#> For execution on a local, multicore CPU with excess RAM we recommend calling
#> options(mc.cores = parallel::detectCores())
#>
#> Attaching package: 'multinma'
#> The following objects are masked from 'package:stats':
#>
#> dgamma, pgamma, qgamma
This vignette describes the analysis of smoking cessation data (Hasselblad
1998), replicating the analysis in NICE Technical Support
Document 4 (Dias et al.
2011). The data are available in this package as
smoking
:
head(smoking)
#> studyn trtn trtc r n
#> 1 1 1 No intervention 9 140
#> 2 1 3 Individual counselling 23 140
#> 3 1 4 Group counselling 10 138
#> 4 2 2 Self-help 11 78
#> 5 2 3 Individual counselling 12 85
#> 6 2 4 Group counselling 29 170
We begin by setting up the network. We have arm-level count data
giving the number quitting smoking (r
) out of the total
(n
) in each arm, so we use the function
set_agd_arm()
. Treatment “No intervention” is set as the
network reference treatment.
smknet <- set_agd_arm(smoking,
study = studyn,
trt = trtc,
r = r,
n = n,
trt_ref = "No intervention")
smknet
#> A network with 24 AgD studies (arm-based).
#>
#> ------------------------------------------------------- AgD studies (arm-based) ----
#> Study Treatment arms
#> 1 3: No intervention | Group counselling | Individual counselling
#> 2 3: Group counselling | Individual counselling | Self-help
#> 3 2: No intervention | Individual counselling
#> 4 2: No intervention | Individual counselling
#> 5 2: No intervention | Individual counselling
#> 6 2: No intervention | Individual counselling
#> 7 2: No intervention | Individual counselling
#> 8 2: No intervention | Individual counselling
#> 9 2: No intervention | Individual counselling
#> 10 2: No intervention | Self-help
#> ... plus 14 more studies
#>
#> Outcome type: count
#> ------------------------------------------------------------------------------------
#> Total number of treatments: 4
#> Total number of studies: 24
#> Reference treatment is: No intervention
#> Network is connected
Plot the network structure.
Following TSD 4, we fit a random effects NMA model, using the
nma()
function with trt_effects = "random"
. We
use \(\mathrm{N}(0, 100^2)\) prior
distributions for the treatment effects \(d_k\) and study-specific intercepts \(\mu_j\), and a \(\textrm{half-N}(5^2)\) prior distribution
for the between-study heterogeneity standard deviation \(\tau\). We can examine the range of
parameter values implied by these prior distributions with the
summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
summary(half_normal(scale = 5))
#> A half-Normal prior distribution: location = 0, scale = 5.
#> 50% of the prior density lies between 0 and 3.37.
#> 95% of the prior density lies between 0 and 9.8.
The model is fitted using the nma()
function. By
default, this will use a Binomial likelihood and a logit link function,
auto-detected from the data.
smkfit <- nma(smknet,
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = normal(scale = 5))
Basic parameter summaries are given by the print()
method:
smkfit
#> A random effects NMA with a binomial likelihood (logit link).
