The disposition effect consists in the realization that investors are more likely to sell an asset when it is gaining value compared to when it is losing value. A phenomenon which is closely related to sunk costs’ bias, diminishing sensitivity, and loss aversion.
This irrational phenomenon has strong implications on financial markets. In particular, it is a violation of the well-known “efficient market hypothesis” that bases its foundations on the theory of rational agents.
Hence, timely capturing and understanding irrational behaviors on the financial markets is of primary interest both of researchers and investors. For this reason, the dispositionEffect
package allows to quickly collect both aggregate and time series results of the disposition effect, allowing to deeply study the evolution in time of irrationalities.
To load the package simply use the usual library
function.
library(dispositionEffect)
library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
The disposition effect analysis is performed on two fundamental types of data frames:
portfolio transactions, that is all the financial transactions an investor did during a specific period of time. A single transaction is made up of 6 features: the investor id, the asset id, the type of the transaction (it can be a buy or a sell), the traded quantity, the traded price, and the datetime.
market prices, that is the prices found on the stock markets for each traded asset and each transaction datetimes.
The portfolio_compute
function is the core interface of the package and it is used to perform all the gains and losses computations.
In particular, the argument time_series_DE
is used to enable time series disposition effect computations.
<- portfolio_compute(
portfolio_results_ts portfolio_transactions = investor,
market_prices = marketprices,
time_series_DE = TRUE
)
Setting it to TRUE
makes the function return two different results:
<- portfolio_results_ts$portfolio
portfolio ::select(portfolio, -datetime)
dplyr#> investor asset quantity price RG_count RL_count PG_count PL_count
#> 1 4273N ACO 222 2.840 1 0 6 0
#> 2 4273N AST 0 0.000 0 1 0 0
#> 3 4273N IT3S 0 0.000 0 1 0 0
#> 4 4273N LSUG 0 0.000 2 0 4 0
#> 5 4273N TFI 1400 0.284 0 0 0 0
method
<- portfolio_results_ts$timeseries
timeseries head(timeseries)
#> investor datetime DETs_count DEts_count
#> 1 4273N 2018-04-09 11:17:00 NA NA
#> 2 4273N 2018-05-17 15:06:00 0.0000000 0.0
#> 3 4273N 2018-05-22 17:11:00 0.2500000 0.5
#> 4 4273N 2018-05-28 14:30:00 0.2500000 0.0
#> 5 4273N 2018-06-01 15:27:00 -0.1666667 -0.5
#> 6 4273N 2018-06-01 15:43:00 -0.1666667 0.0
For every transaction datetime two different disposition effect are computed:
Note that, by the moment, the time series computations of disposition effect are allowed for "count"
and "value"
methods only (with the latter the disposition difference is implemented instead of disposition effect).
The disposition_summary_ts
function can be used to summarize the evolution of disposition effect over time.
disposition_summary_ts(timeseries)
#> investor stat DETs_count DEts_count
#> 1 4273N Min -0.3666667 -1.00000000
#> 2 4273N Q1 -0.3199405 0.00000000
#> 3 4273N Median -0.2916667 0.00000000
#> 4 4273N Q3 -0.1166667 0.00000000
#> 5 4273N Mean -0.1949405 0.06666667
#> 6 4273N Max 0.2500000 1.00000000
#> 7 4273N StDev 0.1912683 0.49521520
A visual time series analysis can be performed as usual with ggplot2
.
%>%
timeseries ::pivot_longer(cols = dplyr::starts_with("DE")) %>%
tidyr::ggplot(ggplot2::aes(x = datetime, y = value, col = name)) +
ggplot2::geom_line(size = 1.5) +
ggplot2::scale_colour_viridis_d(alpha = 1) +
ggplot2::labs(
ggplot2title = "Time Series Disposition Effect results",
subtitle = "Method Count",
x = "", y = ""
+
) ::theme(legend.position = "bottom") ggplot2
The time series analysis of disposition effect can be greatly improved also by computing the disposition effect over time on specif assets traded by the investor.
Indeed, the argument assets_time_series_DE
allows to specify a character vector of assets’ id (that must be traded by the investor) on which to compute the disposition effect over time.
