ergm.multi
ergm.multi
version 0.2.1.1
(2024-11-05)The list of networks studied by Goeyvaerts et al. (2018) is included in this package:
## [1] 318
An explanation of the networks, including a list of their network
(%n%
) and vertex (%v%
) attributes, can be
obtained via ?Goeyvaerts
. A total of 318 complete networks
were collected, then two were excluded due to “nonstandard” family
composition:
## [[1]]
## # A tibble: 4 × 5
## vertex.names age gender na role
## <int> <int> <chr> <lgl> <chr>
## 1 1 32 F FALSE Mother
## 2 2 48 F FALSE Grandmother
## 3 3 32 M FALSE Father
## 4 4 10 F FALSE Child
##
## [[2]]
## # A tibble: 3 × 5
## vertex.names age gender na role
## <int> <int> <chr> <lgl> <chr>
## 1 1 29 F FALSE Mother
## 2 2 28 F FALSE Mother
## 3 3 0 F FALSE Child
To reproduce the analysis, exclude them as well:
Obtain weekday indicator, network size, and density for each network, and summarize them as in Goeyvaerts et al. (2018) Table 1:
G %>% map(~list(weekday = . %n% "weekday",
n = network.size(.),
d = network.density(.))) %>% bind_rows() %>%
group_by(weekday, n = cut(n, c(1,2,3,4,5,9))) %>%
summarize(nnets = n(), p1 = mean(d==1), m = mean(d)) %>% kable()
weekday | n | nnets | p1 | m |
---|---|---|---|---|
FALSE | (1,2] | 3 | 1.0000000 | 1.0000000 |
FALSE | (2,3] | 19 | 0.7368421 | 0.8771930 |
FALSE | (3,4] | 48 | 0.8541667 | 0.9618056 |
FALSE | (4,5] | 18 | 0.7777778 | 0.9500000 |
FALSE | (5,9] | 3 | 1.0000000 | 1.0000000 |
TRUE | (1,2] | 9 | 1.0000000 | 1.0000000 |
TRUE | (2,3] | 53 | 0.9056604 | 0.9622642 |
TRUE | (3,4] | 111 | 0.7747748 | 0.9279279 |
TRUE | (4,5] | 39 | 0.6410256 | 0.8974359 |
TRUE | (5,9] | 13 | 0.4615385 | 0.8454212 |
We now reproduce the ERGM fits. First, we extract the weekday networks:
## [1] 225
Next, we specify the multi-network model using the
N(formula, lm)
operator. This operator will evaluate the
ergm
formula formula
on each network, weighted
by the predictors passed in the one-sided lm
formula, which
is interpreted the same way as that passed to the built-in
lm()
function, with its “data
” being the table
of network attributes.
Since different networks may have different compositions, to have a consistent model, we specify a consistent list of family roles.
We now construct the formula object, which will be passed directly to
ergm()
:
# Networks() function tells ergm() to model these networks jointly.
f.wd <- Networks(G.wd) ~
# This N() operator adds three edge counts:
N(~edges,
~ # one total for all networks (intercept implicit as in lm),
I(n<=3)+ # one total for only small households, and
I(n>=5) # one total for only large households.
) +
# This N() construct evaluates each of its terms on each network,
# then sums each statistic over the networks:
N(
# First, mixing statistics among household roles, including only
# father-mother, father-child, and mother-child counts.
# Since tail < head in an undirected network, in the
# levels2 specification, it is important that tail levels (rows)
# come before head levels (columns). In this case, since
# "Child" < "Father" < "Mother" in alphabetical order, the
# row= and col= categories must be sorted accordingly.
~mm("role", levels = I(roleset),
levels2=~.%in%list(list(row="Father",col="Mother"),
list(row="Child",col="Father"),
list(row="Child",col="Mother"))) +
# Second, the nodal covariate effect of age, but only for
# edges between children.
F(~nodecov("age"), ~nodematch("role", levels=I("Child"))) +
# Third, 2-stars.
kstar(2)
