orbital: Predict with 'tidymodels' Workflows in Databases

Turn 'tidymodels' workflows into objects containing the sufficient sequential equations to perform predictions. These smaller objects allow for low dependency prediction locally or directly in databases.

Version: 0.2.0
Imports: cli, dplyr, rlang
Suggests: arrow, DBI, dbplyr, dtplyr, duckdb, embed, glue, hardhat, jsonlite, kknn, knitr, modeldata, parsnip, R6, recipes, rmarkdown, RSQLite, rstanarm, sparklyr, testthat (≥ 3.0.0), themis, tidypredict, workflows
Published: 2024-07-28
DOI: 10.32614/CRAN.package.orbital
Author: Emil Hvitfeldt [aut, cre], Posit Software, PBC [cph, fnd]
Maintainer: Emil Hvitfeldt <emil.hvitfeldt at posit.co>
BugReports: https://github.com/tidymodels/orbital/issues
License: MIT + file LICENSE
URL: https://github.com/tidymodels/orbital
NeedsCompilation: no
Materials: README NEWS
CRAN checks: orbital results

Documentation:

Reference manual: orbital.pdf
Vignettes: Supported Models and recipes steps

Downloads:

Package source: orbital_0.2.0.tar.gz
Windows binaries: r-devel: orbital_0.2.0.zip, r-release: orbital_0.2.0.zip, r-oldrel: orbital_0.2.0.zip
macOS binaries: r-release (arm64): orbital_0.2.0.tgz, r-oldrel (arm64): orbital_0.2.0.tgz, r-release (x86_64): orbital_0.2.0.tgz, r-oldrel (x86_64): orbital_0.2.0.tgz
Old sources: orbital archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=orbital to link to this page.