Introductions
In this package, we provide e-value for four DMR (differentially methylated region) detection tools (MethylKit, Metilene, BiSeq and DMRfinder) and general purpose.
- MethylKit
- BiSeq
- DMRfinder
- Metilene
- Other DNA methylation tools
- RNA-seq data
For DMR
(methylKit
, biseq
, DMRfinder
or metilene
), the met-evalue calculation is conducted by the metevalue.[DMR]
function.
DMR | Method | Input.1 Example | Input.2 Example |
---|---|---|---|
MethylKit | metevalue.methylKit |
data(demo_methylkit_methyrate) |
data(demo_methylkit_met_all) |
BiSeq | metevalue.biseq |
data(demo_biseq_methyrate) |
data(demo_biseq_DMR) |
DMRfinder | metevalue.DMRfinder |
data(demo_DMRfinder_rate_combine) |
data(demo_DMRfinder_DMRs) |
Metilene | metevalue.metilene |
data(demo_metilene_input) |
data(demo_metilene_out) |
Other DNA methylation tools | varevalue.single_general |
data(demo_metilene_input) or any data above |
|
RNA-seq data | metevalue.RNA_general |
data(demo_desq_out) |
Two routines are supported to calculate the combined e-value:
- Call by files: Here the
files
include the outputs of givenDMR
packages and its corresponding e-value of each region; - Call by R data frames: Here the
R data frames
are correspondingdata.frame
objects.
Other Demos
Please vist the metevalue-emo project for more demos.
Call by files
We design the metevalue.[DMR]
function to accept similar parameter patterns:
metevalue.[DMR](# methylation rates of each CpG site
methyrate, # Output file name of [DMR] with e-value of each region
[DMR].output, adjust.methods = "BH", # Adjust methods of e-value
sep = "\t", # seperator, default is the TAB key
bheader = FALSE # A logical value indicating whether the [DMR].output file
# contains the names of the variables as its first line
)
Here [DMR]
could be one of methylKit
, biseq
, DMRfinder
or metilene
.
Call by R data frames
We provide the evalue_buildin_var_fmt_nm
and varevalue.metilene
function to handle the general DMR e-value calculation in DNA methylation studies:
# Here `[DMR]` coudle be one of `methylKit`, `biseq`, `DMRfinder` or `metilene`.
= "[DMR]"
method_in_use = evalue_buildin_var_fmt_nm(
result # Data frame of the methylation rate
methyrate, # Data frame of output data corresponding to the
DMR_evalue_output, # "method" option
method = method_in_use) # DMR: "metilene", "biseq", "DMRfinder" or "methylKit"
= list(a = result$a,
result b = result$b,
a_b = evalue_buildin_sql(result$a, result$b, method = method_in_use))
= varevalue.metilene(result$a, result$b, result$a_b) result
Replace [DMR]
to one of methylKit
, biseq
, DMRfinder
or metilene
accordingly.
For RNAseq
user, metevalue.RNA_general
could be called directly. Example is:
data("demo_desq_out")
= metevalue.RNA_general(demo_desq_out, 'treated','untreated') evalue
Notice: for different
[DMR]
, thedata.frame
schemas are different!!! Check the R help document for details. Check the Demo data section for details.
Example: MethylKit
methylKit is an R package for DNA methylation analysis and annotation from high-throughput bisulfite sequencing. The package is designed to deal with sequencing data from RRBS and its variants, but also target-capture methods and whole genome bisulfite sequencing.