) +
# This N() adds one triangle count, totalled over all households
# with at least 6 members.
N(~triangles, ~I(n>=6))
See ergmTerm?mm
for documentation on the mm
term used above. Now, we can fit the model:
## Call:
## ergm(formula = f.wd, control = snctrl(seed = 123))
##
## Monte Carlo Maximum Likelihood Results:
##
## Estimate Std. Error MCMC % z value Pr(>|z|)
## N(1)~edges 0.84220 0.52964 0 1.590 0.111803
## N(I(n <= 3)TRUE)~edges 1.49133 0.44005 0 3.389 0.000701 ***
## N(I(n >= 5)TRUE)~edges -0.78558 0.20964 0 -3.747 0.000179 ***
## N(1)~mm[role=Child,role=Father] -0.62197 0.48459 0 -1.284 0.199316
## N(1)~mm[role=Child,role=Mother] 0.14934 0.52593 0 0.284 0.776441
## N(1)~mm[role=Father,role=Mother] 0.26480 0.60298 0 0.439 0.660552
## N(1)~F(nodematch("role",levels=I("Child")))~nodecov.age -0.07144 0.01675 0 -4.265 < 1e-04 ***
## N(1)~kstar2 -0.26908 0.21292 0 -1.264 0.206320
## N(1)~triangle 2.07121 0.31160 0 6.647 < 1e-04 ***
## N(I(n >= 6)TRUE)~triangle -0.28152 0.11012 0 -2.557 0.010572 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 1975.5 on 1425 degrees of freedom
## Residual Deviance: 611.8 on 1415 degrees of freedom
##
## AIC: 631.8 BIC: 684.4 (Smaller is better. MC Std. Err. = 0.9136)
Similarly, we can extract the weekend network, and fit it to a
smaller model. We only need one N()
operator, since all
statistics are applied to the same set of networks, namely, all of
them.
G.we <- G %>% discard(`%n%`, "weekday")
fit.we <- ergm(Networks(G.we) ~
N(~edges +
mm("role", levels=I(roleset),
levels2=~.%in%list(list(row="Father",col="Mother"),
list(row="Child",col="Father"),
list(row="Child",col="Mother"))) +
F(~nodecov("age"), ~nodematch("role", levels=I("Child"))) +
kstar(2) +
triangles), control=snctrl(seed=123))
## Call:
## ergm(formula = Networks(G.we) ~ N(~edges + mm("role", levels = I(roleset),
## levels2 = ~. %in% list(list(row = "Father", col = "Mother"),
## list(row = "Child", col = "Father"), list(row = "Child",
## col = "Mother"))) + F(~nodecov("age"), ~nodematch("role",
## levels = I("Child"))) + kstar(2) + triangles), control = snctrl(seed = 123))
##
## Monte Carlo Maximum Likelihood Results:
##
## Estimate Std. Error MCMC % z value Pr(>|z|)
## N(1)~edges 1.98705 1.51689 0 1.310 0.19021
## N(1)~mm[role=Child,role=Father] -0.92832 1.50464 0 -0.617 0.53726
## N(1)~mm[role=Child,role=Mother] 0.38258 1.69718 0 0.225 0.82165
## N(1)~mm[role=Father,role=Mother] -0.66702 1.61341 0 -0.413 0.67930
## N(1)~F(nodematch("role",levels=I("Child")))~nodecov.age -0.16899 0.05499 0 -3.073 0.00212 **
## N(1)~kstar2 -0.90774 0.35253 0 -2.575 0.01003 *
## N(1)~triangle 3.66289 0.70949 0 5.163 < 1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Null Deviance: 802.7 on 579 degrees of freedom
## Residual Deviance: 130.6 on 572 degrees of freedom
##
## AIC: 144.6 BIC: 175.1 (Smaller is better. MC Std. Err. = 1.016)
Perform diagnostic simulation (Krivitsky, Coletti, and Hens 2023), summarize the residuals, and make residuals vs. fitted and scale-location plots:
## $`Observed/Imputed values`
## edges kstar2 triangle
## Min. : 1.00 Min. : 0.0 Min. : 0.00
## 1st Qu.: 3.00 1st Qu.: 3.0 1st Qu.: 1.00
## Median : 6.00 Median :12.0 Median : 4.00
## Mean : 5.79 Mean :13.6 Mean : 4.34
## 3rd Qu.: 6.00 3rd Qu.:12.0 3rd Qu.: 4.00
## Max. :18.00 Max. :78.0 Max. :23.00
## NA's :1 NA's :10 NA's :10
##
## $`Fitted values`
## edges kstar2 triangle
## Min. : 0.780 Min. : 2.53 Min. : 0.710
## 1st Qu.: 2.958 1st Qu.: 8.45 1st Qu.: 2.500
## Median : 5.595 Median :10.63 Median : 3.370
## Mean : 5.805 Mean :13.70 Mean : 4.377
## 3rd Qu.: 5.862 3rd Qu.:11.68 3rd Qu.: 3.840
## Max. :18.040 Max. :81.75 Max. :25.930
## NA's :1 NA's :10 NA's :10
##
## $`Pearson residuals`
## edges kstar2 triangle
## Min. :-12.33649 Min. :-9.72194 Min. :-7.33588
## 1st Qu.: 0.18088 1st Qu.: 0.18157 1st Qu.: 0.15856
## Median : 0.36742 Median : 0.38421 Median : 0.38754
## Mean : -0.05665 Mean :-0.05005 Mean :-0.03546
## 3rd Qu.: 0.49195 3rd Qu.: 0.52812 3rd Qu.: 0.55634
## Max. : 2.01982 Max. : 2.39751 Max. : 2.60399
## NA's :1 NA's :10 NA's :10
##
## $`Variance of Pearson residuals`
## $`Variance of Pearson residuals`$edges
## [1] 1.811466
##
## $`Variance of Pearson residuals`$kstar2
## [1] 1.557271
##
## $`Variance of Pearson residuals`$triangle
## [1] 1.369088
##
##
## $`Std. dev. of Pearson residuals`
## $`Std. dev. of Pearson residuals`$edges
## [1] 1.345907
##
## $`Std. dev. of Pearson residuals`$kstar2
## [1] 1.247907
##
## $`Std. dev. of Pearson residuals`$triangle
## [1] 1.17008
Variances of Pearson residuals substantially greater than 1 suggest unaccounted-for heterogeneity.
