A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization algorithm. MADGRAD is a 'best-of-both-worlds' optimizer with the generalization performance of stochastic gradient descent and at least as fast convergence as that of Adam, often faster. A drop-in optim_madgrad() implementation is provided based on Defazio et al (2020) <doi:10.48550/arXiv.2101.11075>.
Version: | 0.1.0 |
Imports: | torch (≥ 0.3.0), rlang |
Suggests: | testthat (≥ 3.0.0) |
Published: | 2021-05-10 |
DOI: | 10.32614/CRAN.package.madgrad |
Author: | Daniel Falbel [aut, cre, cph], RStudio [cph], MADGRAD original implementation authors. [cph] |
Maintainer: | Daniel Falbel <daniel at rstudio.com> |
License: | MIT + file LICENSE |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | madgrad results |
Reference manual: | madgrad.pdf |
Package source: | madgrad_0.1.0.tar.gz |
Windows binaries: | r-devel: madgrad_0.1.0.zip, r-release: madgrad_0.1.0.zip, r-oldrel: madgrad_0.1.0.zip |
macOS binaries: | r-release (arm64): madgrad_0.1.0.tgz, r-oldrel (arm64): madgrad_0.1.0.tgz, r-release (x86_64): madgrad_0.1.0.tgz, r-oldrel (x86_64): madgrad_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=madgrad to link to this page.