Backfill cohorts

Introduction

Backfilling cohorts are increasingly used in dose escalation studies, see Barnett et al. (2023). The idea is that
once a dose level has been tested and found to be safe, then while the dose escalation continues at higher
dose levels, additional patients can be enrolled at the lower dose levels to gather more data on safety and/or
efficacy. This is particularly useful in trials where patient recruitment is slow or when there is a need to
gather more information on lower dose levels for regulatory or clinical reasons.

Sometimes health authorities are asking to include the backfilling cohorts in the simulations to check
the operating characteristics (especially PMDA). In addition, it is useful to get more precise operating
characteristics for the overall trial by actually simulating the backfilling cohorts, when they are part of the
actual clinical trial design.

Hence, with crmPack it is now possible to include backfilling cohorts in the simulations. This vignette
illustrates how to do this.

Framework

Conceptually the backfilling details are part of the design of a trial. Therefore the details are included via a
dedicated slot backfill in the Design class. It contains an object of class Backfill, which captures these
details via the following slots:

e cohort_size: How large are the backfilling cohorts? Here an object of class CohortSize is used.

e total_size: What is the overall maximum number of patients across all backfill cohorts?

e opening: When can a backfill cohort be opened or recruited into? Here an object of a new Opening
rules class is used. These rules can be based on e.g. dose level, current highest/maximum safe dose,
efficacy responses, etc.

e recruitment: How fast can patients be recruited into backfill cohorts? Here an object of a new
Recruitment class is used. You can choose between immediate recruitment vs. a ratio compared to
active dose escalation cohort (e.g. when active cohort has 3 patients recruited then here only 1/3 so 1
patient per cycle to backfill cohorts).

e priority: When there are multiple open backfill cohorts, which one should be recruited into first?
Here a simple string is used to specify the priority rule (first “lowest” dose, first “highest” dose, or
“random”).

Additional parts of the backfill cohort framework comprise:

e The Data objects have a slot backfilled identifying whether each patient was backfilled or not, and
the slot response identifies whether each patient had a response (1) or not (0). When these are not
actively set by the user, then they default to no patients backfilled (all FALSE) and no response data
available (all NA).

e Some Stopping rules can optionally exclude backfill patients for assessing whether a trial can be stopped
or not. This is currently the case for the StoppingPatientsNearDose rule.

Examples
Standard components

We start with the standard components of a CRM design, which are not changed by the backfilling framework
- except that for the StoppingPatientsNearDose rule we can now choose whether to include backfill patients

or not.

library(crmPack)

#> Loading required package: ggplot2

#> Registered S3 method overwritten by 'crmPack':
#> method from

#> print.gtable gtabdble

#> Type crmPackHelp() to open help browser

#> Type crmPackEzample() to open example

Define the dose-grid.
emptydata <- Data(

doseGrid = c¢(0.1, 0.2, 0.5, 1, 3, 5, 10, 15, 20, 25, 40, 50, 60, 70, 80, 100)
)

Define the dose-tozicity model.

model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(5, -0.5, -0.5, 5), nrow = 2),
ref_dose = 56

Choose the rule for selecting the mext dose.
myNextBest <- NextBestNCRM(

target = c¢(0.2, 0.35),

overdose = ¢(0.35, 1),

max_overdose_prob = 0.25

Choose the rule for stopping.
myStoppingl <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(
target = c(0.2, 0.35),
prob = 0.5
)
myStopping3 <- StoppingMinPatients(nPatients = 40)
myStopping4 <- StoppingPatientsNearDose(nPatients = 10L, percentage = 30, include_backfill = FALSE)
myStopping <- (myStoppingl & myStopping2 & myStopping4) |
myStopping3 |
StoppingMissingDose ()

Choose the rule for dose increments.

myIncrements <- IncrementsRelative(
intervals = c(0, 20, 50),
increments = c(1, 0.67, 0.33)

No backfill cohorts

First we can define a design without backfill cohorts, which is the default behaviour when no backfill details
are specified:

design_no_backfill <- Design(
model = model,
nextBest = myNextBest,

stopping = myStopping,
increments = mylIncrements,
cohort_size = CohortSizeConst(3),
data = emptydata,
startingDose = 3

)

design_no_backfill@backfill

No backfill cohorts at all will be opened.

Note that this concise statement is produced by dedicated knit_print methods for the Backfill class,
which help with the consistent reporting of crmPack design details in vignettes and reports.

Simple backfill cohorts

Let’s continue with the simplest case of backfill cohorts. Here we define backfill cohorts of size 3 patients each,
with a maximum of 12 backfill patients in total. Backfill cohorts can be opened at any time (i.e. immediately),
and recruitment into backfill cohorts is immediate (i.e. as fast as dose escalation cohorts). When multiple
backfill cohorts are open, then the lowest dose level is recruited into first.

backfill_simple <- Backfill(
cohort_size = CohortSizeConst(3),
total_size = 12,
opening = OpeningMinCohorts(min_cohorts = 1),
recruitment = RecruitmentUnlimited(),
priority = "lowest"

)

backfill_simple

Cohort size: A constant size of 3 participants.