Currently, metevalue
package supports the e-value calculation using the methylKit
output file.
library(metevalue)
####Simulation Data ####
set.seed(1234)
<- function(n, r = 0.1){
simu_g_value = runif(n)
x runif(n) <= r] = 0
x[return(x);
}
library(methylKit)
=list( system.file("extdata",
file.list"test1.myCpG.txt", package = "methylKit"),
system.file("extdata",
"test2.myCpG.txt", package = "methylKit"),
system.file("extdata",
"control1.myCpG.txt", package = "methylKit"),
system.file("extdata",
"control2.myCpG.txt", package = "methylKit") )
# read the files to a methylRawList object: myobj
=methRead(file.list,
myobjsample.id=list("test1","test2","ctrl1","ctrl2"),
assembly="hg18",
treatment=c(1,1,0,0),
context="CpG"
)
=unite(myobj, destrand=FALSE)
meth<- getData(meth)[,seq(6,ncol(meth),3)]
meth.C <- getData(meth)[,seq(7,ncol(meth),3)]
meth.T <- meth.C/(meth.C + meth.T)
mr = getData(meth)[,1:2]
chr_pos = data.frame(chr_pos,mr)
methyrate names(methyrate) = c('chr', 'pos', rep('g1',2), rep('g2',2))
<-tileMethylCounts(myobj)
region<-unite(region,destrand=F)
meth<-calculateDiffMeth(meth)
myDiff#> two groups detected:
#> will calculate methylation difference as the difference of
#> treatment (group: 1) - control (group: 0)
<-getMethylDiff(myDiff,type="all")
met_all
= tempfile(c("rate_combine", "methylKit_DMR_raw"))
example_tempfiles tempdir()
write.table(methyrate, file=example_tempfiles[1], row.names=F, col.names=T, quote=F, sep='\t')
write.table (met_all, file=example_tempfiles[2], sep ="\t", row.names =F, col.names =T, quote =F)
evalue.methylKit
function could be used to tackle the problem.
= metevalue.methylKit(example_tempfiles[1], example_tempfiles[2], bheader = T)
result #> Joining, by = c("start", "end")
str(result)
#> 'data.frame': 24 obs. of 9 variables:
#> $ chr : chr "chr21" "chr21" "chr21" "chr21" ...
#> $ start : int 9927001 9944001 9959001 9967001 10011001 10077001 10087001 10186001 13664001 13991001 ...
#> $ end : int 9928000 9945000 9960000 9968000 10012000 10078000 10088000 10187000 13665000 13992000 ...
#> $ strand : chr "*" "*" "*" "*" ...
#> $ p : num 2.47e-10 2.57e-21 4.39e-23 3.08e-04 2.02e-65 ...
#> $ qvalue : num 3.24e-10 9.58e-21 2.36e-22 2.37e-04 3.27e-64 ...
#> $ meth.diff: num -34.1 -40.2 -25.4 -25.9 25.8 ...
#> $ e_value : num 1.65 1.65 1.65 1.65 1.65 ...
#> $ e_adjust : num 1.65 1.65 1.65 1.65 1.65 ...
Alternatively, one could use the build-in functions to derive functions which avoid the file operation:
= evalue_buildin_var_fmt_nm(methyrate, met_all, method="methylKit")
result = list(a = result$a,
result b = result$b,
a_b = evalue_buildin_sql(result$a, result$b, method="methylKit"))
= varevalue.metilene(result$a, result$b, result$a_b)
result #> Joining, by = c("start", "end")
str(result)
#> 'data.frame': 24 obs. of 9 variables:
#> $ chr : Factor w/ 1 level "chr21": 1 1 1 1 1 1 1 1 1 1 ...
#> $ start : int 9927001 9944001 9959001 9967001 10011001 10077001 10087001 10186001 13664001 13991001 ...
#> $ end : int 9928000 9945000 9960000 9968000 10012000 10078000 10088000 10187000 13665000 13992000 ...
#> $ strand : Factor w/ 3 levels "+","-","*": 3 3 3 3 3 3 3 3 3 3 ...
#> $ p : num 2.47e-10 2.57e-21 4.39e-23 3.08e-04 2.02e-65 ...
#> $ qvalue : num 3.24e-10 9.58e-21 2.36e-22 2.37e-04 3.27e-64 ...
#> $ meth.diff: num -34.1 -40.2 -25.4 -25.9 25.8 ...
#> $ e_value : num 1.65 1.65 1.65 1.65 1.65 ...
#> $ e_adjust : num 1.65 1.65 1.65 1.65 1.65 ...