#> Inference for Stan model: binomial_1par.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff
#> d[Group counselling] 1.10 0.01 0.44 0.28 0.81 1.08 1.39 2.00 1944
#> d[Individual counselling] 0.84 0.01 0.24 0.40 0.68 0.83 0.99 1.33 1278
#> d[Self-help] 0.50 0.01 0.41 -0.30 0.22 0.49 0.76 1.34 1663
#> lp__ -5767.98 0.22 6.67 -5781.78 -5772.22 -5767.64 -5763.33 -5755.83 959
#> tau 0.85 0.01 0.19 0.55 0.71 0.82 0.95 1.32 994
#> Rhat
#> d[Group counselling] 1
#> d[Individual counselling] 1
#> d[Self-help] 1
#> lp__ 1
#> tau 1
#>
#> Samples were drawn using NUTS(diag_e) at Mon Apr 29 16:31:48 2024.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific intercepts \(\mu_j\) and study-specific relative effects
\(\delta_{jk}\) are hidden, but could
be examined by changing the pars
argument:
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
By default, this displays all model parameters given prior
distributions (in this case \(d_k\),
\(\mu_j\), and \(\tau\)), but this may be changed using the
prior
argument:
Model fit can be checked using the dic()
function
(dic_consistency <- dic(smkfit))
#> Residual deviance: 54 (on 50 data points)
#> pD: 43.8
#> DIC: 97.8
and the residual deviance contributions examined with the
corresponding plot()
method
Overall model fit seems to be adequate, with almost all points showing good fit (mean residual deviance contribution of 1). The only two points with higher residual deviance (i.e. worse fit) correspond to the two zero counts in the data:
Note: The results of the inconsistency models here are slightly different to those of Dias et al. (2010, 2011), although the overall conclusions are the same. This is due to the presence of multi-arm trials and a different ordering of treatments, meaning that inconsistency is parameterised differently within the multi-arm trials. The same results as Dias et al. are obtained if the network is instead set up with
trtn
as the treatment variable.
Another method for assessing inconsistency is node-splitting (Dias et al. 2011, 2010). Whereas the UME model assesses inconsistency globally, node-splitting assesses inconsistency locally for each potentially inconsistent comparison (those with both direct and indirect evidence) in turn.
Node-splitting can be performed using the nma()
function
with the argument consistency = "nodesplit"
. By default,
all possible comparisons will be split (as determined by the
get_nodesplits()
function). Alternatively, a specific
comparison or comparisons to split can be provided to the
nodesplit
argument.
smk_nodesplit <- nma(smknet,
consistency = "nodesplit",
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = normal(scale = 5))
#> Fitting model 1 of 7, node-split: Group counselling vs. No intervention
#> Fitting model 2 of 7, node-split: Individual counselling vs. No intervention
#> Fitting model 3 of 7, node-split: Self-help vs. No intervention
#> Fitting model 4 of 7, node-split: Individual counselling vs. Group counselling
#> Fitting model 5 of 7, node-split: Self-help vs. Group counselling
#> Fitting model 6 of 7, node-split: Self-help vs. Individual counselling
#> Fitting model 7 of 7, consistency model
The summary()
method summarises the node-splitting
results, displaying the direct and indirect estimates \(d_\mathrm{dir}\) and \(d_\mathrm{ind}\) from each node-split
model, the network estimate \(d_\mathrm{net}\) from the consistency
model, the inconsistency factor \(\omega =
d_\mathrm{dir} - d_\mathrm{ind}\), and a Bayesian \(p\)-value for inconsistency on each
comparison. Since random effects models are fitted, the heterogeneity
standard deviation \(\tau\) under each
node-split model and under the consistency model is also displayed. The
DIC model fit statistics are also provided.
summary(smk_nodesplit)
#> Node-splitting models fitted for 6 comparisons.
