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CFI Conditional Feature Importance
Description

Implementation of CFI using modular sampling approach

Super classes

xplainfi::FeaturelImportanceMethod -> xplainfi::PerturbationImportance -> CFI
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Methods

Public methods:
e CFI$new()
e CFI$compute()
e CFI$clone()

Method new(): Creates a new instance of the CFI class
Usage:
CFI$new(
task,
learner,
measure = NULL,
resampling = NULL,
features = NULL,
groups = NULL,
relation = "difference”,
n_repeats = 1L,
batch_size = NULL,
sampler = NULL
)
Arguments:
task, learner, measure, resampling, features, groups, relation, n_repeats, batch_size
Passed to Perturbationlmportance.
sampler (ConditionalSampler) Optional custom sampler. Defaults to instantiating ConditionalARFSampler
internally with default parameters.

Method compute(): Compute CFI scores
Usage:
CFI$compute(
n_repeats = NULL,
batch_size = NULL,
store_models = TRUE,
store_backends = TRUE
)
Arguments:
n_repeats (integer (1)) Number of permutation iterations. If NULL, uses stored value.
batch_size (integer (1) I NULL: NULL) Maximum number of rows to predict at once. If NULL,
uses stored value.
store_models, store_backends (logical(1): TRUE) Whether to store fitted models / data
backends, passed to mlr3::resample internally for the initial fit of the learner. This may be
required for certain measures and is recommended to leave enabled unless really necessary.

Method clone(): The objects of this class are cloneable with this method.
Usage:
CFI$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
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References

Blesch K, Koenen N, Kapar J, Golchian P, Burk L, Loecher M, Wright M (2025). “Conditional Fea-
ture Importance with Generative Modeling Using Adversarial Random Forests.” Proceedings of the
AAAI Conference on Artificial Intelligence, 39(15), 15596-15604. doi:10.1609/aaai.v39i15.33712.

Examples

library(mlr3)
library(mlr3learners)

task <- sim_dgp_correlated(n = 500)

# Using default ConditionalARFSampler

cfi <= CFI$new(
task = task,
learner = 1rn("regr.ranger”, num.trees = 10),
measure = msr("regr.mse")

)

cfi$compute()

cfi$importance()

check_groups Check group specification

Description

Check group specification

Usage

check_groups(groups, all_features)

Arguments

groups (list) A (named) list of groups

all_features (character()) All available feature names from the task.

Value

The input list group, with each element now named.


https://doi.org/10.1609/aaai.v39i15.33712

Conditional ARFSampler 5

Examples

task <- sim_dgp_interactions(n = 100)
task$feature_names

# Intended use
groupsl = list(effects = c("x1", "x2", "x3"), noise = c("noisel”, "noise2"))
check_groups(groups1, task$feature_names)

# Names are auto-generated where needed
check_groups(list(a = "x1", «c("x2", "x1")), task$feature_names)

# Examples for cases that throw errors:

# Unexpected features

groups2 = list(effects = c("x1", "foo"”, "bar"”, "x1"))

try(check_groups(groups2, task$feature_names))

# Too deeply nested

groups3 = list(effects = c("x1", "x2", "x3"), noise = c("noisel”, list(c("noise2"))))
try(check_groups(groups2, task$feature_names))

ConditionalARFSampler ARF-based Conditional Sampler

Description

Implements conditional sampling using Adversarial Random Forests (ARF). ARF can handle mixed
data types (continuous and categorical) and provides flexible conditional sampling by modeling the
joint distribution.

Details

The Conditional ARFSampler fits an Adversarial Random Forest model on the task data, then uses
it to generate samples from P(X;|X_;) where X is the feature of interest and X _; are the condi-
tioning features.

Super classes

xplainfi::FeatureSampler -> xplainfi::ConditionalSampler -> ConditionalARFSampler

Public fields

feature_types (character()) Feature types supported by the sampler. Will be checked against
the provided mlr3::Task to ensure compatibility.

arf_model Adversarial Random Forest model created by arf::adversarial_rf.

psi Distribution parameters estimated from by arf::forde.
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Methods

Public methods:

e ConditionalARFSampler$new()

* ConditionalARFSampler$sample()

e ConditionalARFSampler$sample_newdata()
* ConditionalARFSampler$clone()

Method new(): Creates a new instance of the Conditional ARFSampler class. To fit the ARF in
parallel, register a parallel backend first (see arf::arf) and set parallel = TRUE.

Usage:
ConditionalARFSamplers$new(
task,
conditioning_set = NULL,
num_trees = 10L,
min_node_size = 20L,

finite_bounds = "no",
epsilon = 1e-15,
round = TRUE,

stepsize = 0,
verbose = FALSE,
parallel = FALSE,

)

Arguments:
task (mlr3::Task) Task to sample from.

conditioning_set (character | NULL) Default conditioning set to use in $sample(). This
parameter only affects the sampling behavior, not the ARF model fitting.

num_trees (integer(1): 10L) Number of trees for ARF. Passed to arf::adversarial_rf.

min_node_size (integer(1): 20L) Minimum node size for ARF. Passed to arf::adversarial_rf
and in turn to ranger::ranger. This is increased to 20 to mitigate overfitting.

finite_bounds (character(1): "no") How to handle variable bounds. Passed to arf::forde.
Default is "no" for compatibility. "1local” may improve extrapolation but can cause issues
with some data.

epsilon (numeric(1): @) Slack parameter for when finite_bounds != "no". Passed to arf::forde.

round (logical(1): TRUE) Whether to round continuous variables back to their original preci-
sion in sampling. Can be overridden in $sample() calls.

stepsize (numeric(1): @) Number of rows of evidence to process at a time when parallel
is TRUE. Default (@) spreads evidence evenly over registered workers. Can be overridden in
$sample() calls.

verbose (logical(1): FALSE) Whether to print progress messages. Default is FALSE (arf’s
default is TRUE). Can be overridden in $sample() calls.

parallel (logical(1): FALSE) Whether to use parallel processing via foreach. See examples
in arf: :forge(). Can be overridden in $sample() calls.

. Additional arguments passed to arf::adversarial_rf.
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Method sample(): Sample from stored task. Parameters use hierarchical resolution: function

argument > stored param_set value > hard-coded default.

Usage:
ConditionalARFSampler$sample(

feature,

row_ids = NULL,

conditioning_set = NULL,

round = NULL,

stepsize = NULL,

verbose = NULL,

parallel = NULL
)
Arguments:
feature (character) Feature(s) to sample.
row_ids (integer() INULL) Row IDs to use. If NULL, uses all rows.
conditioning_set (character | NULL) Features to condition on.
round (logical(1) I NULL) Round continuous variables.
stepsize (numeric(1) I NULL) Batch size for parallel processing.
verbose (logical(1) I NULL) Print progress messages.
parallel (logical(1) INULL) Use parallel processing.

Returns: Modified copy with sampled feature(s).

Method sample_newdata(): Sample from external data. See $sample() for parameter details.

Usage:
ConditionalARFSampler$sample_newdata(

feature,

newdata,

conditioning_set = NULL,

round = NULL,

stepsize = NULL,

verbose = NULL,

parallel = NULL
)
Arguments:
feature (character) Feature(s) to sample.
newdata (data.table) External data to use.
conditioning_set (character | NULL) Features to condition on.
round (logical(1) I NULL) Round continuous variables.
stepsize (numeric(1) I NULL) Batch size for parallel processing.
verbose (logical(1) I NULL) Print progress messages.
parallel (logical(1) INULL) Use parallel processing.

Returns: Modified copy with sampled feature(s).

Method clone(): The objects of this class are cloneable with this method.
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Usage:
ConditionalARFSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Watson D, Blesch K, Kapar J, Wright M (2023). “Adversarial Random Forests for Density Estima-
tion and Generative Modeling.” In Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics, 5357-5375. https://proceedings.mlr.press/v206/watson23a.
html.

Blesch K, Koenen N, Kapar J, Golchian P, Burk L, Loecher M, Wright M (2025). “Conditional Fea-
ture Importance with Generative Modeling Using Adversarial Random Forests.” Proceedings of the
AAAI Conference on Artificial Intelligence, 39(15), 15596-15604. doi:10.1609/aaai.v39i15.33712.

