The goal of the climate R package is to automatize downloading of meteorological and hydrological data from publicly available repositories:
The climate package consists of ten main functions - three for meteorological data, one for hydrological data and six auxiliary functions and datasets:
meteo_ogimet() - Downloading hourly and daily meteorological data from the SYNOP stations available in the ogimet.com collection. Any meteorological (aka SYNOP) station working under the World Meteorological Organizaton (WMO) framework after year 2000 should be accessible.
meteo_imgw() - Downloading hourly, daily, and
monthly meteorological data from the SYNOP/CLIMATE/PRECIP stations
available in the dane.imgw.pl collection. It is a wrapper for
meteo_monthly()
, meteo_daily()
, and
meteo_hourly()
meteo_noaa_hourly() - Downloading hourly NOAA Integrated Surface Hourly (ISH) meteorological data - Some stations have > 100 years long history of observations
sounding_wyoming() - Downloading measurements of the vertical profile of atmosphere (aka rawinsonde data)
hydro_annual()
, hydro_monthly()
, and
hydro_daily()
Examples shows application of climate package with additional use of tools that help with processing the data to increase legible of downloaded data.
Finding a 50 nearest meteorological stations for a given coordinates in a given country(ies):
library(climate)
ns = nearest_stations_ogimet(country = c("United Kingdom", "France"),
point = c(-3, 50),
no_of_stations = 50,
add_map = TRUE)
#> /var/folders/lw/3fnnk87n4q1dkl35s2_p24h80000gn/T//RtmpfIaFCc/file4e538571fd5
#> /var/folders/lw/3fnnk87n4q1dkl35s2_p24h80000gn/T//RtmpfIaFCc/file4e55feaf5d8
wmo_id | station_names | lon | lat | alt | distance | |
---|---|---|---|---|---|---|
125 | 03894 | Guernsey Airport | -2.583345 | 49.41667 | 102 | 80.42783 |
119 | 03857 | Isle Of Portland | -2.450009 | 50.51668 | 52 | 84.66540 |
117 | 03844 | Exeter Airport No2 | -3.400008 | 50.73335 | 31 | 93.72323 |
116 | 03840 | Dunkeswell Aerodrome | -3.233338 | 50.85002 | 252 | 98.89712 |
118 | 03853 | Yeovilton | -2.633346 | 51.00000 | 23 | 119.50052 |
143 | 07020 | La Hague | -1.933352 | 49.71668 | 6 | 123.82404 |
126 | 03895 | Jersey Airport | -2.183337 | 49.20000 | 84 | 128.26450 |
115 | 03827 | Plymouth | -4.116669 | 50.35001 | 50 | 131.29669 |
127 | 03896 | Saint Helier | -2.100002 | 49.20000 | 54 | 135.10222 |
98 | 03710 | Liscombe | -3.600012 | 51.08333 | 348 | 138.94411 |
166 | 07117 | Ploumanac’H | -3.466676 | 48.81668 | 55 | 142.71600 |
167 | 07118 | Lannion | -3.466676 | 48.75001 | 88 | 149.69950 |
120 | 03862 | Bournemouth Airport | -1.833350 | 50.76668 | 12 | 156.62887 |
99 | 03716 | St. Athan | -3.433342 | 51.40001 | 50 | 164.42872 |
168 | 07120 | Saint-Brieuc | -2.850017 | 48.53334 | 138 | 165.41210 |
Summary of stations available in Ogimet repository for a selected country:
library(climate)
PL = stations_ogimet(country = "Poland", add_map = TRUE)
#> /var/folders/lw/3fnnk87n4q1dkl35s2_p24h80000gn/T//RtmpfIaFCc/file4e531395fec
wmo_id | station_names | lon | lat | alt |
---|---|---|---|---|
12001 | Petrobaltic Beta | 18.16667 | 55.46668 | 46 |
12100 | Kolobrzeg | 15.56668 | 54.16667 | 4 |
12105 | Koszalin | 16.15000 | 54.20000 | 33 |
12115 | Ustka | 16.85002 | 54.58335 | 3 |
12120 | Leba | 17.53334 | 54.75001 | 2 |
12125 | Lebork | 17.75002 | 54.55001 | 39 |
Downlading hourly meteorological data from Svalbard (Norway) for year 2016 using NOAA service
# downloading data with NOAA service:
df = meteo_noaa_hourly(station = "010080-99999", year = 2016)
