This vignette provides examples of how to use the xform_function
transformation to create new data features for PMML models.
Given a xform_wrap
object and a transformation expression, xform_function
calculates data for a new feature and creates a new xform_wrap
object. When PMML is produced with pmml::pmml()
, the transformation is inserted into the LocalTransformations
node as a DerivedField
.
Multiple data fields and functions can be combined to produce a new feature.
The code below uses knitr::kable()
to make tables more readable.
Using the iris
dataset as an example, let’s construct a new feature by transforming one variable. Load the dataset and show the first few lines:
data(iris)
kable(head(iris,3))
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3.0 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
Create the iris_box
object with xform_wrap
:
<- xform_wrap(iris) iris_box
iris_box
contains the data and transform information that will be used to produce PMML later. The original data is in iris_box$data
. Any new features created with a transformation are added as columns to this data frame.
kable(head(iris_box$data,3))
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3.0 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
Transform and field information is in iris_box$field_data
. The field_data data frame contains information on every field in the dataset, as well as every transform used. The xform_function
column contains expressions used in the xform_function
transform.
kable(iris_box$field_data)
type | dataType | orig_field_name | sampleMin | sampleMax | xformedMin | xformedMax | centers | scales | fieldsMap | transform | default | missingValue | xform_function | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sepal.Length | original | numeric | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Sepal.Width | original | numeric | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Petal.Length | original | numeric | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Petal.Width | original | numeric | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Species | original | factor | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Now add a new feature, Sepal.Length.Sqrt
, using xform_function
:
<- xform_function(iris_box,orig_field_name="Sepal.Length",
iris_box new_field_name="Sepal.Length.Sqrt",
expression="sqrt(Sepal.Length)")
The new feature is calculated and added as a column to the iris_box$data
data frame:
kable(head(iris_box$data,3))
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | Sepal.Length.Sqrt |
---|---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa | 2.258318 |
4.9 | 3.0 | 1.4 | 0.2 | setosa | 2.213594 |
4.7 | 3.2 | 1.3 | 0.2 | setosa | 2.167948 |
iris_box$field_data
now contains a new row with the transformation expression:
kable(iris_box$field_data[6,c(1:3,14)])
type | dataType | orig_field_name | xform_function | |
---|---|---|---|---|
Sepal.Length.Sqrt | derived | numeric | Sepal.Length | sqrt(Sepal.Length) |
Construct a linear model for Petal.Width
using this new feature, and convert it to PMML:
<- lm(Petal.Width ~ Sepal.Length.Sqrt, data=iris_box$data)
fit <- pmml(fit, transform=iris_box) fit_pmml
Since the model predicts Petal.Width
using a variable based on Sepal.Length
, the PMML will contain these two fields in the DataDictionary
and MiningSchema
:
2]] #Data Dictionary node
fit_pmml[[#> <DataDictionary numberOfFields="2">
#> <DataField name="Petal.Width" optype="continuous" dataType="double"/>
#> <DataField name="Sepal.Length" optype="continuous" dataType="double"/>
#> </DataDictionary>
3]][[1]] #Mining Schema node
fit_pmml[[#> <MiningSchema>
#> <MiningField name="Petal.Width" usageType="predicted" invalidValueTreatment="returnInvalid"/>
