Version 1.0.1

Date 2024-08-23

Package ‘evola’

August 28, 2024

Title Evolutionary Algorithm

Maintainer Giovanny Covarrubias-Pazaran <cova_ruber@live.com.mx>

Description Runs a genetic algorithm using the 'AlphaSimR' machin-
ery <doi:10.1093/g3journal/jkaa017> and the coalescent simula-

tor 'MaCS' <doi:
Depends R(>=3.5.0),

crayon
LazyLoad yes
LazyData yes
License GPL (>=2)

10.1101/gr.083634.108>.
AlphaSimR (>= 1.4.2), Matrix (>= 1.0), methods,

NeedsCompilation yes

Author Giovanny Covarrubias-Pazaran [aut, cre]
(<https://orcid.org/0000-0002-7194-3837>)

Repository CRAN

Suggests rmarkdown,

VignetteBuilder knitr

knitr

Config/testthat/edition 3
Date/Publication 2024-08-28 08:40:02 UTC

Contents

A.mat . . .

DT _cpdata .
DT_technow
DT_wheat .
evolafit . .
pareto . . .

https://doi.org/10.1093/g3journal/jkaa017
https://doi.org/10.1101/gr.083634.108
https://orcid.org/0000-0002-7194-3837

2 evola-package

PMONILOT L o i e e e e e e e e e e e e e e 15
varM . . L L e 16
Index 18
evola-package EVOLutionary Algorithm
Description

The evola package is nice wrapper of the AlphaSimR package that enables the use of the evolution-
ary algorithm to solve complex questions in a simple manner.

The evolafit function is the core function of the package which allows the user to specify the
problem and constraints to find a close-to-optimal solution using the evolutionary forces.

Keeping evola updated

The evola package is updated on CRAN every 4-months due to CRAN policies but you can find the
latest source at https://github.com/covaruber/evola. This can be easily installed typing the following
in the R console:

library(devtools)
install_github("covaruber/evola")

This is recommended if you reported a bug, was fixed and was immediately pushed to GitHub but
not in CRAN until the next update.

Tutorials

For tutorials on how to perform different analysis with evola please look at the vignettes by typing
in the terminal:

vignette(''evola.intro'")

Getting started

The package has been equiped with several datasets to learn how to use the evola package:
* DT_technow datasets to perform optimal cross selection.
* DT_wheat TBD.

* DT_cpdata dataset to perform optimal individual.

Models Enabled

The machinery behind the scenes is AlphaSimR.

A.mat 3

Bug report and contact

If you have any questions or suggestions please post it in https://stackoverflow.com or https://stats.stackexchange.com

I'll be glad to help or answer any question. I have spent a valuable amount of time developing this
package. Please cite this package in your publication. Type ’citation("evola")’ to know how to cite
it.

Author(s)

Giovanny Covarrubias-Pazaran

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breed-
ing program simulations. G3 GenelGenomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data.
Genome Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

A.mat Additive relationship matrix

Description

Calculates the realized additive relationship matrix.

Usage

A.mat(X,min.MAF=NULL)

Arguments
X Matrix (n x m) of unphased genotypes for n lines and m biallelic markers, coded
as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.
min.MAF Minimum minor allele frequency. The A matrix is not sensitive to rare alleles,
so by default only monomorphic markers are removed.
Details

For vanraden method: the marker matrix is centered by subtracting column means M = X — ms
where ms is the coumn means. Then A = MM'/c, where ¢ =), d;./k, the mean value of the
diagonal values of the M M’ portion.

4 bestSol

Value
If return.imputed = FALSE, the n X n additive relationship matrix is returned.

If return.imputed = TRUE, the function returns a list containing

$A the A matrix

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit — the core function of the package

Examples

random population of 200 lines with 1000 markers
X <- matrix(rep(@,200%1000),200,1000)
for (i in 1:200) {
X[i,] <- ifelse(runif(1000)<0.5,-1,1)
3

A <= A.mat(X)

take a look at the Genomic relationship matrix

colfunc <- colorRampPalette(c("steelblue4”,"springgreen”, "yellow"))
hv <- heatmap(A[1:15,1:15], col = colfunc(100),Colv = "Rowv")
str(hv)

bestSol Extract the index of the best solution

Description

Extracts the index of the best solution for all traits under the constraints specified.

Usage

bestSol (object)

Arguments

object A resulting object from the function evolafit.

bestSol 5

Details

A simple apply function looking at the fitness value of all the solution in the last generation to find
the maximum value.