Examples

library(mlr3)

task = tgen(”2dnormals"”)$generate(n = 100)

# Create sampler with default parameters

sampler = ConditionalARFSampler$new(task, conditioning_set = "x2", verbose = FALSE)

# Sample using row_ids from stored task

sampled_data = sampler$sample(”x1", row_ids = 1:10)

# Or use external data

data = task$data()

sampled_data_ext = sampler$sample_newdata("x1", newdata = data, conditioning_set = "x2")

# Example with custom ARF parameters
sampler_custom = ConditionalARFSampler$new(

task,
min_node_size = 10L,
finite_bounds = "local”,
verbose = FALSE
)
sampled_custom = sampler_custom$sample(”x1", conditioning_set = "x2")

ConditionalCtreeSampler
(experimental) Conditional Inference Tree Conditional Sampler

Description

Implements conditional sampling using conditional inference trees (ctree). Builds a tree predicting
target features from conditioning features, then samples from the terminal node corresponding to
each test observation.


https://proceedings.mlr.press/v206/watson23a.html
https://proceedings.mlr.press/v206/watson23a.html
https://doi.org/10.1609/aaai.v39i15.33712
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Details

This sampler approximates the conditional distribution P(Xpg|X 4 = x4) by:

1. Building a conditional inference tree with X 5 as response and X 4 as predictors

2. For each test observation, finding its terminal (leaf) node in the tree

3. Sampling uniformly from training observations in that same terminal node
Conditional inference trees (ctree) use permutation tests to determine splits, which helps avoid
overfitting and handles mixed feature types naturally. The tree partitions the feature space based

on the conditioning variables, creating local neighborhoods that respect the conditional distribution
structure.

Key advantages over other samplers:

* Handles mixed feature types (continuous and categorical)

* Non-parametric (no distributional assumptions)

* Automatic feature selection (splits only on informative features)
* Can capture non-linear conditional relationships

« Statistically principled splitting criteria
Hyperparameters control tree complexity:

e mincriterion: Significance level for splits (higher = fewer splits)

e minsplit: Minimum observations required for a split

* minbucket: Minimum observations in terminal nodes
This implementation is inspired by shapr’s ctree approach but simplified for our use case (we build
trees on-demand rather than pre-computing all subsets).

Advantages:

* Works with any feature types
* Robust to outliers
* Interpretable tree structure

* Handles high-dimensional conditioning
Limitations:

* Requires model fitting (slower than KNN)
* Can produce duplicates if terminal nodes are small

* Tree building time increases with data size

Super classes

xplainfi::FeatureSampler ->xplainfi::ConditionalSampler ->ConditionalCtreeSampler
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Public fields

feature_types (character()) Feature types supported by the sampler. Will be checked against
the provided mlr3::Task to ensure compatibility.

tree_cache (environment) Cache for fitted ctree models.

Methods

Public methods:

* ConditionalCtreeSampler$new()
e ConditionalCtreeSampler$clone()

Method new(): Creates a new ConditionalCtreeSampler.

Usage:
ConditionalCtreeSampler$new(
task,
conditioning_set = NULL,
mincriterion = 0.95,
minsplit = 20L,
minbucket = 7L,
use_cache = TRUE

)

Arguments:

task (mlr3::Task) Task to sample from.

conditioning_set (character | NULL) Default conditioning set to use in $sample().

mincriterion (numeric(1): @.95) Significance level threshold for splitting (1 - p-value).
Higher values result in fewer splits (simpler trees).

minsplit (integer(1): 20L) Minimum number of observations required for a split.
minbucket (integer(1): 7L) Minimum number of observations in terminal nodes.
use_cache (logical(1): TRUE) Whether to cache fitted trees.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ConditionalCtreeSampler$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference
Framework.” Journal of Computational and Graphical Statistics, 15(3), 651-674. doi:10.1198/
106186006X133933.

Aas K, Jullum M, Lgland A (2021). “Explaining Individual Predictions When Features Are De-
pendent: More Accurate Approximations to Shapley Values.” Artificial Intelligence, 298, 103502.
doi:10.1016/j.artint.2021.103502.


https://doi.org/10.1198/106186006X133933
https://doi.org/10.1198/106186006X133933
https://doi.org/10.1016/j.artint.2021.103502
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Examples

library(mlr3)
task = tgen("friedman1")$generate(n = 100)

# Create sampler with default parameters
sampler = ConditionalCtreeSampler$new(task)

# Sample features conditioned on others
test_data = task$data(rows = 1:5)
sampled = sampler$sample_newdata(

feature = c("important2”, "important3"),
newdata = test_data,
conditioning_set = "important1”

)

ConditionalGaussianSampler
Gaussian Conditional Sampler

Description

Implements conditional sampling assuming features follow a multivariate Gaussian distribution.
Computes conditional distributions analytically using standard formulas for multivariate normal
distributions.

Details
For a joint Gaussian distribution X ~ N(u,X), partitioned as X = (X4, Xp), the conditional
distribution is:
Xp|Xa =24~ N(upja,Xp|a)

where:
fpa = pE +SpaS 4 (Ta — pa)

Ypia=Sps — SpaX 4 San
This is equivalent to the regression formulation used by fippy:
B=1%paSiy
ppla = pB + B(xA — pa)
Ypja=XpB — fXanB
Assumptions:

* Features are approximately multivariate normal
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* Only continuous features are supported
Advantages:

* Very fast (closed-form solution)
* Deterministic (given seed)

* No hyperparameters

* Memory efficient

Limitations:

* Strong distributional assumption
* May produce out-of-range values for bounded features
» Cannot handle categorical features

* Integer features are treated as continuous and rounded back to integers

Super classes

xplainfi::FeatureSampler ->xplainfi::ConditionalSampler ->ConditionalGaussianSampler

Public fields
feature_types (character()) Feature types supported by the sampler.
mu (numeric()) Mean vector estimated from training data.

sigma (matrix()) Covariance matrix estimated from training data.

Methods
Public methods:

e ConditionalGaussianSampler$new()
e ConditionalGaussianSampler$clone()

Method new(): Creates a new ConditionalGaussianSampler.
Usage:
ConditionalGaussianSampler$new(task, conditioning_set = NULL)
Arguments:
task (mlr3::Task) Task to sample from. Must have only numeric/integer features.
conditioning_set (character | NULL) Default conditioning set to use in $sample().

Method clone(): The objects of this class are cloneable with this method.

Usage:
ConditionalGaussianSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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References

Anderson T (2003). An Introduction to Multivariate Statistical Analysis, 3rd edition. Wiley-
Interscience, Hoboken, NJ. ISBN 9780471360919.

Examples

library(mlr3)
task = tgen("friedman1")$generate(n = 100)
sampler = ConditionalGaussianSampler$new(task)

# Sample x2, x3 conditioned on x1
test_data = task$data(rows = 1:5)
sampled = sampler$sample_newdata(

feature = c("important2”, "important3"),
newdata = test_data,
conditioning_set = "important1”

)

ConditionalKNNSampler k-Nearest Neighbors Conditional Sampler

Description

Implements conditional sampling using k-nearest neighbors (kNN). For each observation, finds the
k most similar observations based on conditioning features, then samples the target features from
these neighbors.

Details
This sampler approximates the conditional distribution P(Xp|X4 = z4) by:

1. Finding the k nearest neighbors of x 4 in the training data

2. Sampling uniformly from the target feature values X p of these k neighbors
This is a simple, non-parametric approach that:

* Requires no distributional assumptions
» Handles mixed feature types (numeric, integer, factor, ordered, logical)
* Is computationally efficient (no model fitting required)
* Adapts locally to the data structure
The method is related to hot-deck imputation and kNN imputation techniques used in missing data

problems. As k — oo and k/n — 0, the kNN conditional distribution converges to the true
conditional distribution under mild regularity conditions (Lipschitz continuity).

Distance Metrics:

The sampler supports two distance metrics:
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* Euclidean: For numeric/integer features only. Standardizes features before computing dis-
tances.

* Gower: For mixed feature types. Handles numeric, factor, ordered, and logical features.
Numeric features are range-normalized, categorical features use exact matching (0/1).

The distance parameter controls which metric to use:

* "auto” (default): Automatically selects Euclidean for all-numeric features, Gower otherwise
* "euclidean": Forces Euclidean distance (errors if non-numeric features present)

» "gower": Forces Gower distance (works with any feature types)
Advantages:

* Very fast (no model training)
* Works with any feature types
* Automatic distance metric selection

* Naturally respects local data structure
Limitations:

* Sensitive to choice of k

* The full task data is required for prediction

* Can produce duplicates if k is small

* May not extrapolate well to new regions

Super classes

xplainfi::FeatureSampler -> xplainfi::ConditionalSampler -> ConditionalKNNSampler

Public fields

feature_types (character()) Feature types supported by the sampler.

Methods

Public methods:
e ConditionalKNNSampler$new()
* ConditionalKNNSampler$sample()
e ConditionalKNNSampler$sample_newdata()
e ConditionalKNNSampler$clone()

Method new(): Creates a new ConditionalKNNSampler.
Usage:
ConditionalKNNSampler$new(task, conditioning_set = NULL, k = 5L)
Arguments:

task (mlr3::Task) Task to sample from.
conditioning_set (character | NULL) Default conditioning set to use in $sample().
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k (integer(1): 5L) Number of nearest neighbors to sample from.