#> <MiningField name="Sepal.Length" usageType="active" invalidValueTreatment="returnInvalid"/>
#> </MiningSchema>
The LocalTransformations
node contains Sepal.Length.Sqrt
as a derived field:
3]][[3]]
fit_pmml[[#> <LocalTransformations>
#> <DerivedField name="Sepal.Length.Sqrt" dataType="double" optype="continuous">
#> <Apply function="sqrt">
#> <FieldRef field="Sepal.Length"/>
#> </Apply>
#> </DerivedField>
#> </LocalTransformations>
xform_function
can also operate on categorical data. In this example, let’s create a numeric feature that equals 1 when Species
is setosa
, and 0 otherwise:
<- xform_wrap(iris)
iris_box <- xform_function(iris_box,orig_field_name="Species",
iris_box new_field_name="Species.Setosa",
expression="if (Species == 'setosa') {1} else {0}")
kable(head(iris_box$data,3))
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | Species.Setosa |
---|---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa | 1 |
4.9 | 3.0 | 1.4 | 0.2 | setosa | 1 |
4.7 | 3.2 | 1.3 | 0.2 | setosa | 1 |
Create a linear model and check the LocalTransformations
node:
<- lm(Petal.Width ~ Species.Setosa, data=iris_box$data)
fit <- pmml(fit, transform=iris_box)
fit_pmml 3]][[3]]
fit_pmml[[#> <LocalTransformations>
#> <DerivedField name="Species.Setosa" dataType="double" optype="continuous">
#> <Apply function="if">
#> <Apply function="equal">
#> <FieldRef field="Species"/>
#> <Constant dataType="string">setosa</Constant>
#> </Apply>
#> <Constant dataType="double">1</Constant>
#> <Constant dataType="double">0</Constant>
#> </Apply>
#> </DerivedField>
#> </LocalTransformations>
Several fields can be combined to create new features. Let’s make a new field from the ratio of sepal and petal lengths:
<- xform_wrap(iris)
iris_box <- xform_function(iris_box,orig_field_name="Sepal.Length,Petal.Length",
iris_box new_field_name="Length.Ratio",
expression="Sepal.Length / Petal.Length")
As before, the new field is added as a column to the iris_box$data
data frame:
kable(head(iris_box$data,3))
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | Length.Ratio |
---|---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa | 3.642857 |
4.9 | 3.0 | 1.4 | 0.2 | setosa | 3.500000 |
4.7 | 3.2 | 1.3 | 0.2 | setosa | 3.615385 |
Fit a linear model using this new feature, and convert it to pmml:
<- lm(Petal.Width ~ Length.Ratio, data=iris_box$data)
fit <- pmml(fit, transform=iris_box) fit_pmml
The pmml will contain Sepal.Length
and Petal.Length
in the DataDictionary
and MiningSchema
:
2]] #Data Dictionary node
fit_pmml[[#> <DataDictionary numberOfFields="3">
#> <DataField name="Petal.Width" optype="continuous" dataType="double"/>
#> <DataField name="Sepal.Length" optype="continuous" dataType="double"/>
#> <DataField name="Petal.Length" optype="continuous" dataType="double"/>
#> </DataDictionary>
3]][[1]] #Mining Schema node
fit_pmml[[#> <MiningSchema>
#> <MiningField name="Petal.Width" usageType="predicted" invalidValueTreatment="returnInvalid"/>
#> <MiningField name="Sepal.Length" usageType="active" invalidValueTreatment="returnInvalid"/>
#> <MiningField name="Petal.Length" usageType="active" invalidValueTreatment="returnInvalid"/>
#> </MiningSchema>
The Local.Transformations
node contains Length.Ratio
as a derived field:
3]][[3]]
fit_pmml[[#> <LocalTransformations>
#> <DerivedField name="Length.Ratio" dataType="double" optype="continuous">
#> <Apply function="/">
#> <FieldRef field="Sepal.Length"/>
#> <FieldRef field="Petal.Length"/>
#> </Apply>
#> </DerivedField>
#> </LocalTransformations>
It is possible to pass a feature derived with xform_function
to another xform_function
call. To do this, the second call to xform_function
must use the original data field names (instead of the derived field) in the orig_field_name
argument.