## [[1]]
## Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[2]]
## Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[3]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[4]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[5]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[6]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
The plots don’t look unreasonable.
Also make plots of residuals vs. square root of fitted and vs. network size:
## [[1]]
## Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[2]]
## Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[3]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[4]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[5]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[6]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_point()`).
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
## [[1]]
## Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).
## Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : pseudoinverse used at 0.975
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : neighborhood radius 2.025
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : reciprocal condition number 6.2178e-17
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : There are other near singularities as well. 1
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[2]]
## Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).
## Warning: Removed 1 row containing non-finite outside the scale range (`stat_smooth()`).
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : pseudoinverse used at 0.975
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : neighborhood radius 2.025
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : reciprocal condition number 6.2178e-17
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : There are other near singularities as well. 1
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[3]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_boxplot()`).
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : pseudoinverse used at 1.98
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : neighborhood radius 1.02
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : There are other near singularities as well. 1
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[4]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_boxplot()`).
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : pseudoinverse used at 1.98
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : neighborhood radius 1.02
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : There are other near singularities as well. 1
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[5]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_boxplot()`).
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : pseudoinverse used at 1.98
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : neighborhood radius 1.02
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : There are other near singularities as well. 1
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
##
## [[6]]
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_boxplot()`).
## Warning: Removed 10 rows containing non-finite outside the scale range (`stat_smooth()`).
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : pseudoinverse used at 1.98
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : neighborhood radius 1.02
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : There are other near singularities as well. 1
## Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_text_repel()`).
It looks like network-size effects are probably accounted for.