Value

$res the vector of best solutions in M for each trait in the problem

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit — the core function of the package

Examples

set.seed(1)
Data
Gems <- data.frame(
Color = c("Red”, "Blue", "Purple”, "Orange",
"Green"”, "Pink”, "White", "Black"”,
"Yellow"),
Weight = round(runif(9,0.5,5),2),
Value = round(abs(rnorm(9,0,5))+0.5,2),
Times=c(rep(1,8),0)
)
head(Gems)

Task: Gem selection.
Aim: Get highest combined value.
Restriction: Max weight of the gem combined = 10.
res@<-evolafit(cbind(Weight,Value)~Color, dt= Gems,
constraints: if greater than this ignore
constraintsUB = c(10,Inf),
constraints: if smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
traitWeight = c(9o,1),
population parameters
nCrosses = 100, nProgeny = 20, recombGens = 1,
coancestry parameters
A=NULL, lambda=c(0,0), nQTLperInd = 1,
selection parameters
propSelBetween = .9, propSelWithin =0.9,
nGenerations = 50

6 DT _cpdata

bestSol (reso)

DT_cpdata Genotypic and Phenotypic data for a CP population

Description
A CP population or F1 cross is the designation for a cross between 2 highly heterozygote individu-
als; i.e. humans, fruit crops, bredding populations in recurrent selection.

This dataset contains phenotpic data for 363 siblings for an F1 cross. These are averages over 2
environments evaluated for 4 traits; color, yield, fruit average weight, and firmness. The columns
in the CPgeno file are the markers whereas the rows are the individuals. The CPpheno data frame
contains the measurements for the 363 siblings, and as mentioned before are averages over 2 envi-
ronments.

Usage
data("DT_cpdata")

Format

The format is: chr "DT_cpdata”

Source

This data was simulated for fruit breeding applications.

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breed-
ing program simulations. G3 GenelGenomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data.
Genome Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

Examples

data(DT_cpdata)
DT <- DT_cpdata

get best 20 individuals weighting variance by 0.5
res<-evolafit(cbind(Yield, occ)~id, dt= DT,
constraints: if sum is greater than this ignore
constraintsUB = c(Inf,20),

DT technow 7

constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf,-Inf),

weight the traits for the selection
traitWeight = c(1,0),

population parameters

nCrosses = 100, nProgeny = 10,

coancestry parameters

A=A, lambda=c(0.5,0), nQTLperInd = 2,

selection parameters

propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 40)

best = which(res$phenol,1]==max(res$pheno[,11))[1];best
xa = (res$M %x% DT$Yield)[best,]; xa

xAx = res$M[best,] %*% A %*% res$M[best,]; xAx
sum(res$M[best,]) # total # of inds selected

pmonitor(res)

plot(DT$Yield, col=as.factor(res$Mlbest,]),
pch=(res$M[best,]1*x19)+1)

pareto(res)
DT_technow Genotypic and Phenotypic data from single cross hybrids (Technow et
al.,2014)
Description

This dataset contains phenotpic data for 2 traits measured in 1254 single cross hybrids coming
from the cross of Flint x Dent heterotic groups. In addition contains the genotipic data (35,478
markers) for each of the 123 Dent lines and 86 Flint lines. The purpose of this data is to demosntrate
the prediction of unrealized crosses (9324 unrealized crosses, 1254 evaluated, total 10578 single
crosses). We have added the additive relationship matrix (A) but can be easily obtained using the
A.mat function on the marker data. Please if using this data for your own research cite Technow et
al. (2014) publication (see References).

Usage

data("DT_technow")

Format

The format is: chr "DT_technow"

8 DT technow

Source

This data was extracted from Technow et al. (2014).

References

If using this data for your own research please cite:

Technow et al. 2014. Genome properties and prospects of genomic predictions of hybrid perfor-
mance in a Breeding program of maize. Genetics 197:1343-1355.