Opening rule: If 1 or more cohorts have been treated in total.
Recruitment: Unlimited recruitment of backfill patients is allowed.
Total number of backfill patients: 12 backfill patients.

Priority of higher vs. lower dose backfill cohorts: lowest dose.

We can now add this backfill specification to the design:

design_simple_backfill <- design_no_backfill
design_simple_backfill@backfill <- backfill_simple

More complex backfill cohorts

Now let’s make things a bit more complex. We define a random number of patients for each backfill cohort,
with a minimum of 1 patient and a maximum of 6 patients. Backfill cohorts can only be opened once at least
3 dose escalation cohorts have been completed. Note that this will lead to a delayed opening of potentially
multiple backfill cohorts. In addition, at least one response must have been observed at the cohort’s dose
level or below before it could be opened for backfill. We will be able to specify the assumed dose-response
probability function in the simulate method call later. Recruitment into backfill cohorts is slower than dose
escalation cohorts, with a ratio of 1 backfill patient for every 2 dose escalation patients. When multiple
backfill cohorts are open, then the highest dose level is recruited into first. The total maximum number of
backfill patients is set to 20.

backfill_complex <- Backfill(
cohort_size = CohortSizeRandom(min_size = 1, max_size = 6),
3) &

opening = OpeningMinCohorts(min_cohorts

OpeningMinResponses (
min_responses = 1,
include_lower_doses = TRUE
),
recruitment = RecruitmentRatio(ratio = 1/2),
priority = "highest",
total_size = 20
)
backfill_complex

Cohort size: A random cohort size drawn uniformly between 1 and 6 participants.
Opening rule: If both of the following rules are satisfied:
e If 3 or more cohorts have been treated in total.
e If 1 or more responses have been observed at this dose or lower.
Recruitment: Backfill patients are recruited at a ratio of 0.5 per patient in the main trial cohort.
Total number of backfill patients: 20 backfill patients.
Priority of higher vs. lower dose backfill cohorts: highest dose.

Note how we can combine multiple opening rules using the & operator. This is analogous to how stopping
rules can be combined. Indeed, it is also possible to use the | operator to combine opening rules with an “or”
logic.

Again we add this backfill specification to the design:

design_complex_backfill <- design_no_backfill
design_complex_backfill@backfill <- backfill_complex

Simulations with backfill cohorts

Now we can run trial simulations including backfill cohorts. Here we illustrate this with both the simple and
the complex backfill cohort designs defined above. For the complex backfill design we also need to specify the
assumed dose-response probability function. Similarly as for the dose-toxicity function, it might be worth to
consider a few different scenarios in practice.

Assumed dose-response probability function.
mytruthResponse <- function(dose) {
plogis(- 4 + 0.2 * dose) / 4
}
curve (mytruthResponse(x), from = 0, to = max(emptydata@doseGrid),
xlab = "Dose", ylab = "Probability of Response / Toxicity",
"Assumed Functions", ylim = c(0, 1))

main

myTruth <- probFunction(design_simple_backfill@model, alphaO = 3, alphal = 3)
curve (myTruth(x), from = 0, to = max(emptydata@doseGrid),
add = TRUE, col = "red")

Assumed Functions

o |
> -
©

5 o
|— . —
— o

Q

w0

S o _

8 o

(%3]

Q
X < |
5o
2
3 N]

® o
O

o
o o |

© I I I I I I

0 20 40 60 80 100
Dose

Now we can run the simulations for this particular scenario:

For real applications, use e.g. McmcOptions() with defaults.
mcmcOptions <- McmcOptions(burnin = 10, step = 1, samples = 100)

Simple backfill design simulation:
sims_simple <- simulate(
design_simple_backfill,
truth = myTruth,
nsim = 10, # For real applications, increase to 1000 e.g.
seed = 819,
mcmcOptions = mcmcOptions,
parallel = FALSE,
firstSeparate = FALSE

Complex backfill design simulation:
sims_complex <- simulate(
design_complex_backfill,
truth = myTruth,
truthResponse = mytruthResponse,
nsim = 10, # For real applications, increase to 1000 e.g
seed = 819,
mcmcOptions = mcmcOptions,
parallel = FALSE,
firstSeparate = FALSE
)

We can see that it is still very simple and straightforward to run simulations including backfill cohorts.

Investigating single trial data

The data for each simulated trial is available in the list in the data slot of the returned Simulations object,
and we can also plot it.

For example, the 3rd simulated trial with the simple backfill design looks like this:
plot(sims_simple@datal[[3]], mark backfill = TRUE)

A<M
ANNNMMNM
25- 0AAAAGAAA
CON-O0LOXO~
O
20 - o0000® ..
Toxicity
_ SILXON-000) ® No
g A Y
@ 15- 0000A0 es
3
10 - o000 !
B Backfill
oN<tn
<HOX O
5- o00DPD
—ION000)
3- 000DD®
0-

12345678 910111213141516171819202122232425262 72829303132333435363 73839
Patient

We can see from the patient IDs, which are assigned sequentially in time, when the backfill patients were
recruited (those with a “B” mark on the left of the points). For example, we see that the highest dose which
was backfilled is 20, after which the maximum of 12 backfill patients was reached.

