA
## qual3 ~~ qual5 0.5074 NA NA NA
## qual4 ~~ qual5 0.6402 NA NA NA
## val1 ~~ val2 0.6344 NA NA NA
## val1 ~~ val3 0.4602 NA NA NA
## val2 ~~ val3 0.6288 NA NA NA
##
## ------------------------------------ Effects -----------------------------------
##
## Estimated total effects:
## ========================
## Total effect Estimate Std. error t-stat. p-value
## EXPE ~ IMAG 0.4714 NA NA NA
## QUAL ~ IMAG 0.3933 NA NA NA
## QUAL ~ EXPE 0.8344 NA NA NA
## VAL ~ IMAG 0.2974 NA NA NA
## VAL ~ EXPE 0.6309 NA NA NA
## VAL ~ QUAL 0.7013 NA NA NA
## SAT ~ IMAG 0.4807 NA NA NA
## SAT ~ EXPE 0.5001 NA NA NA
## SAT ~ QUAL 0.5911 NA NA NA
## SAT ~ VAL 0.5270 NA NA NA
## LOY ~ IMAG 0.4840 NA NA NA
## LOY ~ EXPE 0.3142 NA NA NA
## LOY ~ QUAL 0.3714 NA NA NA
## LOY ~ VAL 0.3311 NA NA NA
## LOY ~ SAT 0.6283 NA NA NA
##
## Estimated indirect effects:
## ===========================
## Indirect effect Estimate Std. error t-stat. p-value
## QUAL ~ IMAG 0.3933 NA NA NA
## VAL ~ IMAG 0.2974 NA NA NA
## VAL ~ EXPE 0.5852 NA NA NA
## SAT ~ IMAG 0.2357 NA NA NA
## SAT ~ EXPE 0.5173 NA NA NA
## SAT ~ QUAL 0.3696 NA NA NA
## LOY ~ IMAG 0.3020 NA NA NA
## LOY ~ EXPE 0.3142 NA NA NA
## LOY ~ QUAL 0.3714 NA NA NA
## LOY ~ VAL 0.3311 NA NA NA
## ________________________________________________________________________________
## Verify admissibility of the results
verify(res)
## ________________________________________________________________________________
##
## Verify admissibility:
##
## admissible
##
## Details:
##
## Code Status Description
## 1 ok Convergence achieved
## 2 ok All absolute standardized loading estimates <= 1
## 3 ok Construct VCV is positive semi-definite
## 4 ok All reliability estimates <= 1
## 5 ok Model-implied indicator VCV is positive semi-definite
## ________________________________________________________________________________
## Test overall model fit
testOMF(res)