# You can also download the same (but more granular) data with Ogimet.com (example for year 2016):
# df = meteo_ogimet(interval = "hourly",
# date = c("2016-01-01", "2016-12-31"),
# station = c("01008"))
date | year | month | day | hour | lon | lat | alt | t2m | dpt2m | ws | wd | slp | visibility | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2016-01-01 00:00:00 | 2016 | 1 | 1 | 0 | 15.467 | 78.25 | 29 | 5.0 | -1.6 | 5 | 200 | 1007.5 | 65000 |
3 | 2016-01-01 01:00:00 | 2016 | 1 | 1 | 1 | 15.467 | 78.25 | 29 | 5.2 | -1.7 | 3 | 180 | 1008.2 | NA |
5 | 2016-01-01 02:00:00 | 2016 | 1 | 1 | 2 | 15.467 | 78.25 | 29 | 4.6 | -1.2 | 6 | 170 | 1008.5 | NA |
7 | 2016-01-01 03:00:00 | 2016 | 1 | 1 | 3 | 15.467 | 78.25 | 29 | 4.3 | -0.9 | 5 | 190 | 1008.6 | 70001 |
9 | 2016-01-01 04:00:00 | 2016 | 1 | 1 | 4 | 15.467 | 78.25 | 29 | 3.7 | -1.0 | 5 | 160 | 1008.8 | NA |
11 | 2016-01-01 05:00:00 | 2016 | 1 | 1 | 5 | 15.467 | 78.25 | 29 | 3.2 | -1.0 | 4 | 150 | 1008.6 | NA |
Downloading atmospheric vertical profile (sounding) for Łeba, PL station:
profile_demo <- sounding_wyoming(wmo_id = 12120,
yy = 2000,
mm = 3,
dd = 23,
hh = 0)
df2 = profile_demo[[1]]
colnames(df2)[c(1, 3:4)] = c("PRESS", "TEMP", "DEWPT") # changing column names
PRESS | HGHT | TEMP | DEWPT | RELH | MIXR | DRCT | SKNT | THTA | THTE | THTV |
---|---|---|---|---|---|---|---|---|---|---|
1013 | 6 | 4.2 | 3.8 | 97 | 4.98 | 270 | 8 | 276.3 | 290.0 | 277.2 |
1009 | 37 | 2.4 | 2.3 | 99 | 4.50 | 285 | 12 | 274.9 | 287.2 | 275.6 |
1000 | 107 | 2.2 | 1.9 | 98 | 4.41 | 295 | 17 | 275.4 | 287.5 | 276.1 |
976 | 303 | 0.8 | -1.3 | 86 | 3.58 | 298 | 23 | 275.9 | 285.8 | 276.5 |
970 | 352 | 1.0 | -6.0 | 60 | 2.53 | 299 | 25 | 276.6 | 283.8 | 277.0 |
959 | 444 | 1.0 | -0.6 | 89 | 3.83 | 300 | 27 | 277.4 | 288.2 | 278.1 |
925 | 733 | -1.1 | -1.1 | 100 | 3.83 | 290 | 27 | 278.2 | 288.9 | 278.8 |
913 | 837 | -1.5 | -1.5 | 100 | 3.76 | 285 | 27 | 278.8 | 289.4 | 279.4 |
877 | 1157 | -2.9 | -2.9 | 100 | 3.54 | 288 | 29 | 280.6 | 290.6 | 281.2 |
850 | 1404 | -4.1 | -4.1 | 100 | 3.33 | 290 | 31 | 281.8 | 291.4 | 282.4 |
Preparing an annual summary of air temperature and precipitation using dplyr syntax for 10-years period (1991-2000)
library(climate)
df = meteo_imgw(interval = "monthly", rank = "synop", year = 1991:2000, station = "ŁEBA")
# please note that sometimes 2 names are used for the same station in different years
suppressMessages(library(dplyr))
df2 = dplyr::select(df, station:t2m_mean_mon, rr_monthly)
monthly_summary = df2 %>%
dplyr::group_by(mm) %>%
dplyr::summarise(tmax = mean(tmax_abs, na.rm = TRUE),
tmin = mean(tmin_abs, na.rm = TRUE),
tavg = mean(t2m_mean_mon, na.rm = TRUE),
precip = sum(rr_monthly) / n_distinct(yy))
monthly_summary = as.data.frame(t(monthly_summary[, c(5, 2, 3, 4)]))
monthly_summary = round(monthly_summary, 1)
colnames(monthly_summary) = month.abb
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
precip | 39.0 | 34.6 | 41.0 | 32.1 | 50.5 | 57.5 | 52.7 | 78.5 | 68.9 | 83.8 | 47.9 | 52.0 |
tmax | 8.1 | 9.1 | 13.6 | 22.6 | 25.6 | 29.6 | 29.6 | 28.5 | 22.7 | 18.4 | 11.6 | 8.8 |
tmin | -11.6 | -9.6 | -6.3 | -4.1 | 0.0 | 4.5 | 6.4 | 6.7 | 3.0 | -1.6 | -6.0 | -10.4 |
tavg | 0.5 | 0.7 | 2.7 | 6.8 | 10.6 | 14.4 | 16.9 | 17.0 | 13.2 | 8.8 | 3.7 | 0.9 |
Calculate the mean maximum value of the flow on the stations in each
year with dplyr’s summarise()
, and spread
data by year using tidyr’s spread()
to get
the annual means of maximum flow in the consecutive columns.