Example: BiSeq
First, we load the methylation data at CpG site levels from ‘BiSeq’ package. Then we cluster CpG sites into DMRs using ‘BiSeq’.
library(BiSeq)
library(dplyr)
data(rrbs)
<- rawToRel(rrbs)
rrbs.rel <- methLevel(rrbs.rel)
methyrate <- data.frame(methyrate)
methyrate = cbind(rows = as.numeric(row.names(methyrate)), methyrate)
methyrateq = data.frame(rows = as.numeric(row.names(methyrate)), rowRanges(rrbs))
methypos = left_join(methypos, methyrateq)
methyrate = methyrate[,c(2,3,7:16)]
methyrate names(methyrate) <- c('chr','pos',rep('g1',5),rep('g2',5))
<- clusterSites(object = rrbs,perc.samples = 3/4,min.sites = 20,max.dist = 100)
rrbs.clust.unlim
clusterSitesToGR(rrbs.clust.unlim)
<- totalReads(rrbs.clust.unlim) > 0
ind.cov
<- quantile(totalReads(rrbs.clust.unlim)[ind.cov])
quant <- limitCov(rrbs.clust.unlim, maxCov = quant)
rrbs.clust.lim <- predictMeth(object = rrbs.clust.lim)
predictedMeth
<- predictedMeth[, colData(predictedMeth)$group == "test"]
test<- predictedMeth[, colData(predictedMeth)$group == "control"]
control <- rowMeans(methLevel(test))
mean.test <- rowMeans(methLevel(control))
mean.control
<- betaRegression(formula = ~group,link = "probit",object = predictedMeth,type = "BR")
betaResults <- makeVariogram(betaResults)
vario <- smoothVariogram(vario, sill = 0.9)
vario.sm
<- estLocCor(vario.sm)
locCor <- testClusters(locCor)
clusters.rej <- trimClusters(clusters.rej)
clusters.trimmed <- findDMRs(clusters.trimmed,max.dist = 100,diff.dir = TRUE)
DMRs
= tempfile(c('rate_combine', 'BiSeq_DMR'))
example_tempfiles write.table(methyrate, example_tempfiles[1], row.names=F, col.names=T, quote=F, sep='\t')
write.table(DMRs, example_tempfiles[2], quote=F, row.names = F,col.names = F, sep = '\t')
Finally, we add E-values and adjusted E-values as additional columns to the output file of ‘BiSeq’.metevalue.biseq
function could be used to tackle the problem.
= metevalue.biseq(example_tempfiles[1],example_tempfiles[2])
result str(result)
Example: DMRfinder
Given the input file
rate_combine_DMRfinder
: a file containing methylation rates at each CpG siteDMRfinder_DMR
: the output file from ‘DMRfinder’
<- read.table("rate_combine_DMRfinder", header = T)
rate_combine head(rate_combine)
<- read.table("DMRfinder_DMR", header = T)
DMRs head(DMRs)
Adding E-values and adjusted E-values as additional columns to file ‘DMRfinder_DMR’
<- metevalue.DMRfinder('rate_combine_DMRfinder', 'DMRfinder_DMR', bheader=T)
result head(result)
Alternatively, function varevalue.metilene
can also provide e-value and adjusted e-value.
= evalue_buildin_var_fmt_nm(rate_combine, DMRs, method="DMRfinder")
result = list(a = result$a,
result b = result$b,
a_b = evalue_buildin_sql(result$a, result$b, method="DMRfinder"))
= varevalue.metilene(result$a, result$b, result$a_b)
result head(result)
Example: Metilene
Given
metilene.input
: the input file ofMetilene
containing methylation rates at each CpG sitemetilene.out
: the output file ofMetilene
<- read.table("metilene.input", header = T)
input head(input)
<- read.table("metilene.out", header = F)
out head(out)
Adding E-values and adjusted E-values as additional columns to metilene.out
<- metevalue.metilene('metilene.input', 'metilene.out')
result head(result)
Alternatively, function varevalue.metilene
can also provide e-value and adjusted e-value.