## ________________________________________________________________________________
## --------- Test for overall model fit based on Beran & Srivastava (1985) --------
##
## Null hypothesis:
##
## ┌──────────────────────────────────────────────────────────────────┐
## │ │
## │ H0: The model-implied indicator covariance matrix equals the │
## │ population indicator covariance matrix. │
## │ │
## └──────────────────────────────────────────────────────────────────┘
##
## Test statistic and critical value:
##
## Critical value
## Distance measure Test statistic 95%
## dG 0.6493 0.3199
## SRMR 0.0940 0.0518
## dL 2.2340 0.6776
## dML 2.9219 1.5557
##
##
## Decision:
##
## Significance level
## Distance measure 95%
## dG reject
## SRMR reject
## dL reject
## dML reject
##
## Additional information:
##
## Out of 499 bootstrap replications 468 are admissible.
## See ?verify() for what constitutes an inadmissible result.
##
## The seed used was: -464649022
## ________________________________________________________________________________
## Assess the model
assess(res)
## ________________________________________________________________________________
##
## Construct AVE R2 R2_adj
## SAT 0.6851 0.7624 0.7585
## LOY 0.5552 0.5868 0.5834
## EXPE NA 0.2222 0.2190
## QUAL NA 0.6963 0.6951
## VAL NA 0.5474 0.5438
##
## -------------- Common (internal consistency) reliability estimates -------------
##
## Construct Cronbachs_alpha Joereskogs_rho Dijkstra-Henselers_rho_A
## SAT 0.8940 0.8960 0.9051
## LOY 0.8194 0.8237 0.8761
##
## ----------- Alternative (internal consistency) reliability estimates -----------
##
## Construct RhoC RhoC_mm RhoC_weighted
## SAT 0.8960 0.8938 0.9051
## LOY 0.8237 0.8011 0.8761
##
## Construct RhoC_weighted_mm RhoT RhoT_weighted
## SAT 0.9051 0.8940 0.8869
## LOY 0.8761 0.8194 0.7850
##
## --------------------------- Distance and fit measures --------------------------
##
## Geodesic distance = 0.6493432
## Squared Euclidean distance = 2.23402
## ML distance = 2.921932
##
## Chi_square = 727.5611
## Chi_square_df = 3.954137
## CFI = 0.8598825
## CN = 75.14588
## GFI = 0.7280612
## IFI = 0.8615598
## NFI = 0.8229918
## NNFI = 0.8240917
## RMSEA = 0.108922
## RMS_theta = 0.05069299
## SRMR = 0.09396871
##
## Degrees of freedom = 184
##
## --------------------------- Model selection criteria ---------------------------
##
## Construct AIC AICc AICu
## EXPE -59.8152 192.2824 -57.8072
## QUAL -294.9343 -42.8367 -292.9263
## VAL -193.2127 58.9506 -190.1945
## SAT -350.2874 -97.9418 -345.2368
## LOY -215.9322 36.2311 -212.9141
##
## Construct BIC FPE GM
## EXPE -52.7723 0.7872 259.8087
## QUAL -287.8914 0.3074 271.8568
## VAL -182.6483 0.4617 312.7010
## SAT -332.6801 0.2463 278.2973
## LOY -205.3678 0.4216 291.0665
##
## Construct HQ HQc Mallows_Cp
## EXPE -56.9806 -56.8695 2.7658
## QUAL -292.0997 -291.9886 14.8139
## VAL -188.9608 -188.7516 52.1366
## SAT -343.2010 -342.7088 10.6900
## LOY -211.6804 -211.4711 30.5022
##
## ----------------------- Variance inflation factors (VIFs) ----------------------
##
## Dependent construct: 'VAL'
##
## Independent construct VIF value
## EXPE 3.2928
## QUAL 3.2928
##
## Dependent construct: 'SAT'
##
## Independent construct VIF value
## EXPE 3.2985
## QUAL 4.4151
## IMAG 1.7280
## VAL 2.6726
##
## Dependent construct: 'LOY'
##
## Independent construct VIF value
## IMAG 1.9345
## SAT 1.9345
##
## -------------- Variance inflation factors (VIFs) for modeB weights -------------
##
## Construct: 'IMAG'
##
## Weight VIF value
## imag1 1.7215
## imag2 3.0515
## imag3 2.5356
##
## Construct: 'EXPE'
##
## Weight VIF value
## expe1 1.4949
## expe2 1.6623
## expe3 1.5212
##
## Construct: 'QUAL'
##
## Weight VIF value
## qual1 1.8401
## qual2 2.5005
## qual3 1.7796
## qual4 2.1557
## qual5 2.0206
##
## Construct: 'VAL'
##
## Weight VIF value
## val1 1.6912
## val2 2.2049
## val3 1.6714
##
## -------------------------- Effect