Method sample(): Sample features from their KNN-based conditional distribution.
Usage:
ConditionalKNNSampler$sample(
feature,
row_ids = NULL,
conditioning_set = NULL,
k = NULL
)
Arguments:
feature (character()) Feature name(s) to sample.
row_ids (integer() I NULL) Row IDs from task to use as conditioning values.
conditioning_set (character() | NULL) Features to condition on. If NULL, samples from
marginal distribution (random sampling from training data).
k (integer (1) I NULL) Number of neighbors. If NULL, uses stored parameter.

Returns: Modified copy with sampled feature(s).

Method sample_newdata(): Sample from external data conditionally.
Usage:
ConditionalkKNNSampler$sample_newdata(
feature,
newdata,
conditioning_set = NULL,
k = NULL
)
Arguments:
feature (character()) Feature(s) to sample.
newdata (data.table) External data to use.
conditioning_set (character() I NULL) Features to condition on.
k (integer(1) I NULL) Number of neighbors. If NULL, uses stored parameter.

Returns: Modified copy with sampled feature(s).

Method clone(): The objects of this class are cloneable with this method.
Usage:
ConditionalKNNSampler$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Little R, Rubin D (2019). Statistical Analysis with Missing Data, 3rd edition. John Wiley & Sons,
Hoboken, NJ. ISBN 9780470526798.

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman R
(2001). “Missing Value Estimation Methods for DNA Microarrays.” Bioinformatics, 17(6), 520-
525. doi:10.1093/bioinformatics/17.6.520.


https://doi.org/10.1093/bioinformatics/17.6.520
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Examples

library(mlr3)

task = tgen("friedman1")$generate(n
sampler = ConditionalKNNSampler$new(task, k = 5)

100)

# Sample features conditioned on others

test_data
sampled =
feature
newdata

= task$data(rows = 1:5)
sampler$sample_newdata(

= c("important2"”, "important3"),

= test_data,

conditioning_set = "important1”

)

Conditional SAGE

ConditionalSAGE

Conditional SAGE

Description

SAGE with conditional sampling (features are "marginalized" conditionally). Uses Condition-
alARFSampler as default ConditionalSampler.

Super classes

xplainfi::FeaturelImportanceMethod -> xplainfi: :SAGE -> ConditionalSAGE

Public fields

sampler (ConditionalSampler) Sampler for conditional marginalization.

Methods

Public methods:

* ConditionalSAGE$new()
e ConditionalSAGE$clone()

Method new(): Creates a new instance of the ConditionalSAGE class.

Usage:

ConditionalSAGE$new(
task,
learner,
measure = NULL,
resampling = NULL,
features = NULL,
n_permutations = 10L,
sampler = NULL,
batch_size = 5000L,
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n_samples = 100L,
early_stopping = FALSE,
se_threshold = 0.01,
min_permutations = 10L,
check_interval = 1L

)

Arguments:

task, learner, measure, resampling, features, n_permutations, batch_size, n_samples, early_stopping,
Passed to SAGE.

sampler (ConditionalSampler) Optional custom sampler. Defaults to Conditional ARFSam-
pler.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ConditionalSAGE$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
Marginal SAGE

Examples

library(mlr3)
task = tgen("friedman1")$generate(n = 100)

# Using default ConditionalARFSampler (also handles all mixed data)
sage = ConditionalSAGE$new(
task = task,
learner = 1rn("regr.ranger”, num.trees = 50),
measure = msr("regr.mse"),
n_permutations = 3L,
n_samples = 20
)
sage$compute()

# For alternative conditional samplers:
custom_sampler = ConditionalGaussianSampler$new(

task = task

)

sage_custom = ConditionalSAGE$new(
task = task,

learner = 1lrn("regr.ranger”, num.trees = 50),
measure = msr("regr.mse"),

n_permutations = 5L,

n_samples = 20,

sampler = custom_sampler
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)

sage_custom$compute ()

ConditionalSampler Conditional Feature Sampler

Description

Base class for conditional sampling methods where features are sampled conditionally on other
features. This is an abstract class that should be extended by concrete implementations.

Super class

xplainfi::FeatureSampler -> ConditionalSampler

Methods

Public methods:
e ConditionalSampler$new()
e ConditionalSampler$sample()
e ConditionalSampler$sample_newdata()
e ConditionalSampler$clone()

Method new(): Creates a new instance of the ConditionalSampler class
Usage:
ConditionalSampler$new(task, conditioning_set = NULL)
Arguments:

task (mlr3::Task) Task to sample from
conditioning_set (character | NULL) Default conditioning set to use in $sample().

Method sample(): Sample from stored task conditionally on other features.

Usage:
ConditionalSampler$sample(
feature,
row_ids = NULL,
conditioning_set = NULL,

)

Arguments:

feature (character) Feature(s) to sample.

row_ids (integer() INULL) Row IDs to use. If NULL, uses all rows.
conditioning_set (character | NULL) Features to condition on.
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. Additional arguments passed to the sampler implementation.

Returns: Modified copy with sampled feature(s).

Method sample_newdata(): Sample from external data conditionally.

Usage:
ConditionalSampler$sample_newdata(
feature,
newdata,
conditioning_set = NULL,

)

Arguments:

feature (character) Feature(s) to sample.

newdata (data.table) External data to use.

conditioning_set (character | NULL) Features to condition on.
. Additional arguments passed to the sampler implementation.

Returns: Modified copy with sampled feature(s).

Method clone(): The objects of this class are cloneable with this method.

Usage:
ConditionalSampler$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

19

FeatureImportanceMethod
Feature Importance Method Class

Description

Feature Importance Method Class
Feature Importance Method Class

Public fields

label (character (1)) Method label.
task (mlr3::Task)

learner (mlr3::Learner)

measure (mlr3::Measure)

resampling (mlr3::Resampling), instantiated upon construction.

resample_result (mlr3::ResampleResult) of the original learner and task, used for baseline

Scores.
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features (character: NULL) Features of interest. By default, importances will be computed for
each feature in task, but optionally this can be restricted to at least one feature. Ignored if
groups is specified.

groups (list: NULL) A (named) list of features (names or indices as in task). If groups is speci-
fied, features is ignored. Importances will be calculated for group of features at a time, e.g.,
in PFI not one but the group of features will be permuted at each step. Analogously in WVIM,
each group of features will be left out (or in) for each model refit. Not all methods support
groups (e.g., SAGE).

param_set (paradox::ps())

predictions (data.table) Feature-specific prediction objects provided for some methods (PFI,

WVIM). Contains columns for feature of interest, resampling iteration, refit or perturbation
iteration, and mlr3::Prediction objects.

Methods
Public methods:

e FeatureImportanceMethod$new()

e FeatureImportanceMethod$compute ()

e FeatureImportanceMethod$importance()
¢ FeatureImportanceMethod$obs_loss()

* FeatureImportanceMethod$reset()

e FeatureImportanceMethod$print()

e FeatureImportanceMethod$scores()

¢ FeatureImportanceMethod$clone()

Method new(): Creates a new instance of this R6 class. This is typically intended for use by
derived classes.

Usage:
FeatureImportanceMethod$new(
task,
learner,
measure = NULL,
resampling = NULL,
features = NULL,
groups = NULL,
param_set = paradox::ps(),
label
)

Arguments:

task, learner, measure, resampling, features, groups, param_set, label Used to set
fields
Method compute(): Compute feature importance scores

Usage:
FeatureImportanceMethod$compute(store_backends = TRUE)
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Arguments:
store_backends (logical(1): TRUE) Whether to store backends.

Method importance(): Getaggregated importance scores. The stored measure object’s aggregator
(default: mean) will be used to aggregated importance scores across resampling iterations and, de-
pending on the method use, permutations (Perturbationlmportance or refits LOCO).

Usage:

FeatureImportanceMethod$importance(

)

relation = NULL,
standardize = FALSE,
ci_method = c("none",
conf_level = 0.95,

n n

raw”, "nadeau_bengio”, "quantile"),

Arguments:

relation (character(1)) How to relate perturbed scores to originals ("difference" or "ratio"). If

NULL, uses stored parameter value. This is only applicable for methods where importance
is based on some relation between baseline and post-modification loss, i.e. Perturbationlm-
portance methods such as PFI or WVIM / LOCO. Not available for SAGE methods.

standardize (logical(1): FALSE) If TRUE, importances are standardized by the highest score

so all scores fallin [-1, 1].

ci_method (character(1): "none") Which confidence interval estimation method to use, de-

faulting to omitting variance estimation ("none"). If "raw"”, uncorrected (too narrow) CIs
are provided purely for informative purposes. If "nadeau_bengio”, variance correction is
performed according to Nadeau & Bengio (2003) as suggested by Molnar et al. (2023).
If "quantile”, empirical quantiles are used to construct confidence-like intervals. These
methods are model-agnostic and rely on suitable resamplings, e.g. subsampling with 15
repeats for "nadeau_bengio”. See details.

conf_level (numeric(1): @.95) Confidence level to use for confidence interval construction

when ci_method != "none"”.
. Additional arguments passed to specialized methods, if any.