= evalue_buildin_var_fmt_nm(input, out, method="metilene")
result = list(a = result$a,
result b = result$b,
a_b = evalue_buildin_sql(result$a, result$b, method="metilene"))
= varevalue.metilene(result$a, result$b, result$a_b)
result head(result)
Example: Other DNA methylation tools
In above examples, we have already provided examples to calculate E-values directly from DMR detection tools including BiSeq, DMRfinder, MethylKit and Metilene. All of these require users to prepare an output file of different tools. However, users may wonder how to calculate the E-values directly from CpG sites or other DNA methylation tools not presented above. We then facilitate the purpose in the following example.
methyrate
: a file containing methylation rates at each CpG site of 2 different groups
By changing the group name, start site and end site, function varevalue.single_general
can calculate e-value of any site or region using a general methylation rates data without using an output file of a specific tool.
<- read.table("methyrate", header = T)
input <- varevalue.single_general(methyrate=input, group1_name='g1', group2_name='g2', chr='chr21', start=9439679, end=9439679)
e_value head(e_value)
Example: RNA-seq data
The framework of E-value calculation presented in this project is also able to be extended to other genomic data including RNA-seq. Here is an example to introduce the E-value calculation in RNA-seq.
desq_out
: the RNA data
function metevalue.RNA_general
can provide e-values for each row of the normalized expression level of RNA-seq data.
<- read.table("desq_out", header = T)
input <- metevalue.RNA_general(input, group1_name='treated', group2_name='untreated')
data_e head(data_e)
Misc
Demo data
Demo data for different metevalue.[DMR]
functions are listed in the section.
Input Data Examples: MethylKit
methyrate Example
chr | pos | g1 | g1 | g2 | g2 |
---|---|---|---|---|---|
chr21 | 9853296 | 0.5882353 | 0.8048048 | 0.8888889 | 0.8632911 |
chr21 | 9853326 | 0.7058824 | 0.7591463 | 0.8750000 | 0.7493404 |
methylKit.output Example
chr | start | end | strand | pvalue | qvalue | meth.diff |
---|---|---|---|---|---|---|
chr21 | 9927001 | 9928000 | * | 0 | 0 | -34.07557 |
chr21 | 9944001 | 9945000 | * | 0 | 0 | -40.19089 |
Input Data Examples: BiSeq
methyrate Example
chr | pos | g1 | g1 | g1 | g1 | g1 | g2 | g2 | g2 | g2 | g2 |
---|---|---|---|---|---|---|---|---|---|---|---|
chr1 | 870425 | 0.8205128 | 1 | 0.7 | NaN | NaN | 0.3125 | 0.7419355 | 0.2461538 | 0.1794872 | 0.2413793 |
chr1 | 870443 | 0.8461538 | 1 | 0.7 | NaN | NaN | 0.3750 | 0.3225806 | 0.2923077 | 0.0512821 | 0.2413793 |
biseq.output Example
seqnames | start | end | width | strand | median.p | median.meth.group1 | median.meth.group2 | median.meth.diff |
---|---|---|---|---|---|---|---|---|
chr1 | 872369 | 872616 | 248 | * | 0.0753559 | 0.9385462 | 0.8666990 | 0.0710524 |
chr1 | 875227 | 875470 | 244 | * | 0.0000026 | 0.5136315 | 0.1991452 | 0.2942668 |
Input Data Examples: DMRfinder