sizes (Cohen's f^2) --------------------------
##
## Dependent construct: 'EXPE'
##
## Independent construct f^2
## IMAG 0.2856
##
## Dependent construct: 'QUAL'
##
## Independent construct f^2
## EXPE 2.2928
##
## Dependent construct: 'VAL'
##
## Independent construct f^2
## EXPE 0.0014
## QUAL 0.3301
##
## Dependent construct: 'SAT'
##
## Independent construct f^2
## IMAG 0.1462
## EXPE 0.0004
## QUAL 0.0468
## VAL 0.4373
##
## Dependent construct: 'LOY'
##
## Independent construct f^2
## IMAG 0.0414
## SAT 0.4938
##
## ----------------------- Discriminant validity assessment -----------------------
##
## Heterotrait-monotrait ratio of correlations matrix (HTMT matrix)
##
## SAT LOY
## SAT 1.0000000 0
## LOY 0.7432489 1
##
##
## Advanced heterotrait-monotrait ratio of correlations matrix (HTMT2 matrix)
##
## SAT LOY
## SAT 1.0000000 0
## LOY 0.7140046 1
##
##
## Fornell-Larcker matrix
##
## SAT LOY
## SAT 0.6851491 0.5696460
## LOY 0.5696460 0.5551718
##
##
## ------------------------------------ Effects -----------------------------------
##
## Estimated total effects:
## ========================
## Total effect Estimate Std. error t-stat. p-value
## EXPE ~ IMAG 0.4714 NA NA NA
## QUAL ~ IMAG 0.3933 NA NA NA
## QUAL ~ EXPE 0.8344 NA NA NA
## VAL ~ IMAG 0.2974 NA NA NA
## VAL ~ EXPE 0.6309 NA NA NA
## VAL ~ QUAL 0.7013 NA NA NA
## SAT ~ IMAG 0.4807 NA NA NA
## SAT ~ EXPE 0.5001 NA NA NA
## SAT ~ QUAL 0.5911 NA NA NA
## SAT ~ VAL 0.5270 NA NA NA
## LOY ~ IMAG 0.4840 NA NA NA
## LOY ~ EXPE 0.3142 NA NA NA
## LOY ~ QUAL 0.3714 NA NA NA
## LOY ~ VAL 0.3311 NA NA NA
## LOY ~ SAT 0.6283 NA NA NA
##
## Estimated indirect effects:
## ===========================
## Indirect effect Estimate Std. error t-stat. p-value
## QUAL ~ IMAG 0.3933 NA NA NA
## VAL ~ IMAG 0.2974 NA NA NA
## VAL ~ EXPE 0.5852 NA NA NA
## SAT ~ IMAG 0.2357 NA NA NA
## SAT ~ EXPE 0.5173 NA NA NA
## SAT ~ QUAL 0.3696 NA NA NA
## LOY ~ IMAG 0.3020 NA NA NA
## LOY ~ EXPE 0.3142 NA NA NA
## LOY ~ QUAL 0.3714 NA NA NA
## LOY ~ VAL 0.3311 NA NA NA
## ________________________________________________________________________________
## Predict indicator scores of endogenous constructs
predict(res)
## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
## Number of obs. training = 225
## Number of obs. test = 25
## Number of cv folds = 10
## Number of repetitions = 1
## Handle inadmissibles = stop
## Estimator target = 'PLS-PM'
## Estimator benchmark = 'lm'
## Disattenuation target = 'TRUE'
## Disattenuation benchmark = 'FALSE'
##
## ------------------------------ Prediction metrics ------------------------------
##
##
## Name MAE target MAE benchmark RMSE target RMSE benchmark Q2_predict
## expe1 1.4636 1.5861 1.9173 2.0928 0.0492
## expe2 1.4183 1.4928 1.9404 2.0247 0.1954
## expe3 1.6283 1.7381 2.1238 2.2202 0.1250
## qual1 1.4801 1.5542 1.9341 2.0550 0.1145
## qual2 1.5918 1.5564 2.0624 2.0859 0.2094
## qual3 1.7337 1.7504 2.2261 2.2952 0.1197
## qual4 1.2387 1.1993 1.6026 1.6525 0.2256
## qual5 1.5191 1.5114 1.9505 1.9670 0.1840
## val1 1.4563 1.3747 1.8868 1.7819 0.2410
## val2 1.2320 1.2238 1.6538 1.7264 0.1702
## val3 1.4847 1.3894 1.9731 1.9326 0.1471
## sat1 1.2529 1.2369 1.6558 1.6316 0.3348
## sat2 1.2406 1.2109 1.6564 1.6407 0.2983
## sat3 1.3463 1.3083 1.6848 1.7557 0.2059
## sat4 1.3176 1.2601 1.6650 1.6322 0.2825
## loy1 1.6933 1.6679 2.2309 2.2317 0.2723
## loy2 1.4846 1.4868 1.9080 1.9831 0.1343
## loy3 1.7210 1.6872 2.3015 2.2909 0.2698
## loy4 1.6908 1.6881 2.1798 2.3134 0.0830
## ________________________________________________________________________________
By default no inferential statistics are calculated since most
composite-based estimators have no closed-form expressions for standard
errors. Resampling is used instead. cSEM
mostly relies on
the bootstrap
procedure (although jackknife
is
implemented as well) to estimate standard errors, test statistics, and
critical quantiles.