Details: Variance estimates for importance scores are biased due to the resampling procedure.
Molnar et al. (2023) suggest to use the variance correction factor proposed by Nadeau & Bengio
(2003) of n2/n1, where n2 and n1 are the sizes of the test- and train set, respectively. This should
then be combined with approx. 15 iterations of either bootstrapping or subsampling.

The use of bootstrapping in this context can lead to problematic information leakage when
combined with learners that perform bootstrapping themselves, e.g., Random Forest learners.
In such cases, observations may be used as train- and test instances simultaneously, leading to
erroneous performance estimates.

An approach leading to still imperfect, but improved variance estimates could be:

PFI$new(

task = sim_dgp_interactions(n = 1000),

learner = 1rn("regr.ranger”, num.trees = 100),
measure = msr("regr.mse"),

# Subsampling instead of bootstrapping due to RF
resampling = rsmp("”subsampling”, repeats = 15),
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n_repeats = 5
)
n_repeats = 5 in this context only improves the stability of the PFI estimate within the resam-
pling iteration, whereas rsmp(”subsampling”, repeats = 15) is used to account for learner
variance and necessitates variance correction.
This approach can in principle also be applied to CFI and RFI, but beware that a conditional
sample such as ConditionalARFSampler also needs to be trained on data, which would need
to be taken account by the variance estimation method. Analogously, the "nadeau_bengio”
correction was recommended for the use with PFI by Molnar et al., so its use with other methods
like LOCO or SAGE is experimental.
Note that even if measure uses an aggregator function that is not the mean, variance estimation
currently will always use mean() and var ().

Returns: (data.table) Aggregated importance scores with columns "feature”, "importance”,

n o n n o n

and depending on ci_method also "se"”, "conf_lower”, "conf_upper"”.

Method obs_loss(): Calculate observation-wise importance scores.

Requires that $compute () was run and that measure is decomposable and has an observation-wise
loss (Measure$obs_loss()) associated with it. This is not the case for measure like classif. auc,
which is not decomposable.

Usage:
FeatureImportanceMethod$obs_loss(relation = NULL)

Arguments:

relation (character(1)) How to relate perturbed scores to originals ("difference" or "ratio"). If
NULL, uses stored parameter value. This is only applicable for methods where importance
is based on some relation between baseline and post-modification loss, i.e. Perturbationlm-
portance methods such as PFI or WVIM / LOCO. Not available for SAGE methods.

Returns: (data.table) Observation-wise losses and importance scores with columns "feature”,
"iter_rsmp”, "iter_repeat” (if applicable), "row_ids"”, "loss_baseline"”, "loss_post”,
and "obs_importance”.

Method reset(): Resets all stored fields populated by $compute: $resample_result, $scores,
$obs_losses, and $predictions.

Usage:

FeatureImportanceMethod$reset ()

Method print(): Print importance scores

Usage:
FeatureImportanceMethod$print(...)

Arguments:

. Passed to print()

Method scores(): Calculate importance scores for each resampling iteration and sub-iterations
(iter_rsmp in PFI for example).

Iteration-wise importance are computed on the fly depending on the chosen relation (difference
or ratio) to avoid re-computation if only a different relation is needed.
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Usage:
FeatureImportanceMethod$scores(relation = NULL)

Arguments:

relation (character(1)) How to relate perturbed scores to originals ("difference" or "ratio"). If
NULL, uses stored parameter value. This is only applicable for methods where importance
is based on some relation between baseline and post-modification loss, i.e. PerturbationIm-
portance methods such as PFI or WVIM / LOCO. Not available for SAGE methods.

Returns: (data.table) Iteration-wise importance scores with columns for "feature”, iteration
indices, baseline and post-modification scores, and "importance”.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FeatureImportanceMethod$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Nadeau C, Bengio Y (2003). “Inference for the Generalization Error.” Machine Learning, 52(3),
239-281. doi:10.1023/A:1024068626366. Molnar C, Freiesleben T, Konig G, Herbinger J, Reisinger
T, Casalicchio G, Wright M, Bischl B (2023). “Relating the Partial Dependence Plot and Permuta-
tion Feature Importance to the Data Generating Process.” In Longo L (ed.), Explainable Artificial
Intelligence, 456-479. ISBN 978-3-031-44064-9, doi:10.1007/9783031440649_24.

FeatureSampler Feature Sampler Class

Description

Base class for implementing different sampling strategies for feature importance methods like PFI
and CFI

Public fields

task (mlr3::Task) Original task.
label (character (1)) Name of the sampler.

feature_types (character()) Feature types supported by the sampler. Will be checked against
the provided mlr3::Task to ensure compatibility.

param_set (paradox::ParamSet) Parameter set for the sampler.


https://doi.org/10.1023/A%3A1024068626366
https://doi.org/10.1007/978-3-031-44064-9_24
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Methods
Public methods:

* FeatureSampler$new()

* FeatureSampler$sample()

e FeatureSampler$sample_newdata()
* FeatureSampler$print()

* FeatureSampler$clone()

Method new(): Creates a new instance of the FeatureSampler class
Usage:
FeatureSampler$new(task)

Arguments:
task (mlr3::Task) Task to sample from

Method sample(): Sample values for feature(s) from stored task
Usage:
FeatureSampler$sample(feature, row_ids = NULL)
Arguments:

feature (character) Feature name(s) to sample (can be single or multiple). Must match those
in the stored Task.
row_ids (integer(): NULL) Row IDs of the stored Task to use as basis for sampling.

Returns: Modified copy of the input features with the feature(s) sampled: A data.table with
same number of columns and one row matching the supplied row_ids
Method sample_newdata(): Sample values for feature(s) using external data
Usage:
FeatureSampler$sample_newdata(feature, newdata)

Arguments:
feature (character) Feature name(s) to sample (can be single or multiple)
newdata (data.table ) External data to use for sampling.

Method print(): Print sampler
Usage:
FeatureSampler$print(...)

Arguments:
. Ignored.

Method clone(): The objects of this class are cloneable with this method.
Usage:
FeatureSampler$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
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KnockoffGaussianSampler
Gaussian Knockoff Conditional Sampler

Description

A KnockoffSampler defaulting to second-order Gaussian knockoffs as created by knockoff::create.second_order.

Details

This is equivalent to KnockoffSampler using the default knockoff_fun.

Super classes

xplainfi::FeatureSampler -> xplainfi::KnockoffSampler ->KnockoffGaussianSampler

Public fields

feature_types (character()) Feature types supported by the sampler. Will be checked against
the provided mlr3::Task to ensure compatibility.

x_tilde Knockoff matrix

Methods
Public methods:

¢ KnockoffGaussianSampler$new()
¢ KnockoffGaussianSampler$clone()

Method new(): Creates a new instance using Gaussian knockoffs via knockoff::create.second_order.
Usage:
KnockoffGaussianSampler$new(task, iters = 1)
Arguments:

task (mlr3::Task) Task to sample from.
iters (integer(1): 1) Number of repetitions the knockoff_fun is applied to create multiple

x_tilde instances per observation.
Method clone(): The objects of this class are cloneable with this method.

Usage:
KnockoffGaussianSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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References

Watson D, Wright M (2021). “Testing Conditional Independence in Supervised Learning Algo-
rithms.” Machine Learning, 110(8), 2107-2129. doi:10.1007/s10994021060306.

Blesch K, Watson D, Wright M (2023). “Conditional Feature Importance for Mixed Data.” AStA
Advances in Statistical Analysis, 108(2), 259-278. doi:10.1007/s10182023004779.

Examples

library(mlr3)

task = tgen(”2dnormals"”)$generate(n = 100)
# Create sampler

sampler = KnockoffGaussianSampler$new(task)
# Sample using row_ids from stored task
sampled_data = sampler$sample(”x1")

KnockoffSampler Knockoff Sampler

Description

Implements conditional sampling using Knockoffs.

Details

The KnockoffSampler samples Knockoffs based on the task data. This class allows arbitrary
knockoff_fun, which also means that no input checking against supported feature types can be
done. Use KnockoffGaussianSampler for the Gaussian knockoff sampler for numeric features. Al-
ternative knockoff samplers include knockoff_seq() from the segknockoff package available on
GitHub: https://github.com/kormamal/segknockoff.

Knockoffs are related to the ConditionalSampler familty, with key differences: They do not allow
specifying a conditioning_set

Super class

xplainfi::FeatureSampler ->KnockoffSampler

Public fields

x_tilde Knockoff matrix with one (or iters) row(s) per original observation in task.


https://doi.org/10.1007/s10994-021-06030-6
https://doi.org/10.1007/s10182-023-00477-9
https://github.com/kormama1/seqknockoff
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Methods

Public methods:

¢ KnockoffSampler$new()
* KnockoffSampler$sample()
¢ KnockoffSampler$clone()

Method new(): Creates a new instance of the KnockoffSampler class.