#>
#> ------------------------------ Node-split Group counselling vs. No intervention ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net 1.11 0.45 0.24 0.80 1.10 1.40 2.01 1720 2238 1
#> d_dir 1.09 0.76 -0.34 0.57 1.05 1.57 2.64 2751 2709 1
#> d_ind 1.14 0.54 0.06 0.80 1.14 1.49 2.21 1638 2222 1
#> omega -0.05 0.89 -1.81 -0.65 -0.06 0.52 1.76 2053 2604 1
#> tau 0.86 0.19 0.56 0.73 0.84 0.98 1.30 1020 1740 1
#> tau_consistency 0.84 0.19 0.55 0.70 0.82 0.95 1.29 1177 1625 1
#>
#> Residual deviance: 54 (on 50 data points)
#> pD: 44.1
#> DIC: 98
#>
#> Bayesian p-value: 0.94
#>
#> ------------------------- Node-split Individual counselling vs. No intervention ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net 0.86 0.24 0.39 0.69 0.85 1.01 1.37 1165 1736 1
#> d_dir 0.88 0.25 0.41 0.72 0.87 1.04 1.38 1970 2120 1
#> d_ind 0.57 0.67 -0.69 0.13 0.54 0.99 1.92 1547 1935 1
#> omega 0.31 0.69 -1.07 -0.11 0.33 0.78 1.60 1672 2021 1
#> tau 0.86 0.19 0.56 0.72 0.83 0.96 1.30 934 1616 1
#> tau_consistency 0.84 0.19 0.55 0.70 0.82 0.95 1.29 1177 1625 1
#>
#> Residual deviance: 54.4 (on 50 data points)
#> pD: 44.4
#> DIC: 98.8
#>
#> Bayesian p-value: 0.62
#>
#> -------------------------------------- Node-split Self-help vs. No intervention ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net 0.49 0.42 -0.32 0.23 0.49 0.76 1.33 1743 2093 1
#> d_dir 0.34 0.55 -0.71 -0.02 0.34 0.69 1.41 2975 2630 1
#> d_ind 0.69 0.62 -0.53 0.29 0.68 1.08 1.95 1958 1847 1
#> omega -0.35 0.81 -2.00 -0.88 -0.36 0.17 1.25 1990 2630 1
#> tau 0.86 0.19 0.55 0.73 0.84 0.97 1.31 1215 1764 1
#> tau_consistency 0.84 0.19 0.55 0.70 0.82 0.95 1.29 1177 1625 1
#>
#> Residual deviance: 53.9 (on 50 data points)
#> pD: 44.3
#> DIC: 98.2
#>
#> Bayesian p-value: 0.64
#>
#> ----------------------- Node-split Individual counselling vs. Group counselling ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.25 0.43 -1.11 -0.52 -0.24 0.03 0.58 2411 2460 1
#> d_dir -0.12 0.48 -1.08 -0.43 -0.11 0.19 0.82 3901 3244 1
#> d_ind -0.54 0.62 -1.76 -0.94 -0.54 -0.16 0.69 1448 1837 1
#> omega 0.42 0.69 -0.98 -0.02 0.45 0.88 1.72 1412 1907 1
#> tau 0.86 0.19 0.56 0.73 0.84 0.98 1.30 1415 1789 1
#> tau_consistency 0.84 0.19 0.55 0.70 0.82 0.95 1.29 1177 1625 1
#>
#> Residual deviance: 53.7 (on 50 data points)
#> pD: 44.2
#> DIC: 97.8
#>
#> Bayesian p-value: 0.53
#>
#> ------------------------------------ Node-split Self-help vs. Group counselling ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.61 0.50 -1.63 -0.91 -0.61 -0.29 0.34 2714 2478 1
#> d_dir -0.62 0.66 -1.92 -1.05 -0.62 -0.18 0.67 3690 3017 1
#> d_ind -0.64 0.68 -1.97 -1.08 -0.64 -0.19 0.67 1972 2270 1
#> omega 0.02 0.88 -1.74 -0.56 0.02 0.60 1.76 2153 2322 1
#> tau 0.87 0.20 0.57 0.73 0.84 0.97 1.35 948 1578 1
#> tau_consistency 0.84 0.19 0.55 0.70 0.82 0.95 1.29 1177 1625 1
#>
#> Residual deviance: 54.1 (on 50 data points)
#> pD: 44.4
#> DIC: 98.5
#>
#> Bayesian p-value: 0.98
#>
#> ------------------------------- Node-split Self-help vs. Individual counselling ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.36 0.42 -1.19 -0.62 -0.35 -0.10 0.45 2205 2293 1
#> d_dir 0.07 0.66 -1.22 -0.37 0.08 0.49 1.38 3112 3065 1
#> d_ind -0.61 0.53 -1.67 -0.94 -0.61 -0.28 0.45 1935 2127 1
#> omega 0.68 0.83 -0.95 0.15 0.68 1.19 2.36 2171 2323 1
#> tau 0.85 0.20 0.55 0.71 0.82 0.96 1.32 1108 1567 1
#> tau_consistency 0.84 0.19 0.55 0.70 0.82 0.95 1.29 1177 1625 1
#>
#> Residual deviance: 54.3 (on 50 data points)
#> pD: 44.5
#> DIC: 98.8
#>
#> Bayesian p-value: 0.39
The DIC of each inconsistency model is unchanged from the consistency model, no node-splits result in reduced heterogeneity standard deviation \(\tau\) compared to the consistency model, and the Bayesian \(p\)-values are all large. There is no evidence of inconsistency.