cSEM
offers two ways for resampling:
.resample_method
in csem()
to
"jackknife"
or "bootstrap"
and subsequently
using postestimation functions summarize()
or
infer()
.cSEMResults
object to resamplecSEMResults()
and subsequently using
postestimation functions summarize()
or
infer()
.# Setting `.resample_method`
<- csem(.data = satisfaction, .model = model, .resample_method = "bootstrap")
b1 # Using resamplecSEMResults()
<- resamplecSEMResults(res) b2
The summarize()
function reports the inferential
statistics:
summarize(b1)
## ________________________________________________________________________________
## ----------------------------------- Overview -----------------------------------
##
## General information:
## ------------------------
## Estimation status = Ok
## Number of observations = 250
## Weight estimator = PLS-PM
## Inner weighting scheme = "path"
## Type of indicator correlation = Pearson
## Path model estimator = OLS
## Second-order approach = NA
## Type of path model = Linear
## Disattenuated = Yes (PLSc)
##
## Resample information:
## ---------------------
## Resample method = "bootstrap"
## Number of resamples = 499
## Number of admissible results = 482
## Approach to handle inadmissibles = "drop"
## Sign change option = "none"
## Random seed = 1326272388
##
## Construct details:
## ------------------
## Name Modeled as Order Mode
##
## IMAG Composite First order "modeB"
## EXPE Composite First order "modeB"
## QUAL Composite First order "modeB"
## VAL Composite First order "modeB"
## SAT Common factor First order "modeA"
## LOY Common factor First order "modeA"
##
## ----------------------------------- Estimates ----------------------------------
##
## Estimated path coefficients:
## ============================
## CI_percentile
## Path Estimate Std. error t-stat. p-value 95%
## EXPE ~ IMAG 0.4714 0.0613 7.6922 0.0000 [ 0.3391; 0.5903 ]
## QUAL ~ EXPE 0.8344 0.0223 37.3800 0.0000 [ 0.7881; 0.8753 ]
## VAL ~ EXPE 0.0457 0.0842 0.5432 0.5870 [-0.1063; 0.2152 ]
## VAL ~ QUAL 0.7013 0.0840 8.3475 0.0000 [ 0.5285; 0.8503 ]
## SAT ~ IMAG 0.2450 0.0542 4.5235 0.0000 [ 0.1421; 0.3475 ]
## SAT ~ EXPE -0.0172 0.0761 -0.2265 0.8208 [-0.1707; 0.1277 ]
## SAT ~ QUAL 0.2215 0.1085 2.0426 0.0411 [ 0.0390; 0.4510 ]
## SAT ~ VAL 0.5270 0.0901 5.8505 0.0000 [ 0.3501; 0.6904 ]
## LOY ~ IMAG 0.1819 0.0802 2.2675 0.0234 [ 0.0330; 0.3350 ]
## LOY ~ SAT 0.6283 0.0806 7.7916 0.0000 [ 0.4737; 