Usage:

KnockoffSampler$new(
task,
knockoff_fun = function(x) knockoff::create.second_order(as.matrix(x)),
iters = 1

)

Arguments:

task (mlr3::Task) Task to sample from

knockoff_fun (function) Function used to create knockoff matrix. Default are second-order
Gaussian knockoffs (knockoff: :create.second_order())

iters (integer(1): 1) Number of repetitions the knockoff_fun is applied to create multiple
x_tilde instances per observation.

Method sample(): Sample from stored task using knockoff values. Replaces specified feature(s)
with their knockoff counterparts from the pre-generated knockoff matrix.

Usage:
KnockoffSampler$sample(feature, row_ids = NULL)

Arguments:
feature (character) Feature(s) to sample.
row_ids (integer() INULL) Row IDs to use. If NULL, uses all rows.

Returns: Modified copy with knockoff feature(s).

Method clone(): The objects of this class are cloneable with this method.

Usage:
KnockoffSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Watson D, Wright M (2021). “Testing Conditional Independence in Supervised Learning Algo-
rithms.” Machine Learning, 110(8), 2107-2129. doi:10.1007/s10994021060306.

Blesch K, Watson D, Wright M (2023). “Conditional Feature Importance for Mixed Data.” AStA
Advances in Statistical Analysis, 108(2), 259-278. doi:10.1007/s10182023004779.


https://doi.org/10.1007/s10994-021-06030-6
https://doi.org/10.1007/s10182-023-00477-9
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Examples

library(mlr3)

task = tgen(”2dnormals”)$generate(n = 100)
# Create sampler with default parameters
sampler = KnockoffSampler$new(task)

# Sample using row_ids from stored task
sampled_data = sampler$sample(”x1")

LOCO Leave-One-Covariate-Out (LOCO)

Description

Calculates Leave-One-Covariate-Out (LOCO) scores.

Details

LOCO measures feature importance by comparing model performance with and without each fea-
ture. For each feature, the model is retrained without that feature and the performance difference
(reduced_model_loss - full_model_loss) indicates the feature’s importance. Higher values indicate
more important features.

Super classes

xplainfi::FeatureImportanceMethod -> xplainfi::WVIM->L0OCO

Methods

Public methods:

e LOCO$new()
e LOCO$compute()
e LOCO$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

LOCO$new(
task,
learner,
measure = NULL,
resampling = NULL,
features = NULL,
n_repeats = 1L

)

Arguments:

task (mlr3::Task) Task to compute importance for.
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learner (mlr3::Learner) Learner to use for prediction.

measure (mlr3::Measure: NULL) Measure to use for scoring. Defaults to classif.ce for clas-
sification and regr.mse for regression.

resampling (mlr3::Resampling) Resampling strategy. Defaults to holdout.
features (character()) Features to compute importance for. Defaults to all features.

n_repeats (integer(1): 1L) Number of refit iterations per resampling iteration.

Method compute(): Compute LOCO importances.

Usage:
LOCO$compute(store_models = TRUE, store_backends = TRUE)

Arguments:

store_models, store_backends (logical(1): TRUE) Whether to store fitted models / data
backends, passed to mlr3::resample internally

Method clone(): The objects of this class are cloneable with this method.

Usage:
LOCO$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Lei J, G’Sell M, Rinaldo A, Tibshirani R, Wasserman L (2018). “Distribution-Free Predictive In-
ference for Regression.” Journal of the American Statistical Association, 113(523), 1094—-1111.
doi:10.1080/01621459.2017.1307116.

Examples

library(mlr3)
library(mlr3learners)

task <- sim_dgp_correlated(n = 500)

loco <- LOCO$new(

)

task = task,
learner = 1lrn("regr.ranger”, num.trees = 10),
measure = msr("regr.mse")

loco$compute()
loco$importance()


https://doi.org/10.1080/01621459.2017.1307116
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MarginalPermutationSampler
Marginal Permutation Sampler

Description

Implements marginal permutation-based sampling for Permutation Feature Importance (PFI). Each
specified feature is randomly shuffled (permuted) independently, breaking the relationship between
the feature and the target as well as between rows.

Details
The permutation sampler randomly shuffles feature values across observations:

 Each feature is permuted independently within its column
* The association between feature values and target values is broken
* The association between feature values across rows is broken

* The marginal distribution of each feature is preserved
Important distinction from SAGE’s "marginal" approach:

* MarginalPermutationSampler: Shuffies features independently, breaking row structure
* MarginalSAGE: Uses reference data but keeps rows intact (features in coalition stay together)

This is the classic approach used in Permutation Feature Importance (PFI) and assumes features are
independent.

Super classes

xplainfi::FeatureSampler ->xplainfi::MarginalSampler ->MarginalPermutationSampler

Methods

Public methods:
* MarginalPermutationSampler$new()
* MarginalPermutationSampler$clone()

Method new(): Creates a new instance of the MarginalPermutationSampler class.

Usage:
MarginalPermutationSampler$new(task)

Arguments:
task (mlr3::Task) Task to sample from.

Method clone(): The objects of this class are cloneable with this method.
Usage:
MarginalPermutationSampler$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
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Examples

library(mlr3)

task = tgen(”2dnormals”)$generate(n = 10)
task$data()

sampler = MarginalPermutationSampler$new(task)

# Sample using row_ids from stored task
sampler$sample(”x1")

# Or use external data
data = task$data()
sampler$sample_newdata(”x1", newdata = data)

MarginalReferenceSampler
Marginal Reference Sampler

Description

Samples complete observations from reference data to replace feature values. This approach sam-
ples from the marginal distribution while preserving within-row feature dependencies.

Details

This sampler implements what is called "marginal imputation” in the SAGE literature (Covert et al.
2020). For each observation, it samples a complete row from reference data and takes the specified
feature values from that row. This approach:

 Samples from the marginal distribution P(Xg) where S is the set of features

* Preserves dependencies within the sampled reference row

* Breaks dependencies between test and reference data
Terminology note: In SAGE literature, this is called "marginal imputation" because features out-

side the coalition are "imputed" by sampling from their marginal distribution. We use MarginalReferenceSampler
to avoid confusion with missing data imputation and to clarify that it samples from reference data.

Comparison with other samplers:
* MarginalPermutationSampler: Shuffies each feature independently, breaking all row struc-
ture
* MarginalReferenceSampler: Samples complete rows, preserving within-row dependencies

* ConditionalSampler: Samples from P(Xg|X _g), conditioning on other features

Use in SAGE:

This is the default approach for MarginalSAGE. For a test observation x and features to marginalize
S, it samples a reference row x_ref and creates a "hybrid" observation combining x’s coalition
features with x_ref’s marginalized features.
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Super classes

xplainfi::FeatureSampler -> xplainfi::MarginalSampler ->MarginalReferenceSampler

Public fields

reference_data (data.table) Reference data to sample from for marginalization.

Methods
Public methods:

e MarginalReferenceSampler$new()
* MarginalReferenceSampler$clone()

Method new(): Creates a new instance of the MarginalReferenceSampler class.
Usage:
MarginalReferenceSampler$new(task, n_samples = NULL)
Arguments:
task (mlr3::Task) Task to sample from.

n_samples (integer(1) | NULL) Number of reference samples to use. If NULL, uses all task
data as reference.

Method clone(): The objects of this class are cloneable with this method.
Usage:
MarginalReferenceSampler$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

Covert I, Lundberg S, Lee S (2020). “Understanding Global Feature Contributions With Additive

Importance Measures.” In Advances in Neural Information Processing Systems, volume 33, 17212—

17223. https://proceedings.neurips.cc/paper/2020/hash/c7bfob7c1a86d5eb3be2c722cf2cf746-Abstract.
html.

Examples

library(mlr3)
task = tgen("friedman1")$generate(n = 100)

# Default: uses all task data as reference
sampler = MarginalReferenceSampler$new(task)
sampled = sampler$sample(”important1”, row_ids = 1:10)

# Subsample reference data to 50 rows
sampler_subsampled = MarginalReferenceSampler$new(task, n_samples = 50L)
sampled2 = sampler_subsampled$sample(”important1”, row_ids = 1:10)


https://proceedings.neurips.cc/paper/2020/hash/c7bf0b7c1a86d5eb3be2c722cf2cf746-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c7bf0b7c1a86d5eb3be2c722cf2cf746-Abstract.html
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MarginalSAGE Marginal SAGE

Description

SAGE with marginal sampling (features are marginalized independently). This is the standard
SAGE implementation.

Super classes

xplainfi::FeatureImportanceMethod -> xplainfi: :SAGE -> MarginalSAGE

Methods

Public methods:

* MarginalSAGE$new()
* MarginalSAGE$clone()

Method new(): Creates a new instance of the MarginalSAGE class.

