In this vignette we will discuss how to use the tidy_fft
function, what it does, and what it produces.
The tidy_fft
function has only a few parameters, six to
be exact. There are some sensible defaults made. It is important that
when you use this function, that you supply it with a full time-series
data set, one that has no missing data in it as this will affect your
results.
The function and its full parameters are as follows:
The .data
argument is the actual formatted data that
will get passed to the function, the time series data. The
.date_col
argument is the column that holds the datetime of
interest. The .value
column is the column that holds the
value that is being analyzed by the function, this can be counts,
averages, any type of value that is in the time series. The
.frequency
argument details the cyclical nature of the
data, is it 12 for monthly, 7 for weekly, etc. The
.harmonics
argument will tell the function how many times
the fft
should be run internally and how many filters
should be made. Finally the .upsampling
argument will tell
the function how much the function should up sample the time
parameter.
Let us now work through a simple example.
Lets get started with some data.
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(timetk))
data_tbl <- AirPassengers %>%
ts_to_tbl() %>%
select(-index)
Now that we have our sample data, let’s check it out.
Lets take a look at a time series plot of the data.
suppressPackageStartupMessages(library(timetk))
data_tbl %>%
plot_time_series(
.date_var = date_col,
.value = value
)
Now that we know what our data looks like, lets go ahead and run it
through the function and assign it to a variable called
output
The function invisibly returns a list object, hence the need to assign it to a variable. There are a total of 4 different sections of data in the list that are returned. These are:
In this section we will go over all of the data components that are
returned. We can access all of the data in the usual format
output$data
, which in of itself will return another list of
objects, 7 to be specific. Lets go through them all.
The data element accessed by output$data$data
is the
original data with a few elements added to it. Let’s take a look:
output$data$data %>%
glimpse()
#> Rows: 5,760
#> Columns: 6
#> $ harmonic <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
#> $ time <dbl> 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2,…
#> $ y_actual <dbl> 112, NA, NA, NA, NA, 118, NA, NA, NA, NA, 132, NA, NA, NA, …
#> $ y_hat <dbl> 292.1741, 291.0941, 290.0134, 288.9318, 287.8497, 286.7669,…
#> $ x <dbl> 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0,…
#> $ error_term <dbl> -180.1741, NA, NA, NA, NA, -168.7669, NA, NA, NA, NA, -149.…
The error_data element accessed by
output$data$error_data
is a tibble
that has
the original data, plus a few other elements and an error term that is
the actual value minus the harmonic output. This is done for each
harmonic level.
output$data$error_data %>%
glimpse()
#> Rows: 1,152
#> Columns: 6
#> $ harmonic <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
#> $ time <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
#> $ y_actual <dbl> 112, 118, 132, 129, 121, 135, 148, 148, 136, 119, 104, 118,…
#> $ y_hat <dbl> 292.1741, 286.7669, 281.3475, 275.9261, 270.5130, 265.1185,…
#> $ x <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
#> $ error_term <dbl> -180.17406, -168.76694, -149.34751, -146.92608, -149.51298,…
The input_vector is just the value column that was passed to the function.
output$data$input_vector
#> [1] 112 118 132 129 121 135 148 148 136 119 104 118 115 126 141 135 125 149
#> [19] 170 170 158 133 114 140 145 150 178 163 172 178 199 199 184 162 146 166
#> [37] 171 180 193 181 183 218 230 242 209 191 172 194 196 196 236 235 229 243
#> [55] 264 272 237 211 180 201 204 188 235 227 234 264 302 293 259 229 203 229
#> [73] 242 233 267 269 270 315 364 347 312 274 237 278 284 277 317 313 318 374
#> [91] 413 405 355 306 271 306 315 301 356 348 355 422 465 467 404 347 305 336
#> [109] 340 318 362 348 363 435 491 505 404 359 310 337 360 342 406 396 420 472
#> [127] 548 559 463 407 362 405 417 391 419 461 472 535 622 606 508 461 390 432
The maximum_harmonic_tbl is a tibble
that has data
regarding the maximum harmonic entered into the function, this will be
the most flexible data returned.
output$data$maximum_harmonic_tbl %>%
glimpse()
#> Rows: 720
#> Columns: 6
#> $ harmonic <fct> 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,…
#> $ time <dbl> 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2,…
#> $ y_actual <dbl> 112, NA, NA, NA, NA, 118, NA, NA, NA, NA, 132, NA, NA, NA, …
#> $ y_hat <dbl> 288.7745, 279.8566, 270.9787, 262.1584, 253.4132, 244.7606,…
#> $ x <dbl> 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0,…
#> $ error_term <dbl> -176.77449, NA, NA, NA, NA, -126.76057, NA, NA, NA, NA, -71…
The differenced_value_tbl
is a tibble
that
has a lag 1 difference of the value column supplied.
The dff_tbl
is a tibble
that is returned
that has the fft values, the complex, real and imaginary parts.
output$data$dff_tbl %>%
glimpse()
#> Rows: 144
#> Columns: 3
#> $ dff_trans <cpl> 40363.0000+0.0000i, 855.0323+8906.5596i, -48.1151+4098.6967i…
#> $ real_part <dbl> 40363.00000, 855.03235, -48.11512, 517.59390, -137.07676, -2…
#> $ imag_part <dbl> 0.00000, 8906.55958, 4098.69669, 3225.75142, 2323.01117, 200…
The last data piece of the data section is the ts_obj
.