0.7962 ]
##
## Estimated loadings:
## ===================
## CI_percentile
## Loading Estimate Std. error t-stat. p-value 95%
## IMAG =~ imag1 0.6306 0.1008 6.2566 0.0000 [ 0.4187; 0.8201 ]
## IMAG =~ imag2 0.9246 0.0396 23.3305 0.0000 [ 0.8217; 0.9769 ]
## IMAG =~ imag3 0.9577 0.0290 32.9821 0.0000 [ 0.8775; 0.9926 ]
## EXPE =~ expe1 0.7525 0.0788 9.5530 0.0000 [ 0.5794; 0.8728 ]
## EXPE =~ expe2 0.9348 0.0270 34.5866 0.0000 [ 0.8659; 0.9724 ]
## EXPE =~ expe3 0.7295 0.0713 10.2253 0.0000 [ 0.5887; 0.8494 ]
## QUAL =~ qual1 0.7861 0.0680 11.5650 0.0000 [ 0.6183; 0.8861 ]
## QUAL =~ qual2 0.9244 0.0217 42.5752 0.0000 [ 0.8645; 0.9543 ]
## QUAL =~ qual3 0.7560 0.0581 13.0115 0.0000 [ 0.6186; 0.8535 ]
## QUAL =~ qual4 0.7632 0.0518 14.7319 0.0000 [ 0.6384; 0.8486 ]
## QUAL =~ qual5 0.7834 0.0488 16.0554 0.0000 [ 0.6749; 0.8587 ]
## VAL =~ val1 0.9518 0.0228 41.7463 0.0000 [ 0.8998; 0.9830 ]
## VAL =~ val2 0.8056 0.0635 12.6818 0.0000 [ 0.6695; 0.9076 ]
## VAL =~ val3 0.6763 0.0738 9.1579 0.0000 [ 0.5191; 0.8028 ]
## SAT =~ sat1 0.9243 0.0227 40.7096 0.0000 [ 0.8759; 0.9624 ]
## SAT =~ sat2 0.8813 0.0280 31.5064 0.0000 [ 0.8192; 0.9281 ]
## SAT =~ sat3 0.7127 0.0521 13.6786 0.0000 [ 0.5993; 0.8070 ]
## SAT =~ sat4 0.7756 0.0485 16.0069 0.0000 [ 0.6761; 0.8575 ]
## LOY =~ loy1 0.9097 0.0505 17.9971 0.0000 [ 0.7932; 0.9796 ]
## LOY =~ loy2 0.5775 0.0862 6.6979 0.0000 [ 0.3940; 0.7281 ]
## LOY =~ loy3 0.9043 0.0422 21.4115 0.0000 [ 0.8147; 0.9772 ]
## LOY =~ loy4 0.4917 0.0947 5.1946 0.0000 [ 0.3163; 0.6824 ]
##
## Estimated weights:
## ==================
## CI_percentile
## Weight Estimate Std. error t-stat. p-value 95%
## IMAG <~ imag1 0.0156 0.1199 0.1305 0.8962 [-0.2377; 0.2731 ]
## IMAG <~ imag2 0.4473 0.1484 3.0138 0.0026 [ 0.1282; 0.7429 ]
## IMAG <~ imag3 0.6020 0.1404 4.2873 0.0000 [ 0.3127; 0.8576 ]
## EXPE <~ expe1 0.2946 0.1139 2.5855 0.0097 [ 0.0645; 0.5052 ]
## EXPE <~ expe2 0.6473 0.0844 7.6655 0.0000 [ 0.4627; 0.7903 ]
## EXPE <~ expe3 0.2374 0.0952 2.4928 0.0127 [ 0.0400; 0.4311 ]
## QUAL <~ qual1 0.2370 0.0900 2.6349 0.0084 [ 0.0713; 0.4184 ]
## QUAL <~ qual2 0.4712 0.0810 5.8162 0.0000 [ 0.3034; 0.6182 ]
## QUAL <~ qual3 0.1831 0.0783 2.3393 0.0193 [ 0.0049; 0.3223 ]
## QUAL <~ qual4 0.1037 0.0604 1.7161 0.0861 [-0.0055; 0.2228 ]
## QUAL <~ qual5 0.2049 0.0665 3.0806 0.0021 [ 0.0699; 0.3305 ]
## VAL <~ val1 0.7163 0.0944 7.5851 0.0000 [ 0.5330; 0.8730 ]
## VAL <~ val2 0.2202 