doudpackage

CRAN status

The goal of doudpackage is to Creates the “table one” of biomedical papers. Fill it with your data and the name of the variable which you’ll make the group(s) out of and it will make univariate, bivariate analysis and parse it into HTML.

Installation

You can install the development version of doudpackage from GitHub with:

# install.packages("devtools")
devtools::install_github("tiago972/doudpackage")

Example

library(doudpackage)
## basic example code
data(iris)
library(stringi)
iris$fact_1<-as.factor(as.character(sample(1:5, 150, replace = TRUE)))
n_na<-sample(1:150, 30)
iris[n_na, "fact_1"]<-NA
iris$fact_2<-as.factor(as.character(stri_rand_strings(150, 1, '[A-B]')))
iris$num<-runif(150, min = 0, max = 100)
n_na<-sample(1:150, 5)
iris[n_na, "num"]<-NA
iris_test<-descTab(iris, group = "Species", na.print = TRUE)
testParse<-parseClassFun(iris_test, levels_to_keep = list("fact_2" =  "A"),
group_rows_labels = list("Size" = c("Petal.Length", "Petal.Width"),
"My_f" = c("num", "fact_2")))

setosa

versicolor

virginica

Total

n = 50 (33.3) n = 50 (33.3) n = 50 (33.3) n = 150 pvalue
Size
Petal.Length 1.5 (0.2) 4.3 (0.5) 5.6 (0.6) 3.8 (1.8) < 0.001
Petal.Width 0.2 (0.1) 1.3 (0.2) 2 (0.3) 1.2 (0.8) < 0.001
My_f
fact_2, A 24 (48) 34 (68) 29 (58) 87 (58) 0.128
num 51.2 (28.9) 47.9 (28.5) 48.4 (31.7) 49.2 (29.6) 0.837
Missing values 0 (0) 4 (8) 1 (2) 5 (3)
fact_1, 1 8 (16) 5 (10) 10 (20) 23 (15.3) 0.698
fact_1, 2 8 (16) 5 (10) 3 (6) 16 (10.7) 0.698
fact_1, 3 5 (10) 8 (16) 10 (20) 23 (15.3) 0.698
fact_1, 4 9 (18) 10 (20) 9 (18) 28 (18.7) 0.698
fact_1, 5 9 (18) 10 (20) 11 (22) 30 (20) 0.698
Missing values 11 (22) 12 (24) 7 (14) 30 (20)
Sepal.Length 5 (0.4) 5.9 (0.5) 6.6 (0.6) 5.8 (0.8) < 0.001
Sepal.Width 3.4 (0.4) 2.8 (0.3) 3 (0.3) 3.1 (0.4) < 0.001