This is a ts
version of the input_vector
output$data$ts_obj
#> Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
#> 1949 112 118 132 129 121 135 148 148 136 119 104 118
#> 1950 115 126 141 135 125 149 170 170 158 133 114 140
#> 1951 145 150 178 163 172 178 199 199 184 162 146 166
#> 1952 171 180 193 181 183 218 230 242 209 191 172 194
#> 1953 196 196 236 235 229 243 264 272 237 211 180 201
#> 1954 204 188 235 227 234 264 302 293 259 229 203 229
#> 1955 242 233 267 269 270 315 364 347 312 274 237 278
#> 1956 284 277 317 313 318 374 413 405 355 306 271 306
#> 1957 315 301 356 348 355 422 465 467 404 347 305 336
#> 1958 340 318 362 348 363 435 491 505 404 359 310 337
#> 1959 360 342 406 396 420 472 548 559 463 407 362 405
#> 1960 417 391 419 461 472 535 622 606 508 461 390 432
There are a total of five plots that are returned in the list. Three
of them are ggplot
plots and two of them are
plotly::ggplotly
plots.
The harmonic_plot
is a ggplot
plot that
shows all of the harmonic waves on the same graph if you set
.harmonics
greater than 1.
The max_har_plot
is a ggplot
plot of the
maximum harmonic wave entered into .harmonics
The harmonic_plotly
is a plotly::ggplotly
plot of the harmonic_plot
The model
portion has four pieces to it which we will
look at below.
The parameter m
is an internal parameter that is equal
to .harmonics
/ 2. This is fed into
TSA::harmonic
along with the ts_obj
The parameter harmonic_obj
is the object returned from
TSA::harmonic
The parameter harmonic_model
is the harmonic model from
the TSA::harmonic
The parameter model_summary
is a summary of the harmonic
model.
output$model$harmonic_obj %>% head()
#> cos(2*pi*t) cos(4*pi*t) cos(6*pi*t) cos(8*pi*t) cos(10*pi*t)
#> [1,] 1.000000e+00 1.0 1.000000e+00 1.0 1.000000e+00
#> [2,] 8.660254e-01 0.5 1.655735e-13 -0.5 -8.660254e-01
#> [3,] 5.000000e-01 -0.5 -1.000000e+00 -0.5 5.000000e-01
#> [4,] 1.157757e-12 -1.0 -5.292262e-12 1.0 3.969798e-12
#> [5,] -5.000000e-01 -0.5 1.000000e+00 -0.5 -5.000000e-01
#> [6,] -8.660254e-01 0.5 3.142992e-12 -0.5 8.660254e-01
#> cos(12*pi*t) sin(2*pi*t) sin(4*pi*t) sin(6*pi*t) sin(8*pi*t)
#> [1,] 1 -4.134027e-13 -8.268054e-13 2.397771e-12 -1.653611e-12
#> [2,] -1 5.000000e-01 8.660254e-01 1.000000e+00 8.660254e-01
#> [3,] 1 8.660254e-01 8.660254e-01 2.728918e-12 -8.660254e-01
#> [4,] -1 1.000000e+00 2.315515e-12 -1.000000e+00 -4.631030e-12
#> [5,] 1 8.660254e-01 -8.660254e-01 -5.796483e-13 8.660254e-01
#> [6,] -1 5.000000e-01 -8.660254e-01 1.000000e+00 -8.660254e-01
#> sin(10*pi*t)
#> [1,] -5.704992e-12
#> [2,] 5.000000e-01
#> [3,] -8.660254e-01
#> [4,] 1.000000e+00
#> [5,] -8.660254e-01
#> [6,] 5.000000e-01
output$model$harmonic_model
#>
#> Call:
#> stats::lm(formula = ts_obj ~ har_)
#>
#> Coefficients:
#> (Intercept) har_cos(2*pi*t) har_cos(4*pi*t) har_cos(6*pi*t)
#> 280.2986 -48.1494 16.7639 -6.3889
#> har_cos(8*pi*t) har_cos(10*pi*t) har_cos(12*pi*t) har_sin(2*pi*t)
#> 1.3889 -0.2534 -1.9097 -4.4632
#> har_sin(4*pi*t) har_sin(6*pi*t) har_sin(8*pi*t) har_sin(10*pi*t)
#> 11.6192 -11.1250 -7.9867 -6.4118
output$model$model_summary
#>
#> Call:
#> stats::lm(formula = ts_obj ~ har_)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -203.33 -93.48 -16.96 87.17 270.67
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 280.2986 9.8379 28.492 < 2e-16 ***
#> har_cos(2*pi*t) -48.1494 13.9128 -3.461 0.000726 ***
#> har_cos(4*pi*t) 16.7639 13.9128 1.205 0.230389
#> har_cos(6*pi*t) -6.3889 13.9128 -0.459 0.646840
#> har_cos(8*pi*t) 1.3889 13.9128 0.100 0.920632
#> har_cos(10*pi*t) -0.2534 13.9128 -0.018 0.985497
#> har_cos(12*pi*t) -1.9097 9.8379 -0.194 0.846381
#> har_sin(2*pi*t) -4.4632 13.9128 -0.321 0.748870
#> har_sin(4*pi*t) 11.6192 13.9128 0.835 0.405148
#> har_sin(6*pi*t) -11.1250 13.9128 -0.800 0.425367
#> har_sin(8*pi*t) -7.9867 13.9128 -0.574 0.566910
#> har_sin(10*pi*t) -6.4118 13.9128 -0.461 0.645662
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 118.1 on 132 degrees of freedom
#> Multiple R-squared: 0.1061, Adjusted R-squared: 0.03162
#> F-statistic: 1.424 on 11 and 132 DF, p-value: 0.169