0.0922 2.3884 0.0169 [ 0.0471; 0.4119 ]
## VAL <~ val3 0.2082 0.0609 3.4176 0.0006 [ 0.0868; 0.3222 ]
## SAT <~ sat1 0.3209 0.0147 21.7866 0.0000 [ 0.2969; 0.3549 ]
## SAT <~ sat2 0.3059 0.0141 21.7153 0.0000 [ 0.2825; 0.3380 ]
## SAT <~ sat3 0.2474 0.0110 22.4943 0.0000 [ 0.2246; 0.2691 ]
## SAT <~ sat4 0.2692 0.0117 22.9935 0.0000 [ 0.2474; 0.2912 ]
## LOY <~ loy1 0.3834 0.0266 14.4290 0.0000 [ 0.3278; 0.4325 ]
## LOY <~ loy2 0.2434 0.0305 7.9881 0.0000 [ 0.1770; 0.2956 ]
## LOY <~ loy3 0.3812 0.0271 14.0831 0.0000 [ 0.3286; 0.4345 ]
## LOY <~ loy4 0.2073 0.0348 5.9602 0.0000 [ 0.1406; 0.2759 ]
##
## Estimated indicator correlations:
## =================================
## CI_percentile
## Correlation Estimate Std. error t-stat. p-value 95%
## imag1 ~~ imag2 0.6437 0.0638 10.0911 0.0000 [ 0.5133; 0.7530 ]
## imag1 ~~ imag3 0.5433 0.0696 7.8079 0.0000 [ 0.3992; 0.6757 ]
## imag2 ~~ imag3 0.7761 0.0387 20.0364 0.0000 [ 0.6848; 0.8386 ]
## expe1 ~~ expe2 0.5353 0.0609 8.7881 0.0000 [ 0.4153; 0.6509 ]
## expe1 ~~ expe3 0.4694 0.0630 7.4477 0.0000 [ 0.3493; 0.5916 ]
## expe2 ~~ expe3 0.5467 0.0593 9.2256 0.0000 [ 0.4258; 0.6619 ]
## qual1 ~~ qual2 0.6053 0.0552 10.9619 0.0000 [ 0.4905; 0.6955 ]
## qual1 ~~ qual3 0.5406 0.0609 8.8784 0.0000 [ 0.4221; 0.6467 ]
## qual1 ~~ qual4 0.5662 0.0692 8.1779 0.0000 [ 0.4357; 0.6856 ]
## qual1 ~~ qual5 0.5180 0.0677 7.6494 0.0000 [ 0.3866; 0.6416 ]
## qual2 ~~ qual3 0.6187 0.0520 11.8872 0.0000 [ 0.5115; 0.7056 ]
## qual2 ~~ qual4 0.6517 0.0589 11.0576 0.0000 [ 0.5233; 0.7495 ]
## qual2 ~~ qual5 0.6291 0.0563 11.1649 0.0000 [ 0.5124; 0.7280 ]
## qual3 ~~ qual4 0.4752 0.0644 7.3785 0.0000 [ 0.3330; 0.5906 ]
## qual3 ~~ qual5 0.5074 0.0617 8.2210 0.0000 [ 0.3895; 0.6231 ]
## qual4 ~~ qual5 0.6402 0.0559 11.4491 0.0000 [ 0.5110; 0.7369 ]
## val1 ~~ val2 0.6344 0.0553 11.4678 0.0000 [ 0.5184; 0.7310 ]
## val1 ~~ val3 0.4602 0.0710 6.4849 0.0000 [ 0.3241; 0.5978 ]
## val2 ~~ val3 0.6288 0.0626 10.0421 0.0000 [ 0.4920; 0.7419 ]
##
## ------------------------------------ Effects -----------------------------------
##
## Estimated total effects:
## ========================
## CI_percentile
## Total effect Estimate Std. error t-stat. p-value 95%
## EXPE ~ IMAG 0.4714 0.0613 7.6922 0.0000 [ 0.3391; 0.5903 ]
## QUAL ~ IMAG 0.3933 0.0566 6.9468 0.0000 [ 0.2795; 0.5032 ]
## QUAL ~ EXPE 0.8344 0.0223 37.3800 0.0000 [ 0.7881; 0.8753 ]
## VAL ~ IMAG 0.2974 0.0559 5.3174 