We can visually compare the posterior distributions of the direct,
indirect, and network estimates using the plot()
method.
These are all in agreement; the posterior densities of the direct and
indirect estimates overlap. Notice that there is not much indirect
information for the Individual counselling vs. No intervention
comparison, so the network (consistency) estimate is very similar to the
direct estimate for this comparison.
Pairwise relative effects, for all pairwise contrasts with
all_contrasts = TRUE
.
(smk_releff <- relative_effects(smkfit, all_contrasts = TRUE))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS
#> d[Group counselling vs. No intervention] 1.10 0.44 0.28 0.81 1.08 1.39 2.00 1974
#> d[Individual counselling vs. No intervention] 0.84 0.24 0.40 0.68 0.83 0.99 1.33 1283
#> d[Self-help vs. No intervention] 0.50 0.41 -0.30 0.22 0.49 0.76 1.34 1717
#> d[Individual counselling vs. Group counselling] -0.26 0.42 -1.12 -0.53 -0.25 0.01 0.53 2436
#> d[Self-help vs. Group counselling] -0.61 0.49 -1.60 -0.93 -0.59 -0.29 0.33 2521
#> d[Self-help vs. Individual counselling] -0.34 0.42 -1.19 -0.62 -0.34 -0.07 0.49 1853
#> Tail_ESS Rhat
#> d[Group counselling vs. No intervention] 2268 1
#> d[Individual counselling vs. No intervention] 1868 1
#> d[Self-help vs. No intervention] 1844 1
#> d[Individual counselling vs. Group counselling] 2263 1
#> d[Self-help vs. Group counselling] 2436 1
#> d[Self-help vs. Individual counselling] 2413 1
plot(smk_releff, ref_line = 0)
Treatment rankings, rank probabilities, and cumulative rank
probabilities. We set lower_better = FALSE
since a higher
log odds of cessation is better (the outcome is positive).
(smk_ranks <- posterior_ranks(smkfit, lower_better = FALSE))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> rank[No intervention] 3.89 0.32 3 4 4 4 4 2145 NA 1
#> rank[Group counselling] 1.36 0.61 1 1 1 2 3 2953 2956 1
#> rank[Individual counselling] 1.94 0.64 1 2 2 2 3 2584 1339 1
#> rank[Self-help] 2.80 0.70 1 3 3 3 4 2411 NA 1
plot(smk_ranks)
(smk_rankprobs <- posterior_rank_probs(smkfit, lower_better = FALSE))
#> p_rank[1] p_rank[2] p_rank[3] p_rank[4]
#> d[No intervention] 0.00 0.00 0.10 0.89
#> d[Group counselling] 0.71 0.23 0.06 0.00
#> d[Individual counselling] 0.23 0.59 0.17 0.00
#> d[Self-help] 0.06 0.17 0.66 0.10
plot(smk_rankprobs)
(smk_cumrankprobs <- posterior_rank_probs(smkfit, lower_better = FALSE, cumulative = TRUE))
#> p_rank[1] p_rank[2] p_rank[3] p_rank[4]
#> d[No intervention] 0.00 0.00 0.11 1
#> d[Group counselling] 0.71 0.94 1.00 1
#> d[Individual counselling] 0.23 0.83 1.00 1
#> d[Self-help] 0.06 0.23 0.90 1
plot(smk_cumrankprobs)