An R package to display and analyze ROC curves.
For more information, see:
The latest stable version is best installed from the CRAN:
install.packages("pROC")
If you don’t want to read the manual first, try the following:
library(pROC)
data(aSAH)
roc(aSAH$outcome, aSAH$s100b)
roc(outcome ~ s100b, aSAH)
roc(outcome ~ s100b, aSAH, smooth=TRUE)
<- roc(aSAH$outcome,
roc1 $s100b, percent=TRUE,
aSAH# arguments for auc
partial.auc=c(100, 90), partial.auc.correct=TRUE,
partial.auc.focus="sens",
# arguments for ci
ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE,
# arguments for plot
plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE,
print.auc=TRUE, show.thres=TRUE)
# Add to an existing plot. Beware of 'percent' specification!
<- roc(aSAH$outcome, aSAH$wfns,
roc2 plot=TRUE, add=TRUE, percent=roc1$percent)
coords(roc1, "best", ret=c("threshold", "specificity", "1-npv"))
coords(roc2, "local maximas", ret=c("threshold", "sens", "spec", "ppv", "npv"))
# Of the AUC
ci(roc2)
# Of the curve
<- ci.se(roc1, specificities=seq(0, 100, 5))
sens.ci plot(sens.ci, type="shape", col="lightblue")
plot(sens.ci, type="bars")
# need to re-add roc2 over the shape
plot(roc2, add=TRUE)
# CI of thresholds
plot(ci.thresholds(roc2))
# Test on the whole AUC
roc.test(roc1, roc2, reuse.auc=FALSE)
# Test on a portion of the whole AUC
roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(100, 90),
partial.auc.focus="se", partial.auc.correct=TRUE)
# With modified bootstrap parameters
roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(100, 90),
partial.auc.correct=TRUE, boot.n=1000, boot.stratified=FALSE)
# Two ROC curves
power.roc.test(roc1, roc2, reuse.auc=FALSE)
power.roc.test(roc1, roc2, power=0.9, reuse.auc=FALSE)
# One ROC curve
power.roc.test(auc=0.8, ncases=41, ncontrols=72)
power.roc.test(auc=0.8, power=0.9)
power.roc.test(auc=0.8, ncases=41, ncontrols=72, sig.level=0.01)
power.roc.test(ncases=41, ncontrols=72, power=0.9)
?pROC
on the R command lineIf you still can’t find an answer, you can:
Download the source code from git, unzip it if necessary, and then
type R CMD INSTALL pROC
. Alternatively, you can use the devtools package by Hadley Wickham to automate the process
(make sure you follow the full
instructions to get started):
if (! requireNamespace("devtools")) install.packages("devtools")
::install_github("xrobin/pROC@develop") devtools
To run all automated tests and R checks, including slow tests:
cd .. # Run from parent directory
VERSION=$(grep Version pROC/DESCRIPTION | sed "s/.\+ //")
R CMD build pROC
RUN_SLOW_TESTS=true R CMD check pROC_$VERSION.tar.gz
Or from an R command prompt with devtools:
devtools::check()
To run automated tests only from an R command prompt:
run_slow_tests <- TRUE # Optional, include slow tests
devtools::test()
The vdiffr package is used for visual tests of plots.
To run all the test cases (incl. slow ones) from the command line:
<- TRUE
run_slow_tests ::test() # Must run the new tests
devtools::snapshot_review() testthat
To run the checks upon R CMD check, set environment variable
NOT_CRAN=1
:
NOT_CRAN=1 RUN_SLOW_TESTS=true R CMD check pROC_$VERSION.tar.gz
Version
and Date
in
DESCRIPTION
NEWS
VERSION=$(grep Version pROC/DESCRIPTION | sed "s/.\+ //") && echo $VERSION
R CMD build pROC && R CMD check --as-cran pROC_$VERSION.tar.gz
NOT_CRAN=1 RUN_SLOW_TESTS=true R CMD check pROC_$VERSION.tar.gz
rhub::check_for_cran()
revdepcheck::revdep_check(num_workers=8, timeout = as.difftime(60, units = "mins"))
git checkout master && git merge develop
git tag v$VERSION && git push --tags