gratia is a package to make working with generalized additive models (GAMs) in R easier, including producing plots of estimated smooths using the ggplot2 📦.
This introduction will cover some of the basic functionality of gratia to get you started. We’ll work with some classic simulated data often used to illustrate properties of GAMs
df <- data_sim("eg1", seed = 42)
df
#> # A tibble: 400 × 10
#> y x0 x1 x2 x3 f f0 f1 f2 f3
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2.99 0.915 0.0227 0.909 0.402 1.62 0.529 1.05 0.0397 0
#> 2 4.70 0.937 0.513 0.900 0.432 3.25 0.393 2.79 0.0630 0
#> 3 13.9 0.286 0.631 0.192 0.664 13.5 1.57 3.53 8.41 0
#> 4 5.71 0.830 0.419 0.532 0.182 6.12 1.02 2.31 2.79 0
#> 5 7.63 0.642 0.879 0.522 0.838 10.4 1.80 5.80 2.76 0
#> 6 9.80 0.519 0.108 0.160 0.917 10.4 2.00 1.24 7.18 0
#> 7 10.4 0.737 0.980 0.520 0.798 11.3 1.47 7.10 2.75 0
#> 8 12.8 0.135 0.265 0.225 0.503 11.4 0.821 1.70 8.90 0
#> 9 13.8 0.657 0.0843 0.282 0.254 11.1 1.76 1.18 8.20 0
#> 10 7.51 0.705 0.386 0.504 0.667 6.50 1.60 2.16 2.74 0
#> # ℹ 390 more rows
and the following GAM
m <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = df, method = "REML")
summary(m)
#>
#> Family: gaussian
#> Link function: identity
#>
#> Formula:
#> y ~ s(x0) + s(x1) + s(x2) + s(x3)
#>
#> Parametric coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 7.4951 0.1051 71.35 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df F p-value
#> s(x0) 3.425 4.244 8.828 8.78e-07 ***
#> s(x1) 3.221 4.003 67.501 < 2e-16 ***
#> s(x2) 7.905 8.685 67.766 < 2e-16 ***
#> s(x3) 1.885 2.359 2.642 0.0636 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.685 Deviance explained = 69.8%
#> -REML = 886.93 Scale est. = 4.4144 n = 400
gratia provides the draw()
function to produce plots
using the ggplot2 📦. To draw the estimated smooths from the GAM we
fitted above, use
This is intended as reasonable overview of the estimated model, but
it offers limited option to modify the resulting plot. If you want full
control, you can obtain the data used to create the plot above with
smooth_estimates()
sm <- smooth_estimates(m)
sm
#> # A tibble: 400 × 9
#> .smooth .type .by .estimate .se x0 x1 x2 x3
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 s(x0) TPRS <NA> -1.32 0.390 0.000239 NA NA NA
#> 2 s(x0) TPRS <NA> -1.24 0.365 0.0103 NA NA NA
#> 3 s(x0) TPRS <NA> -1.17 0.340 0.0204 NA NA NA
#> 4 s(x0) TPRS <NA> -1.09 0.318 0.0304 NA NA NA
#> 5 s(x0) TPRS <NA> -1.02 0.297 0.0405 NA NA NA
#> 6 s(x0) TPRS <NA> -0.947 0.279 0.0506 NA NA NA
#> 7 s(x0) TPRS <NA> -0.875 0.263 0.0606 NA NA NA
#> 8 s(x0) TPRS <NA> -0.803 0.249 0.0707 NA NA NA
#> 9 s(x0) TPRS <NA> -0.732 0.237 0.0807 NA NA NA
#> 10 s(x0) TPRS <NA> -0.662 0.228 0.0908 NA NA NA
#> # ℹ 390 more rows
which will evaluate all smooths are unevenly spaced values over the
range of the covariate(s). If you want to evaluate only selected
smooths, you can specify which via the smooth
argument.
This takes the smooth labels which are the names of the smooths
as they are known to mgcv. To list the labels for the smooths in use
To evaluate only \(f(x_2)\) use
sm <- smooth_estimates(m, smooth = "s(x2)")
sm
#> # A tibble: 100 × 6
#> .smooth .type .by .estimate .se x2
#> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 s(x2) TPRS <NA> -4.47 0.476 0.00359
#> 2 s(x2) TPRS <NA> -4.00 0.406 0.0136
#> 3 s(x2) TPRS <NA> -3.53 0.345 0.0237
#> 4 s(x2) TPRS <NA> -3.06 0.295 0.0338
#> 5 s(x2) TPRS <NA> -2.58 0.263 0.0438
#> 6 s(x2) TPRS <NA> -2.09 0.250 0.0539
#> 7 s(x2) TPRS <NA> -1.59 0.253 0.0639
#> 8 s(x2) TPRS <NA> -1.08 0.264 0.0740
#> 9 s(x2) TPRS <NA> -0.564 0.278 0.0841
#> 10 s(x2) TPRS <NA> -0.0364 0.289 0.0941
#> # ℹ 90 more rows
Then you can generate your own plot using the ggplot2 package, for example
library("ggplot2")
library("dplyr")
sm |>
add_confint() |>
ggplot(aes(y = .estimate, x = x2)) +
geom_ribbon(aes(ymin = .lower_ci, ymax = .upper_ci),
alpha = 0.2, fill = "forestgreen"
) +
geom_line(colour = "forestgreen", linewidth = 1.5) +
labs(
y = "Partial effect",
title = expression("Partial effect of" ~ f(x[2])),
x = expression(x[2])
)
The appraise()
function provides standard diagnostic
plots for GAMs
The plots produced are (from left-to-right, top-to-bottom),
Adding partial residuals to the partial effect plots produced by
draw()
can also help diagnose problems with the model, such
as oversmoothing
gratia is in very active development and an area of development that is currently lacking is documentation. To find out more about the package, look at the help pages for the package and look at the examples for more code to help you get going.