Usage:

MarginalSAGE$new(
task,
learner,
measure = NULL,
resampling = NULL,
features = NULL,
n_permutations = 10L,
batch_size = 5000L,
n_samples = 100L,
early_stopping = FALSE,
se_threshold = 0.01,
min_permutations = 10L,
check_interval = 1L

)

Arguments:

task, learner, measure, resampling, features, n_permutations, batch_size, n_samples, early_stopping,
Passed to SAGE.
Method clone(): The objects of this class are cloneable with this method.

Usage:
Marginal SAGE$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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See Also
ConditionalSAGE

Examples

library(mlr3)
task = tgen("friedman1")$generate(n = 100)
sage = MarginalSAGE$new(
task = task,
learner = 1lrn("regr.ranger”, num.trees = 50),
measure = msr("regr.mse"),
n_permutations = 3L,
n_samples = 20
)
sage$compute()

MarginalSampler Marginal Sampler Base Class

Description

Abstract base class for marginal sampling strategies that do not condition on other features. Marginal
samplers sample from P(X_S), the marginal distribution of features S, ignoring any dependencies
with other features.

Details

This class provides a common interface for different marginal sampling approaches:

* MarginalPermutationSampler: Shuffles features independently within the dataset

* MarginalReferenceSampler: Samples complete rows from reference data

Both approaches sample from the marginal distribution P(X_S), but differ in how they preserve or
break within-row dependencies:

» Permutation breaks ALL dependencies (both with target and between features)

» Reference sampling preserves WITHIN-row dependencies but breaks dependencies with test
data

Comparison with ConditionalSampler:

* MarginalSampler: Samples from P(Xg) - no conditioning

* ConditionalSampler: Samples from P(Xg|X _g)- conditions on other features

This base class implements the public $sample() and $sample_newdata() methods, delegating to
private . sample_marginal() which subclasses must implement.
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Super class

xplainfi::FeatureSampler ->MarginalSampler

Methods

Public methods:
e MarginalSampler$sample()
* MarginalSampler$sample_newdata()
e MarginalSampler$clone()
Method sample(): Sample features from their marginal distribution.

Usage:
MarginalSampler$sample(feature, row_ids = NULL)

Arguments:
feature (character()) Feature name(s) to sample.
row_ids (integer() I NULL) Row IDs from task to use.

Returns: Modified copy with sampled feature(s).

Method sample_newdata(): Sample from external data.
Usage:
MarginalSampler$sample_newdata(feature, newdata)
Arguments:
feature (character()) Feature(s) to sample.
newdata (data.table) External data to use.

Returns: Modified copy with sampled feature(s).

Method clone(): The objects of this class are cloneable with this method.

Usage:
MarginalSampler$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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op-null-default Default value for NULL

Description

A backport of %| | % available in R versions from 4.4.0.

Usage
X %1%y
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Arguments

X,y If x is NULL or length 0, will return y; otherwise returns x.

Examples

1 %1% 2
NULL %[ ]% 2

PerturbationImportance
Perturbation Feature Importance Base Class

Description

Abstract base class for perturbation-based importance methods PFI, CFI, and RFI

Super class

xplainfi::FeatureImportanceMethod -> PerturbationImportance

Public fields

sampler (FeatureSampler) Sampler object for feature perturbation

Methods
Public methods:

e PerturbationImportance$new()
e PerturbationImportance$importance()
e PerturbationImportance$clone()

Method new(): Creates a new instance of the Perturbationlmportance class
Usage:
PerturbationImportance$new(

task,
learner,
measure = NULL,
resampling = NULL,
features = NULL,
groups = NULL,
sampler = NULL,
relation = "difference”,
n_repeats = 1L,
batch_size = NULL
)

Arguments:
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task, learner, measure, resampling, features, groups Passed to FeatureImportanceMethod.

sampler (FeatureSampler) Sampler to use for feature perturbation.

relation (character(1): "difference”) How to relate perturbed and baseline scores. Can
also be "ratio”.

n_repeats (integer(1): 1L) Number of permutation/conditional sampling iterations. Can be
overridden in $compute().

batch_size (integer (1) | NULL: NULL) Maximum number of rows to predict at once. When
NULL, predicts all test_size * n_repeats rows in one call. Use smaller values to reduce
memory usage at the cost of more prediction calls. Can be overridden in $compute().

Method importance(): Get aggregated importance scores. Extends the base $importance()
method to support the additional "cpi” ci_method.

Usage:
PerturbationImportance$importance(

relation = NULL,
standardize = FALSE,

ci_method = c("none”, "raw”, "nadeau_bengio”, "quantile”, "cpi"),
conf_level = 0.95,
test = c("t"”, "wilcoxon”, "fisher"”, "binomial”),
B = 1999,
)
Arguments:

relation (character (1)) How to relate perturbed scores to originals ("difference" or "ratio").
If NULL, uses stored parameter value.

standardize (logical(1): FALSE) If TRUE, importances are standardized by the highest score
so all scores fall in [-1, 1].

ci_method (character(1): "none") Variance estimation method. In addition to base methods
("none"”, "raw"”, "nadeau_bengio”, "quantile"), perturbation methods support "cpi”
(Conditional Predictive Impact). CPI is specifically designed for CFI with knockoff sam-
plers and uses one-sided hypothesis tests.

conf_level (numeric(1): @.95) Confidence level for confidence intervals when ci_method
1= "none".

test (character(1): "t") Testto use for CPI. One of "t", "wilcoxon"”, "fisher”, or "binomial”.
Only used when ci_method = "cpi”.

B (integer(1): 1999) Number of replications for Fisher test. Only used when ci_method =
"cpi” and test = "fisher".

. Additional arguments passed to the base method.

Returns: (data.table) Aggregated importance scores.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PerturbationImportance$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
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PFI Permutation Feature Importance

Description

Implementation of Permutation Feature Importance (PFI) using modular sampling approach. PFI
measures the importance of a feature by calculating the increase in model error when the feature’s
values are randomly permuted, breaking the relationship between the feature and the target variable.

Details

Permutation Feature Importance was originally introduced by Breiman (2001) as part of the Ran-
dom Forest algorithm. The method works by:

1. Computing baseline model performance on the original dataset

2. For each feature, randomly permuting its values while keeping other features unchanged
3. Computing model performance on the permuted dataset
4.

Calculating importance as the difference (or ratio) between permuted and original perfor-
mance

Super classes

xplainfi::FeatureImportanceMethod -> xplainfi: :PerturbationImportance -> PFI

Methods

Public methods:

* PFI$new()
e PFI$compute()
* PFI$clone()

Method new(): Creates a new instance of the PFI class

Usage:

PFI$new(
task,
learner,
measure = NULL,
resampling = NULL,
features = NULL,
groups = NULL,
relation = "difference”,
n_repeats = 1L,
batch_size = NULL

)

Arguments:
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task, learner, measure, resampling, features, groups, relation, n_repeats, batch_size
Passed to PerturbationImportance

Method compute(): Compute PFI scores
Usage:
PFI$compute(
n_repeats = NULL,
batch_size = NULL,
store_models = TRUE,
store_backends = TRUE
)

Arguments:

n_repeats (integer(1); NULL) Number of permutation iterations. If NULL, uses stored value.

batch_size (integer (1) INULL: NULL) Maximum number of rows to predict at once. If NULL,
uses stored value.

store_models, store_backends (logical(1): TRUE) Whether to store fitted models / data
backends, passed to mlr3::resample internally for the initial fit of the learner. This may be
required for certain measures and is recommended to leave enabled unless really necessary.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PFI$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

References

Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5-32. doi:10.1023/A:1010933404324.
Fisher A, Rudin C, Dominici F (2019). “All Models Are Wrong, but Many Are Useful: Learn-
ing a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously.”
Journal of Machine Learning Research, 20, 177. https://pmc.ncbi.nlm.nih.gov/articles/
PMC8323609/. Strobl C, Boulesteix A, Kneib T, Augustin T, Zeileis A (2008). “Conditional Vari-
able Importance for Random Forests.” BMC Bioinformatics, 9(1), 307. doi:10.1186/147121059307.

Examples

library(mlr3)
library(mlr3learners)

task <- sim_dgp_correlated(n = 500)

pfi <= PFI$new(
task = task,
learner = 1rn("regr.ranger”, num.trees = 10),
measure = msr("regr.mse")

)

pfi$compute()

pfi$importance()


https://doi.org/10.1023/A%3A1010933404324
https://pmc.ncbi.nlm.nih.gov/articles/PMC8323609/
https://pmc.ncbi.nlm.nih.gov/articles/PMC8323609/
https://doi.org/10.1186/1471-2105-9-307
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RFI Relative Feature Importance

Description

RFI generalizes CFI and PFI with arbitrary conditioning sets and samplers.

