
Package ‘rjaf’
November 11, 2024

Title Regularized Joint Assignment Forest with Treatment Arm
Clustering

Version 0.1.0

URL https://github.com/wustat/rjaf

BugReports https://github.com/wustat/rjaf/issues

Description Personalized assignment to one of many treatment arms via regularized and clus-
tered joint assignment forests as described in Ladhania, Spiess, Un-
gar, and Wu (2023) <doi:10.48550/arXiv.2311.00577>. The algorithm pools informa-
tion across treatment arms: it considers a regularized forest-based assignment algo-
rithm based on greedy recursive partitioning that shrinks effect estimates across arms; and it in-
corporates a clustering scheme that combines treatment arms with consistently similar outcomes.

LinkingTo Rcpp, RcppArmadillo

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Imports Rcpp, dplyr, tibble, magrittr, readr, randomForest, ranger,
forcats, rlang (>= 1.1.0), tidyr, stringr, MASS

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

NeedsCompilation yes

Author Wenbo Wu [aut, cph] (<https://orcid.org/0000-0002-7642-9773>),
Xinyi Zhang [aut, cre, cph] (<https://orcid.org/0009-0007-7306-491X>),
Jann Spiess [aut, cph] (<https://orcid.org/0000-0002-4120-8241>),
Rahul Ladhania [aut, cph] (<https://orcid.org/0000-0002-7902-7681>)

Maintainer Xinyi Zhang <zhang.xinyi@nyu.edu>

Repository CRAN

Date/Publication 2024-11-11 20:10:02 UTC

1

https://github.com/wustat/rjaf
https://github.com/wustat/rjaf/issues
https://doi.org/10.48550/arXiv.2311.00577
https://orcid.org/0000-0002-7642-9773
https://orcid.org/0009-0007-7306-491X
https://orcid.org/0000-0002-4120-8241
https://orcid.org/0000-0002-7902-7681

2 Example_data

Contents

Example_data . 2
residualize . 3
rjaf . 4

Index 8

Example_data Simulated randomized experiment data

Description

A data set simulated based on the function sim.data in the Examples section of rjaf.R.

Usage

Example_data

Format

A data frame with 100 rows, 12 columns, and 5 treatment arms:

id Subject ID.

trt Character strings indicating treatment arms (0, 1, 2, 3, and 4) assigned to subjects, where arm 0
is considered to be the control.

X1 Covariate X1.

X2 Covariate X2.

X3 Covariate X3.

prob Probabilities of treatment assignment.

Y Observed outcomes.

Y0 Counterfactual outcomes when subjects are assigned to treatment 0.

Y1 Counterfactual outcomes when subjects are assigned to treatment 1.

Y2 Counterfactual outcomes when subjects are assigned to treatment 2.

Y3 Counterfactual outcomes when subjects are assigned to treatment 3.

Y4 Counterfactual outcomes when subjects are assigned to treatment 4.

residualize 3

residualize Arbitrary residualization of outcomes

Description

This function employs random forests and cross-validation to residualize outcomes following Wu
and Gagnon-Bartsch (2018). That is, predicted outcomes resulting from random forests are sub-
tracted from the original outcomes. Doing so helps in adjusting for small imbalanaces in baseline
covariates and removing part of the variation in outcomes common across treatment arms

Usage

residualize(data, y, vars, nfold = 5, fun.rf = "ranger")

Arguments

data input data used for training and estimation, where each row corresponds to an
individual and columns contain information on treatments, covariates, probabil-
ities of treatment assignment, and observed outcomes.

y a character string denoting the column name of outcomes.

vars a vector of character strings denoting the column names of covariates.

nfold number of folds in cross-validation. The default value is 5.

fun.rf a character string specifying which random forest package to use. Two options
are ranger and randomForest, with the default being ranger.

Value

data for training and estimation with residualized outcomes.

References

Wu, Edward and Johann A Gagnon-Bartsch (2018). The LOOP Estimator: Adjusting for Covari-
ates in Randomized Experiments. Evaluation Review, 42(4):458–488.