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breed-
ing program simulations. G3 GenelGenomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data.
Genome Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

Examples

data(DT_technow)

DT <- DT_technow

DT$occ <- 1; DT$occ[1]1=0
M <- M_technow

A <- A.mat(M)
run the genetic algorithm
res<-evolafit(formula = c(GY, occ)~hy,
dt= DT,
constraints: if sum is greater than this ignore
constraintsUB = c(Inf,100),
constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
traitWeight = c(1,0),
population parameters
nCrosses = 100, nProgeny = 10,
coancestry parameters
A=A, lambda=c(0.4,0), nQTLperInd = 70,
selection parameters
propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 20)

best = bestSol(res)[1]

xa = (res$M %x% DT$GY)[best,]; xa

XAx = res$M[best,] %*% A %x% res$M[best,]; xAx
sum(res$M[best,]) # total # of inds selected

pmonitor(res)
plot(DT$GY, col=as.factor(res$M[best,]),
pch=(res$M[best, Jx19)+1)

DT wheat 9

pareto(res)

DT_wheat wheat lines dataset

Description

Information from a collection of 599 historical CIMMYT wheat lines. The wheat data set is from
CIMMYT’s Global Wheat Program. Historically, this program has conducted numerous interna-
tional trials across a wide variety of wheat-producing environments. The environments represented
in these trials were grouped into four basic target sets of environments comprising four main agro-
climatic regions previously defined and widely used by CIMMYT’s Global Wheat Breeding Pro-
gram. The phenotypic trait considered here was the average grain yield (GY) of the 599 wheat lines
evaluated in each of these four mega-environments.

A pedigree tracing back many generations was available, and the Browse application of the Interna-
tional Crop Information System (ICIS), as described in (McLaren et al. 2000, 2005) was used for
deriving the relationship matrix A among the 599 lines; it accounts for selection and inbreeding.

Wheat lines were recently genotyped using 1447 Diversity Array Technology (DArT) generated
by Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au). The DArT markers
may take on two values, denoted by their presence or absence. Markers with a minor allele fre-
quency lower than 0.05 were removed, and missing genotypes were imputed with samples from
the marginal distribution of marker genotypes, that is, z;; = Bernoulli(p;), where p; is the es-
timated allele frequency computed from the non-missing genotypes. The number of DArT MMs
after edition was 1279.

Usage
data(DT_wheat)

Format

Matrix Y contains the average grain yield, column 1: Grain yield for environment 1 and so on.

Source

International Maize and Wheat Improvement Center (CIMMYT), Mexico.

References
Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breed-
ing program simulations. G3 GenelGenomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

10 DT wheat

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data.
Genome Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

McLaren, C. G., L. Ramos, C. Lopez, and W. Eusebio. 2000. “Applications of the geneaology
manegment system.” In International Crop Information System. Technical Development Manual,
version VI, edited by McLaren, C. G., J.W. White and P.N. Fox. pp. 5.8-5.13. CIMMyT, Mexico:
CIMMyT and IRRIL

McLaren, C. G., R. Bruskiewich, A.M. Portugal, and A.B. Cosico. 2005. The International Rice
Information System. A platform for meta-analysis of rice crop data. Plant Physiology 139: 637-
642.

Examples

example to optimize a training pop for a validation pop
data(DT_wheat)

DT <- as.data.frame(DT_wheat)

DT$id <- rownames(DT) # IDs

DT$occ <- 1; DT$occ[1]1=0 # to track occurrences

DT$dummy <- 1; DT$dummy[1]1=0 # dummy trait

if genomic
GT <- GT_wheat + 1; rownames(GT) <- rownames(DT)
G <- GT%*%t(GT)
G <- G/mean(diag(G))
if pedigree
A <- A_wheat
A[1:4,1:4]
##Perform eigenvalue decomposition for clustering
##And select cluster 5 as target set to predict
pcNum=25
svdWheat <- svd(A, nu = pcNum, nv = pcNum)
PCWheat <- A %*x% svdWheat$v
rownames (PCWheat) <- rownames(A)
DistWheat <- dist(PCWheat)
TreeWheat <- cutree(hclust(DistWheat), k = 5)
plot(PCWheat[,1], PCWheat[,2], col = TreeWheat,
pch = as.character(TreeWheat), xlab = "pcl1”, ylab = "pc2")
vp <- rownames(PCWheat)[TreeWheat == 3]1; length(vp)
tp <- setdiff(rownames(PCWheat),vp)

As <- A[tp, tp]
DT2 <- DT[rownames(As),]
DT2$cov <- apply(ALtp,vpl,1,mean)

head(DT2)

res<-evolafit(cbind(cov, occ)~id, dt= DT2,
constraints: if sum is greater than this ignore
constraintsUB = c(Inf, 100),
constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf, -Inf),

evolafit 11

weight the traits for the selection
traitWeight = c(1,0),

population parameters

nCrosses = 100, nProgeny = 10,

coancestry parameters

A=As, lambda=c(1,0), nQTLperInd = 89,

selection parameters

propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 30, verbose = TRUE)

best <- bestSol(res)[1]
sum(res$M[best,]) # total # of inds selected
pareto(res)

evolafit Fits a genetic algorithm for a set of traits and constraints.