library(climate)
library(dplyr)
library(tidyr)
h = hydro_imgw(interval = "monthly", year = 2001:2002, coords = TRUE)
id | X | Y | station | riv_or_lake | hyy | idhyy | idex | H | Q | T | mm | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
18723 | 150210180 | 21.8335 | 50.88641 | ANNOPOL | Wisła (2) | 2001 | 1 | 1 | 214 | 172 | NA | 11 |
18724 | 150210180 | 21.8335 | 50.88641 | ANNOPOL | Wisła (2) | 2001 | 1 | 2 | 228 | 207 | NA | 11 |
18725 | 150210180 | 21.8335 | 50.88641 | ANNOPOL | Wisła (2) | 2001 | 1 | 3 | 250 | 272 | NA | 11 |
18726 | 150210180 | 21.8335 | 50.88641 | ANNOPOL | Wisła (2) | 2001 | 2 | 1 | 215 | 174 | NA | 12 |
18727 | 150210180 | 21.8335 | 50.88641 | ANNOPOL | Wisła (2) | 2001 | 2 | 2 | 225 | 201 | NA | 12 |
18728 | 150210180 | 21.8335 | 50.88641 | ANNOPOL | Wisła (2) | 2001 | 2 | 3 | 258 | 297 | NA | 12 |
h2 = h %>%
dplyr::filter(idex == 3) %>%
dplyr::select(id, station, X, Y, hyy, Q) %>%
dplyr::group_by(hyy, id, station, X, Y) %>%
dplyr::summarise(annual_mean_Q = round(mean(Q, na.rm = TRUE), 1)) %>%
tidyr::pivot_wider(names_from = hyy, values_from = annual_mean_Q)
#> `summarise()` has grouped output by 'hyy', 'id', 'station', 'X'. You can
#> override using the `.groups` argument.
knitr::kable(head(h2))
id | station | X | Y | 2001 | 2002 |
---|---|---|---|---|---|
149180010 | KRZYŻANOWICE | 18.28780 | 49.99301 | 200.5 | 147.4 |
149180020 | CHAŁUPKI | 18.32752 | 49.92127 | 174.7 | 96.7 |
149180040 | GOŁKOWICE | 18.49640 | 49.92579 | 4.5 | 2.0 |
149180050 | ZEBRZYDOWICE | 18.61326 | 49.88025 | 13.5 | 7.9 |
149180060 | CIESZYN | 18.62972 | 49.74616 | 57.2 | 57.7 |
149180070 | CIESZYN | 18.63137 | 49.74629 | NaN | NaN |
Ogimet.com, University of Wyoming, and Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB), National Oceanic & Atmospheric Administration (NOAA) - Earth System Research Laboratories - Global Monitoring Laboratory, Global Monitoring Division and Integrated Surface Hourly (NOAA ISH) are the sources of the data.
Contributions to this package are welcome. The preferred method of contribution is through a GitHub pull request. Feel also free to contact us by creating an issue.
To cite the climate
package in publications, please use
this paper:
Czernecki, B.; Głogowski, A.; Nowosad, J. Climate: An R Package to Access Free In-Situ Meteorological and Hydrological Datasets for Environmental Assessment. Sustainability 2020, 12, 394. https://doi.org/10.3390/su12010394”
LaTeX version can be obtained with:
library(climate)
citation("climate")