Examples

data(Example_data)
library(dplyr)
library(magrittr)
Example_trainest <- Example_data %>% slice_sample(n = floor(0.5 * nrow(Example_data)))
y <- "Y"
vars <- paste0("X", 1:3)
Example_resid <- residualize(Example_trainest, y, vars, nfold = 5, fun.rf = "ranger")

4 rjaf

rjaf Regularized Joint Assignment Forest with Treatment Arm Clustering

Description

This algorithm trains a joint forest model to estimate the optimal treatment assignment by pooling
information across treatment arms.

Usage

rjaf(
data.trainest,
data.validation,
y,
id,
trt,
vars,
prob,
ntrt = 5,
nvar = 3,
lambda1 = 0.5,
lambda2 = 0.5,
ipw = TRUE,
nodesize = 5,
ntree = 1000,
prop.train = 0.5,
eps = 0.1,
resid = TRUE,
clus.tree.growing = FALSE,
clus.outcome.avg = FALSE,
clus.max = 10,
reg = TRUE,
impute = TRUE,
setseed = FALSE,
seed = 1,
nfold = 5

)

Arguments

data.trainest input data used for training and estimation, where each row corresponds to an
individual and columns contain information on treatments, covariates, probabil-
ities of treatment assignment, and observed outcomes.

data.validation

input data used for validation with the same row and column information as in
data.trainest.

rjaf 5

y a character string denoting the column name of outcomes.

id a character string denoting the column name of individual IDs.

trt a character string denoting the column name of treatments.

vars a vector of character strings denoting the column names of covariates.

prob a character string denoting the column name of probabilities of treatment as-
signment. If missing, a column named "prob" will be added to data.trainest
and data.validation indicating simple random treatment assignment.

ntrt number of treatments randomly sampled at each split. It should be at most equal
to the number of unique treatments available. The default value is 5.

nvar number of covariates randomly sampled at each split. It should be at most equal
to the number of unique covariates available. The default value is 3.

lambda1 regularization parameter for shrinking arm-wise within-leaf average outcomes
towards the overall within-leaf average outcome during recursive partitioning.
The default value is 0.5.

lambda2 regularization parameter for shrinking arm-wise within-leaf average outcomes
towards the overall within-leaf average outcome during outcome estimation. It
is only valid when reg is TRUE. The default value is 0.5.

ipw a logical indicator of inverse probability weighting when calculating leaf-wise
weighted averages based on Wu and Gagnon-Bartsch (2018). The default value
is TRUE.

nodesize minimum number of observations in a terminal node. The default value is 5.

ntree number of trees to grow in the forest. This should not be set to too small a
number. The default value is 1000.

prop.train proportion of data used for training in data.trainest. The default value is 0.5.

eps threshold for minimal welfare gain in terms of the empirical standard deviation
of the overall outcome y. The default value is 0.1.

resid a logical indicator of arbitrary residualization. If TRUE, residualization is imple-
mented to reduce the variance of the outcome. The default value is TRUE.

clus.tree.growing

a logical indicator of clustering for tree growing. The default value is FALSE.
clus.outcome.avg

a logical indicator of clustering for tree bagging. If TRUE, the average outcome
is calculated across treatment clusters determined by the k-means. The default
value is FALSE. This option is deprecated.

clus.max the maximum number of clusters for k-means. It should be greater than 1 and at
most equal to the number of unique treatments. The default value is 10.

reg a logical indicator of regularization when calculating the arm-wise within-leaf
average outcome.

impute a logical indicator of imputation. If TRUE, the within-leaf average outcome is
used to impute the arm-wise within-leaf average outcome when the arm has no
observation. If FALSE, the within-leaf average outcome is set to zero when the
arm has no observation. The default value is TRUE.

6 rjaf

setseed a logical indicator. If TRUE, a seed is set through the argument seed below and
passed to the function rjaf_cpp. The default value is FALSE.

seed an integer used as a random seed if setseed=TRUE. The default value is 1.

nfold the number of folds used for cross-validation in outcome residualization and
k-means clustering. The default value is 5.

