MHMMR: Flexible and user-friendly probabilistic joint segmentation of multivariate time series (or multivariate structured longitudinal data) with regime changes by a multiple regression model governed by a hidden Markov process, fitted by the EM (Baum-Welch) algorithm.
It was written in R Markdown, using the knitr package for production.
See help(package="samurais")
for further details and references provided by citation("samurais")
.
mhmmr <- emMHMMR(multivtoydataset$x, multivtoydataset[,c("y1", "y2", "y3")],
K, p, variance_type, n_tries, max_iter, threshold, verbose)
## EM: Iteration : 1 || log-likelihood : -4425.29307889945
## EM: Iteration : 2 || log-likelihood : -2876.80418310609
## EM: Iteration : 3 || log-likelihood : -2876.69073409991
## EM: Iteration : 4 || log-likelihood : -2876.69055273039
mhmmr$summary()
## ----------------------
## Fitted MHMMR model
## ----------------------
##
## MHMMR model with K = 5 regimes
##
## log-likelihood nu AIC BIC
## -2876.691 114 -2990.691 -3247.605
##
## Clustering table:
## 1 2 3 4 5
## 100 120 200 100 150
##
##
## ------------------
## Regime 1 (K = 1):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 0.1595884 0.4201364 -1.9684451
## X^1 -1.7145325 11.7544140 -0.3006142
## X^2 10.6877091 -50.1877444 18.6445441
## X^3 2.3981783 -11.3098522 4.1479356
##
## Covariance matrix:
##
## 1.19029438 0.12929675 0.05476253
## 0.12929675 0.86375075 -0.04927306
## 0.05476253 -0.04927306 0.87780108
## ------------------
## Regime 2 (K = 2):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 5.15889 3.33862 10.451892
## X^1 15.56177 13.57089 -2.723323
## X^2 -23.21384 -21.11255 1.987222
## X^3 -19.14783 -17.33469 2.005997
##
## Covariance matrix:
##
## 1.0610207 -0.18930477 0.12778054
## -0.1893048 1.04687322 0.01497034
## 0.1277805 0.01497034 0.76036609
## ------------------
## Regime 3 (K = 3):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 4.795937 9.292094 6.795783
## X^1 -1.263151 -32.958041 15.068148
## X^2 -7.837624 96.000594 -45.446277
## X^3 13.420270 -85.462348 38.987695
##
## Covariance matrix:
##
## 1.02087804 -0.04142857 -0.02435233
## -0.04142857 1.15623166 0.02795799
## -0.02435233 0.02795799 0.99869029
## ------------------
## Regime 4 (K = 4):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 -7.021181 4.833214 -11.605950
## X^1 11.317211 -15.023656 24.674451
## X^2 3.910821 -3.672965 6.844172
## X^3 -10.872747 16.089951 -25.976569
##
## Covariance matrix:
##
## 0.87900680 -0.03091285 -0.03661533
## -0.03091285 1.11837399 -0.07481527
## -0.03661533 -0.07481527 0.85426254
## ------------------
## Regime 5 (K = 5):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 -0.8791755 -2.313216 -0.09479267
## X^1 5.9187901 5.861810 8.23344181
## X^2 3.5548127 3.717845 4.33488866
## X^3 -5.1244038 -5.553392 -7.97025598
##
## Covariance matrix:
##
## 1.13188125 0.25712861 0.02924967
## 0.25712861 1.21059097 0.04483453
## 0.02924967 0.04483453 0.79846413