Super classes

xplainfi::FeatureImportanceMethod -> xplainfi: :PerturbationImportance ->RFI

Methods

Public methods:

* RFI$new()
* RFI$compute()
* RFI$clone()

Method new(): Creates a new instance of the RFI class

Usage:

RFI$new(
task,
learner,
measure = NULL,
resampling = NULL,
features = NULL,
groups = NULL,
conditioning_set = NULL,
relation = "difference”,
n_repeats = 1L,
batch_size = NULL,
sampler = NULL

)

Arguments:

task, learner, measure, resampling, features, groups, relation, n_repeats, batch_size
Passed to Perturbationlmportance.

conditioning_set (character()) Set of features to condition on. Can be overridden in
$compute(). Default (character(@)) is equivalent to PFI. In CFI, this would be set to
all features except that of interest.

sampler (ConditionalSampler) Optional custom sampler. Defaults to ConditionalARFSampler.

Method compute(): Compute RFI scores
Usage:



41

RFI$compute(
conditioning_set = NULL,
n_repeats = NULL,
batch_size = NULL,
store_models = TRUE,
store_backends = TRUE

)

Arguments:

conditioning_set (character()) Set of features to condition on. If NULL, uses the stored
parameter value.

n_repeats (integer (1)) Number of permutation iterations. If NULL, uses stored value.

batch_size (integer (1) INULL: NULL) Maximum number of rows to predict at once. If NULL,
uses stored value.

store_models, store_backends (logical(1): TRUE) Whether to store fitted models / data
backends, passed to mlr3::resample internally for the initial fit of the learner. This may be
required for certain measures and is recommended to leave enabled unless really necessary.

Method clone(): The objects of this class are cloneable with this method.

Usage:
RFI$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Ko6nig G, Molnar C, Bischl B, Grosse-Wentrup M (2021). “Relative Feature Importance.” In
2020 25th International Conference on Pattern Recognition (ICPR), 9318-9325. doi:10.1109/
ICPR48806.2021.9413090.

Examples

library(mlr3)
task = tgen("friedman1")$generate(n = 200)
rfi = RFI$new(

)

task = task,

learner = 1rn("regr.ranger”, num.trees = 50),
measure = msr("regr.mse"),

conditioning_set = c("important1")

rfi$compute()
rfi$importance()


https://doi.org/10.1109/ICPR48806.2021.9413090
https://doi.org/10.1109/ICPR48806.2021.9413090
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SAGE Shapley Additive Global Importance (SAGE) Base Class

Description

Base class for SAGE (Shapley Additive Global Importance) feature importance based on Shapley
values with marginalization. This is an abstract class - use MarginalSAGE or ConditionalSAGE.

Details

SAGE uses Shapley values to fairly distribute the total prediction performance among all features.
Unlike perturbation-based methods, SAGE marginalizes features by integrating over their distribu-
tion. This is approximated by averaging predictions over a reference dataset.

Standard Error Calculation: The standard errors (SE) reported in $convergence_history reflect
the uncertainty in Shapley value estimation across different random permutations within a single
resampling iteration. These SEs quantify the Monte Carlo sampling error for a fixed trained model
and are only valid for inference about the importance of features for that specific model. They do
not capture broader uncertainty from model variability across different train/test splits or resampling
iterations.

Super class

xplainfi::FeatureImportanceMethod -> SAGE

Public fields

n_permutations (integer (1)) Number of permutations to sample.
convergence_history (data.table) History of SAGE values during computation.
converged (logical(1)) Whether convergence was detected.

n_permutations_used (integer (1)) Actual number of permutations used.

Methods

Public methods:

* SAGE$new()

* SAGE$compute()

* SAGE$plot_convergence()
* SAGE$clone()

Method new(): Creates a new instance of the SAGE class.

Usage:

SAGE$new(
task,
learner,
measure = NULL,
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resampling = NULL,
features = NULL,
n_permutations = 10L,
batch_size = 5000L,
n_samples = 100L,
early_stopping = TRUE,
se_threshold = 0.01,
min_permutations = 10L,
check_interval = 1L

)

Arguments:
task, learner, measure, resampling, features Passed to FeaturelmportanceMethod.

n_permutations (integer(1): 10L) Number of permutations to sample for SAGE value esti-
mation. The total number of evaluated coalitionsis 1 (empty) + n_permutations x n_features.

batch_size (integer(1): 5000L) Maximum number of observations to process in a single
prediction call.

n_samples (integer(1): 100L) Number of samples to use for marginalizing out-of-coalition
features. For MarginalSAGE, this is the number of marginal data samples ("background
data" in other implementations). For Conditional SAGE, this is the number of conditional
samples per test instance retrieved from sampler.

early_stopping (logical(1): TRUE) Whether to enable early stopping based on convergence
detection.

se_threshold (numeric(1): @.01) Convergence threshold for relative standard error. Conver-
gence is detected when the maximum relative SE across all features falls below this thresh-
old. Relative SE is calculated as SE divided by the range of importance values (max - min),
making it scale-invariant across different loss metrics. Default of @.01 means convergence
when relative SE is below 1% of the importance range.

min_permutations (integer(1): 10L) Minimum permutations before checking for conver-
gence. Convergence is judged based on the standard errors of the estimated SAGE values,
which requires a sufficiently large number of samples (i.e., evaluated coalitions).

check_interval (integer(1): 1L) Check convergence every N permutations.

Method compute(): Compute SAGE values.

Usage:

SAGE$compute(
store_backends = TRUE,
batch_size = NULL,
early_stopping = NULL,
se_threshold = NULL,
min_permutations = NULL,
check_interval = NULL

)

Arguments:
store_backends (logical(1)) Whether to store data backends.

batch_size (integer(1): 5000L) Maximum number of observations to process in a single
prediction call.
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early_stopping (logical(1): TRUE) Whether to check for convergence and stop early.

se_threshold (numeric(1): 0.01) Convergence threshold for relative standard error. SE is
normalized by the range of importance values (max - min) to make convergence detection
scale-invariant. Default @.01 means convergence when relative SE < 1%.

min_permutations (integer(1): 10L) Minimum permutations before checking convergence.
check_interval (integer(1): 1L) Check convergence every N permutations.

Method plot_convergence(): Plot convergence history of SAGE values.
Usage:
SAGE$plot_convergence(features = NULL)

Arguments:
features (character | NULL) Features to plot. If NULL, plots all features.

Returns: A ggplot2 object

Method clone(): The objects of this class are cloneable with this method.

Usage:
SAGE$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Covert I, Lundberg S, Lee S (2020). “Understanding Global Feature Contributions With Additive

Importance Measures.” In Advances in Neural Information Processing Systems, volume 33, 17212~

17223. https://proceedings.neurips.cc/paper/2020/hash/c7bfob7c1a86d5eb3be2c722cf2cf746-Abstract.
html.

See Also
Marginal SAGE ConditionalSAGE

sim_dgp_ewald Simulate data as in Ewald et al. (2024)

Description

Reproduces the data generating process from Ewald et al. (2024) for benchmarking feature impor-
tance methods. Includes correlated features and interaction effects.

Usage
sim_dgp_ewald(n = 500)

Arguments

n (integer (1)) Number of samples to create.


https://proceedings.neurips.cc/paper/2020/hash/c7bf0b7c1a86d5eb3be2c722cf2cf746-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c7bf0b7c1a86d5eb3be2c722cf2cf746-Abstract.html

sim_dgp_scenarios 45

Details

Mathematical Model:
X1, X3, X5 ~ Uniform(0, 1)

Xo=X1+4+6e9, &9~ N(0,000l)
Xy = X3+ ey, €4NN(0,0.1)

Y:X4+X5+X4'X5+€, ENN(O,OI)
Feature Properties:

* X1, X3, X5: Independent uniform(0,1) distributions

* X2: Nearly perfect copy of X1 (correlation approximately 0.99)
* X4: Noisy copy of X3 (correlation approximately 0.67)

* Y depends on X4, X5, and their interaction

Value

A regression task (mlr3::TaskRegr) with data.table backend.

References

Ewald F, Bothmann L, Wright M, Bischl B, Casalicchio G, Konig G (2024). “A Guide to Feature

Importance Methods for Scientific Inference.” In Longo L, Lapuschkin S, Seifert C (eds.), Explain-

able Artificial Intelligence, 440-464. ISBN 978-3-031-63797-1, doi:10.1007/9783031637971_22.
See Also

Other simulation: sim_dgp_scenarios

Examples

sim_dgp_ewald(100)

sim_dgp_scenarios Simulation DGPs for Feature Importance Method Comparison

Description

These data generating processes (DGPs) are designed to illustrate specific strengths and weaknesses
of different feature importance methods like PFI, CFI, and RFI. Each DGP focuses on one primary
challenge to make the differences between methods clear.


https://doi.org/10.1007/978-3-031-63797-1_22
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Usage

sim_dgp_correlated(n = 500L, r = 0.9)

sim_dgp_mediated(n = 500L)

sim_dgp_confounded(n = 500L, hidden = TRUE)

sim_dgp_interactions(n = 500L)

sim_dgp_independent(n = 500L)

Arguments
n (integer(1): 500L) Number of observations to generate.
r (numeric(1): @.9) Correlation between x1 and x2. Must be between -1 and 1.
hidden (logical (1): TRUE) Whether to hide the confounder from the returned task. If
FALSE, the confounder is included as a feature, allowing direct adjustment. If
TRUE (default), only the proxy is available, simulating unmeasured confounding.
Details

Correlated Features DGP: This DGP creates highly correlated predictors where PFI will show
artificially low importance due to redundancy, while CFI will correctly identify each feature’s con-
ditional contribution.