Details

It first obtains an assignment forest by bagging trees as in Kallus (2017) with covariate and treatment
arm randomization for each tree and estimating "honest" and regularized estimates of the treatment-
specific counterfactual outcomes on the training sample following Wager and Athey (2018).

Like Bonhomme and Manresa (2015), it uses a clustering of treatment arms when constructing
the assignment trees. It employs a k-means algorithm for clustering the K treatment arms into M
treatment groups based on the K predictions for each of the n units in the training sample.

After clustering, it then repeats the assignment-forest algorithm on the full training data with M+1
(including control) "arms" (where data from the original arms are combined by groups) to obtain
an ensemble of trees.

It obtains final regularized predictions and assignments, where it estimates regularized averages
separately by the original treatment arms k ∈ {0, . . . ,K} and obtain the corresponding assignment.

Value

If clus.tree.growing and clus.outcome.avg are TRUE, rjaf returns a list of two objects: a
tibble named as res consisting of individual IDs, cluster identifiers, and predicted outcomes, and a
data frame named as clustering consisting of cluster identifiers, probabilities of being assigned to
the clusters, and treatment arms. Otherwise, rjaf simply returns a tibble of individual IDs, optimal
treatment arms identified by the algorithm, treatment clusters if clus.tree.growing is TRUE, and
predicted optimal outcomes (ending with .rjaf). If counterfactual outcomes are also present, they
will be included in the tibble along with the column of predicted outcomes (ending with .cf).

References

Bonhomme, Stéphane and Elena Manresa (2015). Grouped Patterns of Heterogeneity in Panel Data.
Econometrica, 83: 1147-1184.

Kallus, Nathan (2017). Recursive Partitioning for Personalization using Observational Data. In
Precup, Doina and Yee Whye Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1789–1798.
PMLR.

Wager, Stefan and Susan Athey (2018). Estimation and inference of heterogeneous treatment ef-
fects using random forests. Journal of the American Statistical Association, 113(523):1228–1242.

Wu, Edward and Johann A Gagnon-Bartsch (2018). The LOOP Estimator: Adjusting for Covari-
ates in Randomized Experiments. Evaluation Review, 42(4):458–488.

rjaf 7

Examples

library(dplyr)
library(MASS)
sim.data <- function(n, K, gamma, sigma, prob=rep(1,K+1)/(K+1)) {

K: number of treatment arms
options(stringsAsFactors=FALSE)
data <- left_join(data.frame(id=1:n,

trt=sample(0:K, n, replace=TRUE, prob),
mvrnorm(n, rep(0,3), diag(3))),

data.frame(trt=0:K, prob), by="trt")
data <- mutate(data, tmp1=10+20*(X1>0)-20*(X2>0)-40*(X1>0&X2>0),

tmp2=gamma*(2*(X3>0)-1)/(K-1),
tmp3=-10*X1^2,
Y=tmp1+tmp2*(trt>0)*(2*trt-K-1)+tmp3*(trt==0)+rnorm(n,0,sigma))

Y: observed outcomes
Y.cf <- data.frame(sapply(0:K, function(t) # counterfactual outcomes

mutate(data, Y=tmp1+tmp2*(t>0)*(2*t-K-1)+tmp3*(t==0))$Y))
names(Y.cf) <- paste0("Y",0:K)
return(mutate(bind_cols(dplyr::select(data, -c(tmp1,tmp2,tmp3)), Y.cf),

across(c(id, trt), as.character)))
}

n <- 200; K <- 3; gamma <- 10; sigma <- 10
Example_data <- sim.data(n, K, gamma, sigma)
Example_trainest <- Example_data %>% slice_sample(n = floor(0.5 * nrow(Example_data)))
Example_valid <- Example_data %>% filter(!id %in% Example_trainest$id)
id <- "id"; y <- "Y"; trt <- "trt"
vars <- paste0("X", 1:3)
forest.reg <- rjaf(Example_trainest, Example_valid, y, id, trt, vars, ntrt = 4, ntree = 100,

clus.tree.growing = FALSE)

Index

∗ datasets
Example_data, 2

Example_data, 2

residualize, 3
rjaf, 4

8

	Example_data
	residualize
	rjaf
	Index