<- xform_wrap(iris)
iris_box <- xform_function(iris_box,orig_field_name="Sepal.Length,Petal.Length",
iris_box new_field_name="Length.Ratio",
expression="Sepal.Length / Petal.Length")
<- xform_function(iris_box,orig_field_name="Sepal.Length,Petal.Length,Sepal.Width",
iris_box new_field_name="Length.R.Times.S.Width",
expression="Length.Ratio * Sepal.Width")
kable(iris_box$field_data[6:7,c(1:3,14)])
type | dataType | orig_field_name | xform_function | |
---|---|---|---|---|
Length.Ratio | derived | numeric | Sepal.Length,Petal.Length | Sepal.Length / Petal.Length |
Length.R.Times.S.Width | derived | numeric | Sepal.Length,Petal.Length,Sepal.Width | Length.Ratio * Sepal.Width |
<- lm(Petal.Width ~ Length.R.Times.S.Width, data=iris_box$data)
fit <- pmml(fit, transform=iris_box) fit_pmml
The pmml will contain Sepal.Length
, Petal.Length
, and Sepal.Width
in the DataDictionary
and MiningSchema
:
2]] #Data Dictionary node
fit_pmml[[#> <DataDictionary numberOfFields="4">
#> <DataField name="Petal.Width" optype="continuous" dataType="double"/>
#> <DataField name="Sepal.Length" optype="continuous" dataType="double"/>
#> <DataField name="Petal.Length" optype="continuous" dataType="double"/>
#> <DataField name="Sepal.Width" optype="continuous" dataType="double"/>
#> </DataDictionary>
3]][[1]] #Mining Schema node
fit_pmml[[#> <MiningSchema>
#> <MiningField name="Petal.Width" usageType="predicted" invalidValueTreatment="returnInvalid"/>
#> <MiningField name="Sepal.Length" usageType="active" invalidValueTreatment="returnInvalid"/>
#> <MiningField name="Petal.Length" usageType="active" invalidValueTreatment="returnInvalid"/>
#> <MiningField name="Sepal.Width" usageType="active" invalidValueTreatment="returnInvalid"/>
#> </MiningSchema>
The Local.Transformations
node contains Length.Ratio
and Length.R.Times.S.Width
as derived fields:
3]][[3]]
fit_pmml[[#> <LocalTransformations>
#> <DerivedField name="Length.Ratio" dataType="double" optype="continuous">
#> <Apply function="/">
#> <FieldRef field="Sepal.Length"/>
#> <FieldRef field="Petal.Length"/>
#> </Apply>
#> </DerivedField>
#> <DerivedField name="Length.R.Times.S.Width" dataType="double" optype="continuous">
#> <Apply function="*">
#> <FieldRef field="Length.Ratio"/>
#> <FieldRef field="Sepal.Width"/>
#> </Apply>
#> </DerivedField>
#> </LocalTransformations>
The resulting field can be numeric or factor. Note that factors are exported with dataType = "string"
and optype = "categorical"
in PMML. The following code creates a factor with 3 levels from Sepal.Length
:
<- xform_wrap(iris)
iris_box
<- xform_function(wrap_object = iris_box,
iris_box orig_field_name = "Sepal.Length",
new_field_name = "SL_factor",
new_field_data_type = "factor",
expression = "if(Sepal.Length<5.1) {'level_A'} else if (Sepal.Length>6.6) {'level_B'} else {'level_C'}")
kable(head(iris_box$data, 3))
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | SL_factor |
---|---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa | level_C |
4.9 | 3.0 | 1.4 | 0.2 | setosa | level_A |
4.7 | 3.2 | 1.3 | 0.2 | setosa | level_A |
The feature can then be used to create a model as usual:
<- lm(Petal.Width ~ SL_factor, data=iris_box$data)
fit <- pmml(fit, transform=iris_box) fit_pmml
xform_function
The following R functions and operators are directly supported by xform_function
. Their PMML equivalents are listed in the second column:
R | PMML |
---|---|
+ | + |
- | - |
/ | / |
* | * |
^ | pow |
< | lessThan |
<= | lessOrEqual |
> | greaterThan |
>= | greaterOrEqual |
&& | and |
& | and |
| | or |
|| | or |
== | equal |
!= | notEqual |
! | not |
ceiling | ceil |
prod | product |
log | ln |
For these functions, no extra code is required for translation.