0.0000 [ 0.1969; 0.4162 ]
## VAL ~ EXPE 0.6309 0.0479 13.1757 0.0000 [ 0.5289; 0.7152 ]
## VAL ~ QUAL 0.7013 0.0840 8.3475 0.0000 [ 0.5285; 0.8503 ]
## SAT ~ IMAG 0.4807 0.0631 7.6191 0.0000 [ 0.3523; 0.5963 ]
## SAT ~ EXPE 0.5001 0.0582 8.5879 0.0000 [ 0.3922; 0.6053 ]
## SAT ~ QUAL 0.5911 0.0993 5.9525 0.0000 [ 0.3961; 0.7878 ]
## SAT ~ VAL 0.5270 0.0901 5.8505 0.0000 [ 0.3501; 0.6904 ]
## LOY ~ IMAG 0.4840 0.0655 7.3841 0.0000 [ 0.3637; 0.6041 ]
## LOY ~ EXPE 0.3142 0.0546 5.7573 0.0000 [ 0.2162; 0.4344 ]
## LOY ~ QUAL 0.3714 0.0862 4.3085 0.0000 [ 0.2247; 0.5653 ]
## LOY ~ VAL 0.3311 0.0757 4.3717 0.0000 [ 0.2043; 0.4768 ]
## LOY ~ SAT 0.6283 0.0806 7.7916 0.0000 [ 0.4737; 0.7962 ]
##
## Estimated indirect effects:
## ===========================
## CI_percentile
## Indirect effect Estimate Std. error t-stat. p-value 95%
## QUAL ~ IMAG 0.3933 0.0566 6.9468 0.0000 [ 0.2795; 0.5032 ]
## VAL ~ IMAG 0.2974 0.0559 5.3174 0.0000 [ 0.1969; 0.4162 ]
## VAL ~ EXPE 0.5852 0.0722 8.1051 0.0000 [ 0.4417; 0.7187 ]
## SAT ~ IMAG 0.2357 0.0464 5.0853 0.0000 [ 0.1541; 0.3343 ]
## SAT ~ EXPE 0.5173 0.0701 7.3833 0.0000 [ 0.3806; 0.6454 ]
## SAT ~ QUAL 0.3696 0.0648 5.7004 0.0000 [ 0.2340; 0.4930 ]
## LOY ~ IMAG 0.3020 0.0559 5.3991 0.0000 [ 0.2092; 0.4286 ]
## LOY ~ EXPE 0.3142 0.0546 5.7573 0.0000 [ 0.2162; 0.4344 ]
## LOY ~ QUAL 0.3714 0.0862 4.3085 0.0000 [ 0.2247; 0.5653 ]
## LOY ~ VAL 0.3311 0.0757 4.3717 0.0000 [ 0.2043; 0.4768 ]
## ________________________________________________________________________________
Several bootstrap-based confidence intervals are implemented, see
?infer()
:
infer(b1, .quantity = c("CI_standard_z", "CI_percentile")) # no print method yet
Both bootstrap and jackknife resampling support platform-independent
multiprocessing as well as setting random seeds via the future framework.
For multiprocessing simply set .eval_plan = "multisession"
in which case the maximum number of available cores is used if not on
Windows. On Windows as many separate R instances are opened in the
background as there are cores available instead. Note that this
naturally has some overhead so for a small number of resamples
multiprocessing will not always be faster compared to sequential (single
core) processing (the default). Seeds are set via the .seed
argument.
<- csem(
b .data = satisfaction,
.model = model,
.resample_method = "bootstrap",
.R = 999,
.seed = 98234,
.eval_plan = "multisession")