The goal of the profiplots
package is to unify graphics
across analyses made by Profinit team. In this document we’re
introducing basic ways to do so. Take a look on the plot
gallery page, too.
To ease the adaptation, there is a pair of functions to set up the
most general option globaly. This affects both baseR
and
ggplot2
graphics.
profiplots::set_theme()
– to set the profinit-look
globaly. There are two params:
pal_name
– color palette to be used by default (ggplot:
for continuous variables only).pal_name_discrete
– color palette to be used for
discrete mapping by default (ggplot only).profiplots::profinit_pal.pals()
.profiplots::unset_theme()
– revert the settings.We’re going to use barplot
here. For examples of other
plot types see the plot
gallery page. For demonstration purposes, we’re going to tweak
fill
palette in ggplto2. Of course this can be applied to
the color versions as well (scale_color_profinit_c
,
scale_color_profinit_d
).
reds
, reds-dark
,
blues
, blues-dark
or greys
:blue-red
if possible. To create
another gradient, you may use scale_color_gradient
and
profinit_cols
.blue-white-red
palette. To create a
new one, you can use scale_color_gradient2
and
profinit_cols
:discrete
(6 colors)
and discrete-full
(all colors specified in the Visual
identity guidelines document).
exact
to FALSE
)reds
, reds-dark
,
blues
, blues-dark
or greys
:blue-red
if possible. To create
another gradient, you may use scale_color_gradient
and
profinit_cols
.
# This way you can define your own palette based on Profinit colors
red_yellow_pal <- grDevices::colorRampPalette(c(profinit_cols("red"), profinit_cols("yellow")))
barplot(
height = sample_df$x,
names.arg = sample_df$category,
border = NA,
col = red_yellow_pal(8),
main = "Example - custom gradient fill (NOT RECOMMEADED)"
)
blue-white-red
palette. To create a
new one, you can use scale_color_gradient2
and
profinit_cols
:
# Create your own diverging palette based on Profinit colors
red_white_pink_pal <- grDevices::colorRampPalette(c(profinit_cols("red"), "white", profinit_cols("pink")))
barplot(
height = sample_df$x,
names.arg = sample_df$category,
border = NA,
col = red_white_pink_pal(8),
main = "Base R - custom diverging fill (NOT RECOMMANDED)"
)
discrete
(6 colors)
and discrete-full
(all colors specified in the Visual
identity guidelines document).
exact
to FALSE
)sessionInfo()
#> R version 4.2.0 (2022-04-22 ucrt)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19045)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=C
#> [2] LC_CTYPE=English_United Kingdom.utf8
#> [3] LC_MONETARY=English_United Kingdom.utf8
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=English_United Kingdom.utf8
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ggplot2_3.4.4 profiplots_0.2.3
#>
#> loaded via a namespace (and not attached):
#> [1] highr_0.10 bslib_0.5.1 compiler_4.2.0 pillar_1.9.0
#> [5] jquerylib_0.1.4 tools_4.2.0 digest_0.6.29 jsonlite_1.8.0
#> [9] evaluate_0.23 lifecycle_1.0.3 tibble_3.2.1 gtable_0.3.4
#> [13] pkgconfig_2.0.3 rlang_1.1.1 cli_3.4.1 rstudioapi_0.14
#> [17] yaml_2.3.5 xfun_0.41 fastmap_1.1.0 withr_2.5.2
#> [21] dplyr_1.1.2 knitr_1.45 generics_0.1.3 vctrs_0.6.3
#> [25] sass_0.4.7 grid_4.2.0 tidyselect_1.2.0 glue_1.6.2
#> [29] R6_2.5.1 fansi_1.0.3 rmarkdown_2.25 farver_2.1.1
#> [33] magrittr_2.0.3 scales_1.2.1 htmltools_0.5.6.1 colorspace_2.0-3
#> [37] labeling_0.4.3 utf8_1.2.2 munsell_0.5.0 cachem_1.0.6