Description

Using the AlphaSimR machinery it recreates the evolutionary forces applied to a problem where
possible solutions replace individuals and combinations of variables in the problem replace the
genes. Then evolutionary forces are applied to find a close-to-optimal solution.

Usage

evolafit(formula, dt,
constraintsUB, constraintsLB, traitWeight,
nCrosses=50, nProgeny=40,nGenerations=30, recombGens=1,
nQTLperInd=NULL, A=NULL, lambda=NULL,
propSelBetween=1,propSelWithin=0.5,
fitnessf=NULL, verbose=TRUE, dateWarning=TRUE)

Arguments
formula Formula of the form y~x where 'y’ refers to the traits or features involved in
selecting or putting constraints to the solutions, and ’x’refers to the classifiers of
the problem to define the chromosome regions.
dt A dataset containing the features and classifiers.

constraintsUB A numeric vector specifying the upper bound constraints in the traits/features
(y). The length is equal to the number of traits/features. If missing is assume
infinite for all traits.

constraintsLB A numeric vector specifying the lower bound constraints in the traits/features
(y). The length is equal to the number of traits/features. If missing is assume
minus infinite for all traits.

12

traitWeight

nCrosses

nProgeny

nGenerations

recombGens

nQTLperInd

A
lambda

propSelBetween

propSelWithin

fitnessf

verbose

dateWarning

Details

evolafit

A numeric vector specifying the weights that each trait has in the final selection
index. The length is equal to the number of traits/features. If missing is assumed
equal weight for all traits.

A numeric value indicating how many crosses should occur in the population of
solutions at every generation.

A numeric value indicating how many progeny each cross should generate in
the population of solutions at every generation.

The number of generations that the evolutionary process should run for.

The number of recombination generations that should occur before selection is
applied. This is in case the user wants to allow for more recombination before
selection operates.

The number of levels corresponding to the classifier (x) that should show up as
present at the begginning of the simulation. If not specified it will be equal to
the number of rows in the dataset/5. See details section.

A relationship matrix between the levels of the classifier variable (x).

A numeric value indicating the weight assigned to the relationship between lev-
els of the classifiers with respect to the selection index. If not specified is as-
sumed to be 0.

A numeric value between 0 and 1 indicating the proportion of families/crosses
that should be selected.

A numeric value between 0 and 1 indicating the proportion of individuals within
families/crosses that should be selected.

An alternative named list defining the fitness function for a given trait. If NULL
the default function will be xa - (lam * x’ AX) where x is the contribution vector
to the solution, a are the original values assigned to the trait-merit, and A is the
covariance between solutions.

A logical value indicating if we should print logs.

A logical value indicating if you should be warned when there is a new version
on CRAN.

Using the AlphaSimR machinery (runMacs) it recreates the evolutionary forces applied to a problem
where possible solutions replace individuals and combinations of variables in the problem replace
the genes. Then evolutionary forces are applied to find a close-to-optimal solution. The number
of solutions are controlled with the nCrosses and nProgeny parameters, whereas the number of
initial combinations present for the classifier/genes is controlled by the nQTLperInd parameter.
This of course will increase if has an effect in the fitness. The drift force can be controlled by the
recombGens parameter.

Value

$M the matrix of haplotypes/solutions after selection.

$score a matrix with scores for different metrics () across generations of evolution.

$pheno the matrix of phenotypes of individuals/solutions present in the last generation.

evolafit 13

indivPerformance the matrix of x’a, x’Ax, deltaC, nQTLs per solution per generation.

pop AlphaSimR object used for the evolutionary algorithm.