Similarly we can also plot the data from a simulated trial with the complex backfill design. Here we show the
5th simulated trial, and because the backfill cohort rule is also based on responses, we also mark the response
data:

plot(sims_complex@data[[5]], mark_backfill = TRUE, mark_response = TRUE)

25- A

T Toxicit
20- S0 /
® No
— QLD QLI A Yes
[} (QNaNaNep op Ny (3909019090 9p)
@ 15- sdemmec sseakeax
o Marking
ég r~cas§£¥3 AN
10- e i “KResponse
Ll B Backfill
<LOXO—+

5- LOCO—KEBEK
3- oHEBBBEK

0-

12345678 9101112134561 718lRRR2RLRR PR BBIB3BIBBBEI3BAU 1L
Patient

Here we can see that the starting dose cohort at dose 3 as well as the next one at dose 5 did not produce any
responses, hence no backfill cohorts could be opened at these dose levels. Only after dose escalation reached
dose 10 in cohort 3 and a response was observed there, a backfill cohort could be started there.

Investigating simulation results

For now we can do some manual investigations of the simulation results to see how many backfill patients
were recruited in each simulation:

get_backfill_ counts <- function(sims) {
sapply(sims@data, \(d) sum(d@backfilled))
}
backfill_counts_simple <- get_backfill_counts(sims_simple)
backfill_counts_complex <- get_backfill_counts(sims_complex)
table(backfill_counts_simple)
#> backfill_counts_simple
#> 12
#> 10
table(backfill_counts_complex)
#> backfill_counts_complex
#> 10 12 13 14
1 1 1 7

So we see that for all 10 simulations in the simple design, the maximum number of 12 backfill patients
were recruited. For the 10 simulations of the complex design the situation is more varied: In half of the 10
simulations no backfill patients were recruited at all e.g., but in some including the trial no. 5 we looked at
above we saw 8 backfill patients.

Let’s also look at the dose distribution of the backfill patients. We can extract the backfill doses from each

simulated trial like this:

get_backfill_ doses <- function(sims) {
lapply(sims@data, \(d) d@x[d@backfilled])
}
backfill_doses_simple <- get_backfill_doses(sims_simple)
backfill_doses_complex <- get_backfill_doses(sims_complex)

For example, the first 3 trials simulated with the simple backfill design had the following backfill doses:
head(backfill_doses_simple, 3)

#> [[1]]

#> [1] 3 3 3 5 5 510 10 10 15 15 15
#>

#> [[2]]

#> [1] 3 3 3 3 3 3 5 5 510 10 10
#>

#> [[3]]

#> [1] 3 3 3 5 5 5 10 10 10 20 20 20

We can e.g. create a table showing the distribution of the backfill doses across all simulations:

all_backfill_doses_simple <- unlist(backfill_doses_simple)
table(all_backfill_doses_simple)

#> all_backfill_doses_simple

3 5 10 15 20

#> 36 33 33 6 12

all_backfill_doses_complex <- unlist(backfill_doses_complex)
table(all_backfill_doses_complex)

#> all_backfill_doses_complex

#> 3 65 10 15 20 25

#> 13 22 41 35 17 5

So we see e.g. that all backfill patients in the complex design were recruited at doses 3, 5, 10, 15, 20, 25.

Limitations

Note that the examine method does not include backfill cohorts, because he examination paths would get
too complex to understand easily. In addition, it seems not needed to include backfill cohorts for the quick
check for which the examine method is intended.

Currently the backfill cohort simulation is supported only for standard Design objects. It is not supported for
DADesign or DualDesign objects, although these inherit from the Design class. This is because these more
complex designs have additional complexities that need to be addressed before backfilling can be supported.
We plan to implement backfill cohort simulation for these, and potentially other design classes, in future
releases of crmPack, depending on the demand from users.

Backwards Compatibility

We have looked into the S4 class framework details and it is a known issue that when we add new slots to
existing classes, and then load old saved objects of this class without this slot, then these objects will not be
usable. In Bioconductor they even created a special package updateObject to deal with this issue (see here
for details).

We think that this is not warranted in our case, because typically the code for running simulations and
analyses is retained by users of crmPack. Therefore it is best to rerun this code with the new package version
including the additional slots.

https://bioconductor.posit.co/packages/3.22/bioc/vignettes/updateObject/inst/doc/updateObject.html

References

Barnett, H., O. Boix, D. Kontos, and T. Jaki. 2023. “Backfilling Cohorts in Phase I Dose-Escalation Studies.”
Clinical Trials 20 (3): 261-68. https://doi.org/10.1177/17407745231160092.

https://doi.org/10.1177/17407745231160092

	Introduction
	Framework
	Examples
	Standard components
	No backfill cohorts
	Simple backfill cohorts
	More complex backfill cohorts
	Simulations with backfill cohorts
	Investigating single trial data
	Investigating simulation results

	Limitations
	Backwards Compatibility
	References

