This tutorial demonstrates the mitscherlich()
function
for fitting a continuous response model and estimating a critical soil
test value. This function fits a Mitscherlich-type exponential
regression model that follows a diminishing growth curve, and is
sometimes also referred to as exponential “rise-to-the-max”. Cerrato and
Blackmer (1990) expressed it as:
\[ y = a * (1-e^{-c(x + b)}) \]
where
a
= asymptote,
b
= model-fitting parameter ( \(-b\) = X-intercept),
c
= curvature parameter.
This exponential model is extensively used in agriculture to describe
crops response to input since the biological meaning of its curved
response. The mitscherlich()
function works automatically
with self-starting initial values to facilitate the model’s convergence.
The mitscherlich()
function allows the user to control the
number of parameters, effectively constraining the response curve if
theoretically justified:
type = 1, "no restriction", or "free"
(DEFAULT): three
parameter model; \(y = a * (1-e^{-c(x +
b)})\)type = 2, "asymptote 100", or "100"
: two parameter
model where asymptote = 100% RY; \(y = 100 *
(1-e^{-c(x + b)})\)type = 3, "asymptote 100 from 0", or "fixed":
one
parameter model in which only the curvature varies and asymptote = 100
and model goes through origin; \(y = 100 *
(1-e^{-cx})\).Disadvantages this model might include:
lacks a parameter that can be directly interpreted as the critical soil test value
the model cannot be evaluated at the asymptote as CSTV would go
to Inf
a fixed RY target for CSTV may be a somewhat arbitrary choice, but 95% is commonly used
model may not reach 95%, for which NaN
results
there is no apparent confidence interval for the derived CSTV.
For this latter purpose, we recommend the user to use the
boot_mitscherlich()
function for a reliable confidence
interval estimation of parameters and CSTV via bootstrapping (resampling
with replacement).
mitscherlich()
:
type
select the type of parameterization of the model
(type = 1, 2, or 3; see above
)data
(optional)stv
(soil test value) and ry
(relative
yield) columns or vectors,target
(default = 95) to calculate the STV at a
specific ry
target.tidy
TRUE-default- (produces a data.frame with results)
or FALSE (store results as list)plot
TRUE (produces a ggplot as main output) or FALSE
(no plot, only results as data.frame)resid
TRUE (produces plots with residuals analysis) or
FALSE (no plot)Suggested packages
mitscherlich()
type = #
# Type = 1, no restriction (3 parameters)
mitscherlich(corr_df, STV, RY, type = 1)
#> # A tibble: 1 × 13
#> asymptote b curvature equation y_intercept target CSTV AIC AICc BIC
#> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 98.0 3.91 0.0885 98(1-e^(… 28.6 95 35.5 1022. 1022. 1033.
#> # ℹ 3 more variables: R2 <dbl>, RMSE <dbl>, pvalue <dbl>
# Type = 2, fixed asymptote value at 100 (2 parameters)
mitscherlich(corr_df, STV, RY, type = 2)
#> # A tibble: 1 × 13
#> asymptote b curvature equation y_intercept target CSTV AIC AICc BIC
#> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 100 5.49 0.0763 100(1-e^… 34.2 95 33.8 1021. 1021. 1029.
#> # ℹ 3 more variables: R2 <dbl>, RMSE <dbl>, pvalue <dbl>
# Type = 3, fixed origin at 0 and asymptote at 100 (1 parameters)
mitscherlich(corr_df, STV, RY, type = 3)
#> # A tibble: 1 × 13
#> asymptote b curvature equation y_intercept target CSTV AIC AICc BIC
#> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 100 0 0.108 100(1-e^… 0 95 27.8 1031. 1032. 1037.
#> # ℹ 3 more variables: R2 <dbl>, RMSE <dbl>, pvalue <dbl>
tidy
= FALSEIt returns a LIST (may more efficient for multiple fits at once)
# Using dataframe argument, tidy = FALSE -> return a LIST
mitscherlich(data = corr_df, STV, RY, target = 90, tidy = FALSE)
#> $asymptote
#> [1] 97.98376
#>
#> $b
#> [1] 3.90787
#>
#> $curvature
#> [1] 0.08850353
#>
#> $equation
#> [1] "98(1-e^(-0.089(x+3.9))"
#>
#> $y_intercept
#> [1] 28.64934
#>
#> $target
#> [1] 90
#>
#> $CSTV
#> [1] 24.42311
#>
#> $AIC
#> [1] 1021.64
#>
#> $AICc
#> [1] 1021.94
#>
#> $BIC
#> [1] 1033.32
#>
#> $R2
#> [1] 0.54
#>
#> $RMSE
#> [1] 9.78
#>
#> $pvalue
#> [1] 0
You can call stv
and ry
vectors using the
$
. The tidy
argument still applies for
controlling the output type.