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breed-
ing program simulations. G3 GenelGenomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data.
Genome Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

See Also

evolafit — the information of the package

Examples

set.seed(1)

Data
Gems <- data.frame(
Color = c("Red”, "Blue", "Purple”, "Orange",
"Green"”, "Pink", "White", "Black",
"Yellow"),
Weight = round(runif(9,0.5,5),2),
Value = round(abs(rnorm(9,0,5))+0.5,2),
Times=c(rep(1,8),0)

)

head(Gems)

Color Weight Value
#1 Red 4.88 9.95
2 Blue 1.43 2.73
3 Purple 1.52 2.60
4 Orange 3.11 0.61
5 Green 2.49 0.77
#6 Pink 3.53 1.99
7 White 0.62 9.64
8 Black 2.59 1.14
9 Yellow 1.77 10.21

Task: Gem selection.
Aim: Get highest combined value.
Restriction: Max weight of the gem combined = 10.
res@<-evolafit(cbind(Weight,Value)~Color, dt= Gems,
constraints: if greater than this ignore
constraintsUB = c(10,Inf),
constraints: if smaller than this ignore
constraintsLB= c(-Inf,-Inf),

14

weight the traits for the selection

traitWeight = c(0,1),

population parameters

nCrosses = 100, nProgeny = 20, recombGens = 1,

coancestry parameters
A=NULL, lambda=c(@,0), nQTLperInd = 1,
selection parameters

propSelBetween = .9, propSelWithin =0.9,
nGenerations = 50

best = bestSol(res@)[2]

xa = res@$M[best,] %*% as.matrix(Gems[,c("Weight"”,6 "Value”)]); xa

res@$M[best,]

res@$score[nrow(res@$score),]

pareto

$ Genes”
Red Blue Purple Orange Green Pink White Black Yellow
#1 1 Q] 1 Q Q 1 Q
#
$Result
Weight Value
8.74 32.10
pmonitor(res@)
pareto(reso)
pareto plot the change of values across iterations
Description

plot for monitoring.

Usage

pareto(object,

Arguments
object
scaled
pch

xlim

scaled=TRUE, pch=20, xlim, ...)

model object of class "evolafit”

a logical value to specify the scale of the y-axis (gain in merit).

symbol for plotting points as desribed in par
upper and lower bound in the x-axis

Further arguments to be passed to the plot function.

pmonitor

Value

vector of plot

Author(s)

Giovanny Covarrubias

See Also

plot, evolafit

15

pmonitor

plot the change of values across iterations

Description

plot for monitoring.

Usage
pmonitor (object,
Arguments
object model object of class "evolafit”
Further arguments to be passed to the plot function.
Value

vector of plot

Author(s)

Giovanny Covarrubias

See Also

plot, evolafit

16 varM

varM Extract the variance existing in the genome solutions

Description
Extracts the variance found across the M element of the resulting object of the evolafit() function
which contains the different solution and somehow represents the genome of the population.
Usage

varM(object)

Arguments

object A resulting object from the function evolafit.

Details

A simple apply function looking at the variance in each column of the M element of the resulting
object of the evolafit function.

Value

$res a value of variance

References

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for complex prob-
lems. To be submitted to Bioinformatics.

See Also

evolafit — the core function of the package

Examples

set.seed(1)
Data
Gems <- data.frame(
Color = c("Red”, "Blue", "Purple”, "Orange",
"Green"”, "Pink"”, "White", "Black",
"Yellow"),
Weight = round(runif(9,0.5,5),2),
Value = round(abs(rnorm(9,0,5))+0.5,2),
Times=c(rep(1,8),0)
)
head(Gems)

varM

Task: Gem selection.
Aim: Get highest combined value.
Restriction: Max weight of the gem combined = 10.
res@<-evolafit(cbind(Weight,Value)~Color, dt= Gems,
constraints: if greater than this ignore
constraintsUB = c(10,Inf),
constraints: if smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
traitWeight = c(0,1),
population parameters
nCrosses = 100, nProgeny = 20, recombGens
coancestry parameters
A=NULL, lambda=c(@,0), nQTLperInd = 1,
selection parameters
propSelBetween = .9, propSelWithin =0.9,
nGenerations = 50

varM(res0)

1 ’

17

Index

* R package
evola-package, 2

+ datasets
DT_cpdata, 6
DT_technow, 7
DT_wheat, 9

+* models
pareto, 14
pmonitor, 15

A (DT_cpdata), 6
A.mat, 3
A_wheat (DT_wheat), 9

bestSol, 4
DT_cpdata, 2, 6
DT_technow, 2,7
DT_wheat, 2,9

evola (evola-package), 2
evola-package, 2
evolafit, 2,4, 5,11, 13,15, 16

GT_wheat (DT_wheat), 9
M_technow (DT_technow), 7

pareto, 14
plot, 15
pmonitor, 15

varM, 16

18

	evola-package
	A.mat
	bestSol
	DT_cpdata
	DT_technow
	DT_wheat
	evolafit
	pareto
	pmonitor
	varM
	Index