Mathematical Model:
(X1, X5)T ~ MVN(0, %)

where ¥ is a 2 X 2 covariance matrix with 1 on the diagonal and correlation r on the off-diagonal.
XSNN(O71)7 X4NN(071)

Y =2 'X1 +X3 + €
where ¢ ~ N(0,0.22).

Feature Properties:

* x1: Standard normal from MVN, direct causal effect ony (3 = 2.0)
* x2: Correlated with x1 (correlation = r), NO causal effect on y (8 = 0)
* x3: Independent standard normal, direct causal effect on y (3 = 1.0)

* x4: Independent standard normal, no effect ony (3 = 0)
Expected Behavior:
* Marginal methods (PFI, Marginal SAGE): Will falsely assign importance to x2 due to corre-
lation with x1

* Conditional methods (CFI, Conditional SAGE): Should correctly assign near-zero impor-
tance to x2

» Key insight: x2 is a "spurious predictor” - correlated with causal feature but not causal itself
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Mediated Effects DGP: This DGP demonstrates the difference between total and direct causal
effects. Some features affect the outcome only through mediators.

Mathematical Model:
exposure ~ N(0,1), direct ~ N(0,1)
mediator = 0.8 - exposure + 0.6 - direct + ¢,
Y = 1.5 - mediator 4 0.5 - direct + ¢
where €, ~ N(0,0.3%) and € ~ N(0,0.22).

Feature Properties:

* exposure: Has no direct effect on y, only through mediator (total effect = 1.2)
* mediator: Mediates the effect of exposure on y
* direct: Has both direct effect on y and effect on mediator

* noise: No causal relationship to y

Causal Structure: exposure -> mediator -> y <- direct -> mediator

Expected Behavior:

» PFI: Shows total effects (exposure appears important)
* CFI: Shows direct effects (exposure appears less important when conditioning on mediator)
* RFI with mediator: Should show direct effects similar to CFI
Confounding DGP: This DGP includes a confounder that affects both a feature and the outcome.
Uses simple coefficients for easy interpretation.
Mathematical Model:
H ~ N(0,1)
X1 =H+¢
proxy = H +¢,, independent ~ N(0,1)
Y = H + X + independent + ¢
where all e ~ N (0,0.5%) independently.
Model Structure:

» Confounder H ~ N(0,1) (potentially unobserved)

* x1 = H + noise (affected by confounder)

» proxy = H + noise (noisy measurement of confounder)
* independent ~ N(0,1) (truly independent)

e y =H + x1 + independent + noise
Expected Behavior:

* PFI: Will show inflated importance for x1 due to confounding
* CFI: Should partially account for confounding through conditional sampling

* RFI conditioning on proxy: Should reduce confounding bias by conditioning on proxy
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Interaction Effects DGP: This DGP demonstrates a pure interaction effect where features have no
main effects.

Mathematical Model:
Y:2-X1-X2+X3+E
where X; ~ N(0,1) independently and £ ~ N (0, 0.5%).

Feature Properties:

* x1, x2: Independent features with ONLY interaction effect (no main effects)
* x3: Independent feature with main effect only

e noisel, noise2: No causal effects
Expected Behavior:

* PFI: Should assign near-zero importance to x1 and x2 (no marginal effect)

* CFI: Should capture the interaction and assign high importance to x1 and x2

* Ground truth: x1 and x2 are important ONLY through their interaction
Independent Features DGP: This is a baseline scenario where all features are independent and
their effects are additive. All importance methods should give similar results.
Mathematical Model:

Y=20-X;+10-Xo+05-X35+¢

where X; ~ N(0,1) independently and € ~ N (0,0.22).

Feature Properties:

* important1-3: Independent features with different effect sizes

* unimportant1-2: Independent noise features with no effect
Expected Behavior:

* All methods: Should rank features consistently by their true effect sizes

* Ground truth: important] > important2 > important3 > unimportant1,2 (approximately 0)

Value

A regression task (mlr3::TaskRegr) with data.table backend.

Functions

e sim_dgp_correlated(): Correlated features demonstrating PFI’s limitations
e sim_dgp_mediated(): Mediated effects showing direct vs total importance

* sim_dgp_confounded(): Confounding scenario for conditional sampling

e sim_dgp_interactions(): Interaction effects between features

* sim_dgp_independent(): Independent features baseline scenario
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References

Ewald F, Bothmann L, Wright M, Bischl B, Casalicchio G, Konig G (2024). “A Guide to Feature
Importance Methods for Scientific Inference.” In Longo L, Lapuschkin S, Seifert C (eds.), Explain-
able Artificial Intelligence, 440-464. ISBN 978-3-031-63797-1, doi:10.1007/9783031637971_22.

See Also

Other simulation: sim_dgp_ewald()
Other simulation: sim_dgp_ewald()
Other simulation: sim_dgp_ewald()
Other simulation: sim_dgp_ewald()

Other simulation: sim_dgp_ewald()

Examples

task = sim_dgp_correlated(200)
task$data()

# With different correlation

task_high_cor = sim_dgp_correlated(200, r = 0.95)
cor(task_high_cor$data()$x1, task_high_cor$data()$x2)

task = sim_dgp_mediated(200)

task$data()

# Hidden confounder scenario (traditional)

task_hidden = sim_dgp_confounded(200, hidden = TRUE)
task_hidden$feature_names # proxy available but not confounder

# Observable confounder scenario

task_observed = sim_dgp_confounded(200, hidden = FALSE)
task_observed$feature_names # both confounder and proxy available
task = sim_dgp_interactions(200)

task$data()
task = sim_dgp_independent (200)
task$data()
wvim_design_matrix Create Feature Selection Design Matrix
Description

Creates a logical design matrix for leave-in or leave-out feature evaluation. Used internally with
mlir3fselect to evaluate feature subsets.


https://doi.org/10.1007/978-3-031-63797-1_22
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Usage

wvim_design_matrix(
all_features,
feature_names = all_features,
direction = c("leave-out”, "leave-in")

)

Arguments

all_features (character()) All available feature names from the task.

feature_names (character() | list of character()) Features or feature groups to evaluate. Can be
a vector for individual features or a named list for grouped features. Defaults to
all_features if unspecified.

direction (character(1)) Either "leave-in" or "leave-out” (default). Controls which
features are selected in the design matrix. "leave-out” sets features of interest
to FALSE, and "leave-in" analogously sets them to TRUE.

Value

data.table with logical columns for each feature in all_features and length(feature_names)
rows, one for each entry in feature_names

Examples

task = mlr3::tsk("mtcars")

# Individual features

feature_names = task$feature_names[1:3]
wvim_design_matrix(task$feature_names, feature_names, "leave-in")
wvim_design_matrix(task$feature_names, feature_names, "leave-out")

# Feature groups
feature_groups = list(
A = task$feature_names[1:2],
B = task$feature_names[3:5]
)

wvim_design_matrix(task$feature_names, feature_groups, "leave-out")

xplain_opt xplainfi Package Options

Description

Get or set package-level options for xplainfi.
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Usage

xplain_opt(...)

Arguments
Option names to retrieve (as character strings) or options to set (as named argu-
ments).
* To get an option: xplain_opt("verbose™) returns the current value
* To set an option: xplain_opt(verbose = FALSE) sets the value
* To get all options: xplain_opt () returns a named list of all options
Details

Options can be set in three ways (in order of precedence):
1. Using xplain_opt(option_name = value) (recommended)
2. Using options("xplain.option_name"” = value)
3. Using environment variables XPLAIN_OPTION_NAME=value

Available Options:
Option Default Description
verbose TRUE Show informational messages (e.g., when using default measure or resampling)
progress FALSE  Show progress bars during computation
sequential FALSE Force sequential execution (disable parallelization)
debug FALSE  Enable debug output for development and troubleshooting
Value

* When getting a single option: the option value (logical)
* When getting multiple options: a named list of option values

* When setting options: the previous values (invisibly)

Examples

# Get current value of an option
xplain_opt("verbose")

# Get all options
xplain_opt()

# Set an option (returns previous value invisibly)
old <- xplain_opt(verbose = FALSE)
xplain_opt("verbose") # Now FALSE

# Restore previous value
xplain_opt(verbose = old$verbose)
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# Temporary option change with withr
if (requireNamespace("withr”, quietly = TRUE)) {
withr::with_options(
list("xplain.verbose” = FALSE),
{
# Code here runs with verbose = FALSE
xplain_opt("verbose")
}
)
}

xplain_opt
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