# Example 1. Fake dataset manually created
data_1 <- data.frame("RY" = c(65,80,85,88,90,94,93,96,97,95,98,100,99,99,100),
"STV" = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15))
# Example 2. Native fake dataset from soiltestcorr package
data_2 <- soiltestcorr::data_test
# Example 3. Native dataset from soiltestcorr package, Freitas et al. (1966), used by Cate & Nelson (1971)
data_3 <- soiltestcorr::freitas1966 %>%
rename(STV = STK)
data.all <- bind_rows(data_1, data_2, data_3, .id = "id")
Note: the stv
column needs to have the same name for all
datasets if binding rows.
map()
# Run multiple examples at once with map()
data.all %>%
nest(data = c("STV", "RY")) %>%
mutate(model = map(data, ~ mitscherlich(stv = .$STV, ry = .$RY))) %>%
unnest(model)
#> # A tibble: 3 × 15
#> id data asymptote b curvature equation y_intercept target CSTV
#> <chr> <list> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
#> 1 1 <tibble> 98.7 2.07 0.371 98.7(1-e^(… 52.8 95 6.77
#> 2 2 <tibble> 98.0 3.91 0.0885 98(1-e^(-0… 28.6 95 35.5
#> 3 3 <tibble> 96.4 -8.69 0.0458 96.4(1-e^(… -47.2 95 101.
#> # ℹ 6 more variables: AIC <dbl>, AICc <dbl>, BIC <dbl>, R2 <dbl>, RMSE <dbl>,
#> # pvalue <dbl>
group_modify()
Alternatively, with group_modify()
, nested data is not
required. However, it still requires a grouping variable (in this case,
id
) to identify each dataset. group_map()
may
also be used, though list_rbind()
is required to return a
tidy data frame of the model results instead of a list.
data.all %>%
group_by(id) %>%
group_modify(~ soiltestcorr::mitscherlich(data = ., STV, RY))
#> # A tibble: 3 × 14
#> # Groups: id [3]
#> id asymptote b curvature equation y_intercept target CSTV AIC
#> <chr> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 1 98.7 2.07 0.371 98.7(1-e^(-0… 52.8 95 6.77 64.0
#> 2 2 98.0 3.91 0.0885 98(1-e^(-0.0… 28.6 95 35.5 1022.
#> 3 3 96.4 -8.69 0.0458 96.4(1-e^(-0… -47.2 95 101. 187.
#> # ℹ 5 more variables: AICc <dbl>, BIC <dbl>, R2 <dbl>, RMSE <dbl>, pvalue <dbl>
A suitable alternative for obtaining confidence intervals for parameters or derived quantities is bootstrapping. Bootstrapping is a resampling technique (with replacement) that draws samples from the original data with the same size. If you have groups within your data, you can specify grouping variables as arguments in order to maintain, within each resample, the same proportion of observations than in the original dataset.
This function returns a table with as many rows as the resampling size (n) containing the results for each resample.
set.seed(123)
boot_mits <- boot_mitscherlich(corr_df, STV, RY, target = 90, n = 200)
#> Warning: There were 2 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `model = map(...)`.
#> ℹ In group 51: `boot_id = 51`.
#> Caused by warning in `nls.lm()`:
#> ! lmdif: info = -1. Number of iterations has reached `maxiter' == 50.
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.
boot_mits %>% head(n = 5)
#> # A tibble: 5 × 13
#> boot_id asymptote b curvature y_intercept target CSTV AIC AICc BIC
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 98.8 2.79 0.0856 21.0 90 25.4 1029. 1029. 1041.
#> 2 2 99.0 8.28 0.0682 42.7 90 26.9 1021. 1021. 1033.
#> 3 3 98.8 10.8 0.0660 50.4 90 25.9 1007. 1008. 1019.
#> 4 4 98.9 7.01 0.0772 41.3 90 24.2 989. 989. 1001.
#> 5 5 100. 11.0 0.0630 50.3 90 24.9 986. 986. 997.
#> # ℹ 3 more variables: R2 <dbl>, RMSE <dbl>, pvalue <dbl>
# CSTV Confidence Interval
quantile(boot_mits$CSTV, probs = c(0.025, 0.5, 0.975), na.rm = TRUE)
#> 2.5% 50% 97.5%
#> 20.22419 24.60084 28.75093
# Plot
boot_mits %>%
ggplot2::ggplot(aes(x = CSTV))+
geom_histogram(color = "grey25", fill = "#9de0bf", bins = 10)
We can generate a ggplot with the same mitscherlich()
function.
We just need to specify the argument plot = TRUE
.
As ggplot object, plots can be adjusted in several ways, such as modifying titles and axis scales.
Set the argument resid = TRUE
.
#> # A tibble: 1 × 13
#> asymptote b curvature equation y_intercept target CSTV AIC AICc BIC
#> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 96.4 -8.69 0.0458 96.4(1-e… -47.2 95 101. 187. 189. 192.
#> # ℹ 3 more variables: R2 <dbl>, RMSE <dbl>, pvalue <dbl>
Cerrato, M. E., & Blackmer, A. M. (1990). Comparison of models for describing corn yield response to nitrogen fertilizer. Agronomy Journal, 82(1), 138–143. https://doi.org/10.2134/agronj1990.00021962008200010030x
Melsted, S.W. and Peck, T.R. (1977). The Mitscherlich-Bray Growth Function. In Soil Testing (eds T. Peck, J. Cope and D. Whitney). 10.2134/asaspecpub29.c1