sharp version 1.4.6
sharp version 1.4.5
- Allow for alternative optimisation methods implemented in nloptr
- Update parallelisation, now using the future package
- Fix the formatting of continuous outcome in VariableSelection()
- Update the vignette
sharp version 1.4.4
- Update references with published articles
sharp version 1.4.3
- Add sparse K means from the R package sparcl
- Allow for missing values in proportions for more flexibility
sharp version 1.4.2
- Remove functions depending on regsem (removed from CRAN)
- Fix the use of packages in Suggests in the examples
sharp version 1.4.1
- Add package vignette
- Use Ridge regression calibrated by cross validation instead of unpenalised regression in Refit(), ExplanatoryPerformance() and Incremental()
- Add new S3 class structural_model
- Fix inclusion of unpenalised predictors in Incremental()
- Fix clustering of rows in Clustering()
sharp version 1.4.0
- Update the stability score used by default (n_cat=NULL), previous score can be used with n_cat=3
- Add new functions for structural equation modelling including StructuralModel(), PenalisedSEM(), PenalisedOpenMx(), PenalisedLinearSystem(), LavaanModel(), LavaanMatrix(), OpenMxModel(), OpenMxMatrix() and LinearSystemMatrix()
- Add new function CART() for classification and regression trees
- Add the option to run randomised or adaptive lasso in PenalisedRegression()
- Fix a bug when running multinomial lasso with predictors with null variance in the subsamples
- Fix a bug where additional parameters in … were used in glm.control() within Refit()
sharp version 1.3.0
- Add new functions for consensus clustering including Clustering(), Clusters(), ConsensusMatrix(), ClusteringPerformance() and more
- Add new print(), plot() and summary() functions
- Update plotting functions
- Fix parallelisation using argument n_cores in main functions
- Remove duplicated messages in ExplanatoryPerformance()
- Allow for factor ydata in VariableSelection() and related functions
sharp version 1.2.1
- Update examples for use with fake 1.3.0
- Fix requirements on input data format in Refitting()
- Add resampling argument in Explanatory()
- Add optional beep at the end of the run in main functions
- Increase igraph vertex size in Graph() and plot()
sharp version 1.2.0
- Add the functions Ensemble() and EnsemblePredictions() to build and predict from an ensemble model for VariableSelection()
- Add S3 classes including coef() and predict() for VariableSelection()
- Rename Recalibrate() as Refit()
- Fix use of CPSS in GraphicalModel()
- Fix maximisation of the contrast
- Add simulation functions to the companion R package fake
sharp version 1.1.0
First release of stability selection methods and simulation models.