<- portfolio_compute(
portfolio_results_ts_assets portfolio_transactions = investor,
market_prices = marketprices,
time_series_DE = TRUE,
assets_time_series_DE = c("ACO", "LSUG")
)
<- portfolio_results_ts_assets$timeseries
timeseries_assets head(timeseries_assets)[, 2:6]
#> datetime DETs_count DEts_count ACO_DETs_count ACO_DEts_count
#> 1 2018-04-09 11:17:00 NA NA NA NA
#> 2 2018-05-17 15:06:00 0.0000000 0.0 0.0 0
#> 3 2018-05-22 17:11:00 0.2500000 0.5 0.5 1
#> 4 2018-05-28 14:30:00 0.2500000 0.0 0.5 NA
#> 5 2018-06-01 15:27:00 -0.1666667 -0.5 0.5 NA
#> 6 2018-06-01 15:43:00 -0.1666667 0.0 0.5 NA
head(timeseries_assets)[, c(2:4, 7:8)]
#> datetime DETs_count DEts_count LSUG_DETs_count LSUG_DEts_count
#> 1 2018-04-09 11:17:00 NA NA NA NA
#> 2 2018-05-17 15:06:00 0.0000000 0.0 NA NA
#> 3 2018-05-22 17:11:00 0.2500000 0.5 0 0
#> 4 2018-05-28 14:30:00 0.2500000 0.0 0 0
#> 5 2018-06-01 15:27:00 -0.1666667 -0.5 0 0
#> 6 2018-06-01 15:43:00 -0.1666667 0.0 0 0
disposition_summary_ts(timeseries_assets)[, 2:6]
#> stat DETs_count DEts_count ACO_DETs_count ACO_DEts_count
#> 1 Min -0.3666667 -1.00000000 0.0000000 0.0000000
#> 2 Q1 -0.3199405 0.00000000 0.2708333 0.0000000
#> 3 Median -0.2916667 0.00000000 0.5000000 0.0000000
#> 4 Q3 -0.1166667 0.00000000 0.5000000 0.0000000
#> 5 Mean -0.1949405 0.06666667 0.3940476 0.1111111
#> 6 Max 0.2500000 1.00000000 0.5000000 1.0000000
#> 7 StDev 0.1912683 0.49521520 0.1657201 0.3333333
disposition_summary_ts(timeseries_assets)[, c(2:4, 7:8)]
#> stat DETs_count DEts_count LSUG_DETs_count LSUG_DEts_count
#> 1 Min -0.3666667 -1.00000000 0.0000000 0.0000000
#> 2 Q1 -0.3199405 0.00000000 0.2000000 0.0000000
#> 3 Median -0.2916667 0.00000000 0.3333333 0.0000000
#> 4 Q3 -0.1166667 0.00000000 0.3333333 0.7500000
#> 5 Mean -0.1949405 0.06666667 0.2235294 0.3333333
#> 6 Max 0.2500000 1.00000000 0.3333333 1.0000000
#> 7 StDev 0.1912683 0.49521520 0.1393261 0.5163978
%>%
timeseries_assets ::pivot_longer(cols = dplyr::contains("DE")) %>%
tidyr::ggplot(ggplot2::aes(x = datetime, y = value, col = name)) +
ggplot2::geom_line(size = 1.5) +
ggplot2::scale_colour_viridis_d(alpha = 1) +
ggplot2::facet_wrap(~ name, ncol = 2) +
ggplot2::labs(
ggplot2title = "Assets Time Series Disposition Effect results",
subtitle = "Method Count",
x = "", y = ""
+
) ::theme(legend.position = "bottom") ggplot2
This way it is possible to better understand the behavior of an investor on his traded assets. It may be possible, in practice that, disposition effect behaviors are only present on some specific assets, and understanding what assets are more subject to irrationality can be critical.
In order to better understand the relevance of the time series analysis of disposition effect, we can test the results on the DEanalysis
real sample dataset.
See “Disposition Effect in Parallel” to speed up computations with parallel computing in R.
<- DEanalysis$transactions
trx <- DEanalysis$marketprices
mkt <- unique(trx$investor)
investor_id
<- vector(mode = "list", length = length(investor_id))
res_list for (i in seq_along(investor_id)) {
<- trx %>%
tmp_trx ::filter(investor == investor_id[i])
dplyr<- tryCatch(
tmp_res ::portfolio_compute(
dispositionEffectportfolio_transactions = tmp_trx,
market_prices = mkt,
time_series_DE = TRUE
),error = function(e) "Error"
)<- tmp_res # save results
res_list[[i]] rm(tmp_trx, tmp_res)
}
# extract time series results for each investor
<- res_list %>%
timeseries_10_investors ::map("timeseries") purrr
::map(timeseries_10_investors, disposition_summary_ts) %>%
purrr::bind_rows() %>%
dplyr::filter(stat == "Mean") %>%
dplyr::arrange(desc(DETs_count))
dplyr#> investor stat DETs_count DEts_count
#> 1 46Z68 Mean 0.671328859 0.181704261
#> 2 44382 Mean 0.549636005 0.053198948
#> 3 8ZQ32 Mean 0.512062102 0.067820774
#> 4 62NQ8 Mean 0.447932758 0.029153729
#> 5 743Q1 Mean -0.004332159 -0.004701290
#> 6 QZNZN Mean -0.039002566 0.003532508
#> 7 4Q17Z Mean -0.164163586 -0.024435599
#> 8 QZ621 Mean -0.177971450 0.047406639
#> 9 784ZZ Mean -0.262808387 -0.007247631
#> 10 QZ31Q Mean -0.298977398 -0.043965299
%>%
timeseries_10_investors ::bind_rows() %>%
dplyr::pivot_longer(cols = dplyr::contains("DE")) %>%
tidyr::ggplot(ggplot2::aes(x = datetime, y = value, col = investor)) +
ggplot2::geom_line(size = 0.75) +
ggplot2::scale_colour_viridis_d(alpha = 0.9) +
ggplot2::facet_wrap(~ name, nrow = 2, ncol = 1) +
ggplot2::labs(
ggplot2title = "10 Investors Time Series Disposition Effect results",
subtitle = "Method Count",
x = "", y = ""
+
) ::theme(legend.position = "bottom") ggplot2
For more tutorials on disposition effect visit dispositionEffect.