The R function prod
can be used as long as only numeric arguments are specified. That is, prod
can take an na.rm
argument, but specifying this in xform_function
directly will not produce PMML equivalent to the R expression.
Similarly, the R function log
can be used directly as long as the second argument (the base) is not specified.
xform_function
There are built-in functions defined in PMML that cannot be directly translated to PMML using xform_function
as described above.
In this case, an error will be thrown when R tries to calculate a new feature using the function passed to xform_function
, but does not see that function in the environment.
It is still possible to make xform_function
work, but the PMML function must be defined in the R environment first.
Let’s use isIn
, a PMML function, as an example. The function returns a boolean indicating whether the first argument is contained in a list of values. Detailed specification for this function is available on this DMG page.
One way to implement this in R is by using %in%
, with the list of values being represented by ...
:
<- function(x, ...) {
isIn <- c(...)
dots if (x %in% dots) {
return(TRUE)
else {
} return(FALSE)
}
}
isIn(1,2,1,4)
#> [1] TRUE
This function can now be passed to xform_function
. The following code creates a feature that indicates whether Species
is either setosa
or versicolor
:
<- xform_wrap(iris)
iris_box <- xform_function(iris_box,orig_field_name="Species",
iris_box new_field_name="Species.Setosa.or.Versicolor",
expression="isIn(Species,'setosa','versicolor')")
The data
data frame now contains the new feature:
kable(head(iris_box$data,3))
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | Species.Setosa.or.Versicolor |
---|---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa | 1 |
4.9 | 3.0 | 1.4 | 0.2 | setosa | 1 |
4.7 | 3.2 | 1.3 | 0.2 | setosa | 1 |
Create a linear model and view the corresponding PMML for the function:
<- lm(Petal.Width ~ Species.Setosa.or.Versicolor, data=iris_box$data)
fit <- pmml(fit, transform=iris_box)
fit_pmml 3]][[3]]
fit_pmml[[#> <LocalTransformations>
#> <DerivedField name="Species.Setosa.or.Versicolor" dataType="double" optype="continuous">
#> <Apply function="isIn">
#> <FieldRef field="Species"/>
#> <Constant dataType="string">setosa</Constant>
#> <Constant dataType="string">versicolor</Constant>
#> </Apply>
#> </DerivedField>
#> </LocalTransformations>
xform_function
- another exampleAs another example, let’s use R’s mean
function to create a new feature. PMML has a built-in avg
, so we will define an R function with this name.
<- function(...) {
avg <- c(...)
dots return(mean(dots))
}
Now use this function to take an average of several other features and combine with another field:
<- xform_wrap(iris)
iris_box <- xform_function(iris_box,orig_field_name="Sepal.Length,Petal.Length,Sepal.Width",
iris_box new_field_name="Length.Average.Ratio",
expression="avg(Sepal.Length,Petal.Length)/Sepal.Width")
The data
data frame now contains the new feature:
kable(head(iris_box$data,3))
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | Length.Average.Ratio |
---|---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa | 0.9285714 |
4.9 | 3.0 | 1.4 | 0.2 | setosa | 1.0500000 |
4.7 | 3.2 | 1.3 | 0.2 | setosa | 0.9375000 |
Create a simple linear model and view the corresponding PMML for the function:
<- lm(Petal.Width ~ Length.Average.Ratio, data=iris_box$data)
fit <- pmml(fit, transform=iris_box)
fit_pmml 3]][[3]]
fit_pmml[[#> <LocalTransformations>
#> <DerivedField name="Length.Average.Ratio" dataType="double" optype="continuous">
#> <Apply function="/">
#> <Apply function="avg">
#> <FieldRef field="Sepal.Length"/>
#> <FieldRef field="Petal.Length"/>
#> </Apply>
#> <FieldRef field="Sepal.Width"/>
#> </Apply>
#> </DerivedField>
#> </LocalTransformations>
In the PMML, avg
will be recognized as a valid function.