methyrate Example
chr | pos | g1 | g1.1 | g2 | g2.1 |
---|---|---|---|---|---|
chr1 | 202833315 | 0 | 0.0000000 | 0 | 0 |
chr1 | 202833323 | 1 | 0.8095238 | 1 | 1 |
DMRfinder.output Example
chr | start | end | CpG | Control.mu | Exptl.mu | Control..Exptl.diff | Control..Exptl.pval |
---|---|---|---|---|---|---|---|
chr8 | 25164078 | 25164102 | 3 | 0.9241646 | 0.7803819 | -0.1437827 | 0.0333849 |
chr21 | 9437432 | 9437538 | 14 | 0.7216685 | 0.1215506 | -0.6001179 | 0.0000000 |
Input Data Examples: DMRfinder
methyrate Example
chr | pos | g1 | g1.1 | g1.2 | g1.3 | g1.4 | g1.5 | g1.6 | g1.7 | g2 | g2.1 | g2.2 | g2.3 | g2.4 | g2.5 | g2.6 | g2.7 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
chr21 | 9437433 | 0.9285714 | NA | 0.7222222 | 0.75 | 1 | 0.6666667 | 1 | 0.8695652 | 0.0000000 | 0 | 0 | 0 | 0.0000000 | 0.0 | NA | 0.00 |
chr21 | 9437445 | 1.0000000 | NA | 0.9444444 | 0.75 | 1 | 0.6666667 | 0 | 0.8695652 | 0.6111111 | 0 | 0 | 0 | 0.7333333 | 0.6 | NA | 0.75 |
metilene.output Example
chr | start | end | q-value | methyl.diff | CpGs | p | p2 | m1 | m2 |
---|---|---|---|---|---|---|---|---|---|
chr21 | 9437432 | 9437540 | 0 | 0.610989 | 26 | 0 | 0 | 0.73705 | 0.12606 |
chr21 | 9708982 | 9709189 | 0 | 0.475630 | 28 | 0 | 0 | 0.58862 | 0.11299 |
Input Data Examples: Metilene
metilene.input Example
chr | pos | g1 | g1.1 | g1.2 | g1.3 | g1.4 | g1.5 | g1.6 | g1.7 | g2 | g2.1 | g2.2 | g2.3 | g2.4 | g2.5 | g2.6 | g2.7 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
chr21 | 9437433 | 0.9285714 | NA | 0.7222222 | 0.75 | 1 | 0.6666667 | 1 | 0.8695652 | 0.0000000 | 0 | 0 | 0 | 0.0000000 | 0.0 | NA | 0.00 |
chr21 | 9437445 | 1.0000000 | NA | 0.9444444 | 0.75 | 1 | 0.6666667 | 0 | 0.8695652 | 0.6111111 | 0 | 0 | 0 | 0.7333333 | 0.6 | NA | 0.75 |
metilene.output Example
chr | start | end | q-value | methyl.diff | CpGs | p | p2 | m1 | m2 |
---|---|---|---|---|---|---|---|---|---|
chr21 | 9437432 | 9437540 | 0 | 0.610989 | 26 | 0 | 0 | 0.73705 | 0.12606 |
chr21 | 9708982 | 9709189 | 0 | 0.475630 | 28 | 0 | 0 | 0.58862 | 0.11299 |
Input Data Examples: Other DNA methylation tools
methyrate Example
chr | pos | g1 | g1.1 | g1.2 | g1.3 | g1.4 | g1.5 | g1.6 | g1.7 | g2 | g2.1 | g2.2 | g2.3 | g2.4 | g2.5 | g2.6 | g2.7 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
chr21 | 9437433 | 0.9285714 | NA | 0.7222222 | 0.75 | 1 | 0.6666667 | 1 | 0.8695652 | 0.0000000 | 0 | 0 | 0 | 0.0000000 | 0.0 | NA | 0.00 |
chr21 | 9437445 | 1.0000000 | NA | 0.9444444 | 0.75 | 1 | 0.6666667 | 0 | 0.8695652 | 0.6111111 | 0 | 0 | 0 | 0.7333333 | 0.6 | NA | 0.75 |
Input Data Examples: RNA-seq data
desq_out Example
treated1fb | treated2fb | treated3fb | untreated1fb | untreated2fb | untreated3fb | untreated4fb |
---|---|---|---|---|---|---|
4.449648 | 4.750104 | 4.431634 | 4.392285 | 4.497514 | 4.762213 | 4.533928 |
6.090031 | 5.973211 | 5.913239 | 6.238684 | 6.050743 | 5.932738 | 6.022005 |
Other Demos
Please vist the metevalue-emo project for more demos.