The function function_to_pmml
(part of the pmml
package) makes it possible to convert an R expression into PMML directly, without creating a model or calculating values.
As long as the expression passed to the function is a valid R expression (e.g., no unbalanced parentheses), it can contain arbitrary function names not defined in R. Variables in the expression passed to xform_function
are always assumed to be field names, and not substituted. That is, even if x
has a value in the R environment, the resulting expression will still use x
.
function_to_pmml("1 + 2")
#> <Apply function="+">
#> <Constant dataType="double">1</Constant>
#> <Constant dataType="double">2</Constant>
#> </Apply>
<- 3
x function_to_pmml("foo(bar(x * y))")
#> <Apply function="foo">
#> <Apply function="bar">
#> <Apply function="*">
#> <FieldRef field="x"/>
#> <FieldRef field="y"/>
#> </Apply>
#> </Apply>
#> </Apply>
There are several limitations to parsing expressions in xform_function
.
Each transformation operates on one data row at a time. For example, it is not possible to compute the mean of an entire feature column in xform_function
.
An expression such as foo(x)
is treated as a function foo
with argument x
. Consequently, passing in an R vector c(1,2,3)
will produce PMML where c
is a function and 1,2,3
are the arguments:
function_to_pmml("c(1,2,3)")
#> <Apply function="c">
#> <Constant dataType="double">1</Constant>
#> <Constant dataType="double">2</Constant>
#> <Constant dataType="double">3</Constant>
#> </Apply>
We can also see what happens when passing an na.rm
argument to prod
, as mentioned in an above example:
function_to_pmml("prod(1,2,na.rm=FALSE)") #produces incorrect PMML
#> <Apply function="product">
#> <Constant dataType="double">1</Constant>
#> <Constant dataType="double">2</Constant>
#> <Constant dataType="boolean">FALSE</Constant>
#> </Apply>
function_to_pmml("prod(1,2)") #produces correct PMML
#> <Apply function="product">
#> <Constant dataType="double">1</Constant>
#> <Constant dataType="double">2</Constant>
#> </Apply>
Additionally, passing in a vector to prod
produces incorrect PMML:
prod(c(1,2,3))
#> [1] 6
function_to_pmml("prod(c(1,2,3))")
#> <Apply function="product">
#> <Apply function="c">
#> <Constant dataType="double">1</Constant>
#> <Constant dataType="double">2</Constant>
#> <Constant dataType="double">3</Constant>
#> </Apply>
#> </Apply>
The following are additional examples of pmml produced from R expressions.
Extra parentheses:
function_to_pmml("pmmlT(((1+2))*(x))")
#> <Apply function="pmmlT">
#> <Apply function="*">
#> <Apply function="+">
#> <Constant dataType="double">1</Constant>
#> <Constant dataType="double">2</Constant>
#> </Apply>
#> <FieldRef field="x"/>
#> </Apply>
#> </Apply>
If-else expressions:
function_to_pmml("if(a<2) {x+3} else if (a>4) {4} else {5}")
#> <Apply function="if">
#> <Apply function="lessThan">
#> <FieldRef field="a"/>
#> <Constant dataType="double">2</Constant>
#> </Apply>
#> <Apply function="+">
#> <FieldRef field="x"/>
#> <Constant dataType="double">3</Constant>
#> </Apply>
#> <Apply function="if">
#> <Apply function="greaterThan">
#> <FieldRef field="a"/>
#> <Constant dataType="double">4</Constant>
#> </Apply>
#> <Constant dataType="double">4</Constant>
#> <Constant dataType="double">5</Constant>
#> </Apply>
#> </Apply>