Getting Started

Marcelo Perlin

2023-02-16

Examples

Here you’ll find a series of example of calls to yf_get(). Most arguments are self-explanatory, but you can find more details at the help files.

The steps of the algorithm are:

  1. check cache files for existing data
  2. if not in cache, fetch stock prices from YF and clean up the raw data
  3. write cache file if not available
  4. calculate all returns
  5. build diagnostics
  6. return the data to the user

Fetching a single stock price

library(yfR)

# set options for algorithm
my_ticker <- 'GM'
first_date <- Sys.Date() - 30
last_date <- Sys.Date()

# fetch data
df_yf <- yf_get(tickers = my_ticker, 
                first_date = first_date,
                last_date = last_date)

# output is a tibble with data
head(df_yf)
## # A tibble: 6 × 11
##   ticker ref_date   price_open price_h…¹ price…² price…³ volume price…⁴ ret_ad…⁵
##   <chr>  <date>          <dbl>     <dbl>   <dbl>   <dbl>  <dbl>   <dbl>    <dbl>
## 1 GM     2023-01-17       36.5      37.1    36.2    36.6 1.39e7    36.6 NA      
## 2 GM     2023-01-18       37.1      37.5    36.4    36.4 1.13e7    36.4 -0.00464
## 3 GM     2023-01-19       35.7      36.0    35.1    35.7 1.14e7    35.7 -0.0195 
## 4 GM     2023-01-20       35.7      36.0    35.3    35.3 1.72e7    35.3 -0.0106 
## 5 GM     2023-01-23       35.7      36.6    35.5    36.4 1.70e7    36.4  0.0308 
## 6 GM     2023-01-24       36        36.7    35.8    36.2 1.21e7    36.2 -0.00659
## # … with 2 more variables: ret_closing_prices <dbl>,
## #   cumret_adjusted_prices <dbl>, and abbreviated variable names ¹​price_high,
## #   ²​price_low, ³​price_close, ⁴​price_adjusted, ⁵​ret_adjusted_prices

Fetching many stock prices

library(yfR)
library(ggplot2)

my_ticker <- c('TSLA', 'GM', 'MMM')
first_date <- Sys.Date() - 100
last_date <- Sys.Date()

df_yf_multiple <- yf_get(tickers = my_ticker, 
                         first_date = first_date,
                         last_date = last_date)


p <- ggplot(df_yf_multiple, aes(x = ref_date, y = price_adjusted,
                                color = ticker)) + 
  geom_line()

p

Fetching daily/weekly/monthly/yearly price data

library(yfR)
library(ggplot2)
library(dplyr)

my_ticker <- 'GE'
first_date <- '2005-01-01'
last_date <- Sys.Date()

df_dailly <- yf_get(tickers = my_ticker, 
                    first_date, last_date, 
                    freq_data = 'daily') %>%
  mutate(freq = 'daily')

df_weekly <- yf_get(tickers = my_ticker, 
                    first_date, last_date, 
                    freq_data = 'weekly') %>%
  mutate(freq = 'weekly')

df_monthly <- yf_get(tickers = my_ticker, 
                     first_date, last_date, 
                     freq_data = 'monthly') %>%
  mutate(freq = 'monthly')

df_yearly <- yf_get(tickers = my_ticker, 
                    first_date, last_date, 
                    freq_data = 'yearly') %>%
  mutate(freq = 'yearly')

# bind it all together for plotting
df_allfreq <- bind_rows(
  list(df_dailly, df_weekly, df_monthly, df_yearly)
) %>%
  mutate(freq = factor(freq, 
                       levels = c('daily', 
                                  'weekly',
                                  'monthly',
                                  'yearly'))) # make sure the order in plot is right

p <- ggplot(df_allfreq, aes(x = ref_date, y = price_adjusted)) + 
  geom_line() + 
  facet_grid(freq ~ ticker) + 
  theme_minimal() + 
  labs(x = '', y = 'Adjusted Prices')

print(p)

Changing format to wide

library(yfR)
library(ggplot2)

my_ticker <- c('TSLA', 'GM', 'MMM')
first_date <- Sys.Date() - 100
last_date <- Sys.Date()

df_yf_multiple <- yf_get(tickers = my_ticker, 
                         first_date = first_date,
                         last_date = last_date)

print(df_yf_multiple)
## # A tibble: 204 × 11
##    ticker ref_date   price_open price_…¹ price…² price…³ volume price…⁴ ret_ad…⁵
##  * <chr>  <date>          <dbl>    <dbl>   <dbl>   <dbl>  <dbl>   <dbl>    <dbl>
##  1 GM     2022-11-08       39.5     39.5    38.5    39.0 1.09e7    39.0 NA      
##  2 GM     2022-11-09       38.5     38.9    38.0    38.1 1.05e7    38.0 -0.0254 
##  3 GM     2022-11-10       39.2     40.6    38.9    39.7 2.02e7    39.7  0.0441 
##  4 GM     2022-11-11       39.9     41.6    39.8    41.1 1.30e7    41.0  0.0347 
##  5 GM     2022-11-14       41.0     41.2    39.9    39.9 1.50e7    39.8 -0.0289 
##  6 GM     2022-11-15       40.7     41.4    40.0    40.2 1.24e7    40.2  0.00776
##  7 GM     2022-11-16       39.8     39.9    38.5    38.5 1.20e7    38.4 -0.0440 
##  8 GM     2022-11-17       38.0     39.6    37.5    38.6 2.60e7    38.6  0.00442
##  9 GM     2022-11-18       39.5     40.0    39.0    39.8 2.28e7    39.7  0.0292 
## 10 GM     2022-11-21       39.4     39.7    39      39.5 1.23e7    39.4 -0.00629
## # … with 194 more rows, 2 more variables: ret_closing_prices <dbl>,
## #   cumret_adjusted_prices <dbl>, and abbreviated variable names ¹​price_high,
## #   ²​price_low, ³​price_close, ⁴​price_adjusted, ⁵​ret_adjusted_prices
l_wide <- yf_convert_to_wide(df_yf_multiple)

names(l_wide)
## [1] "price_open"             "price_high"             "price_low"             
## [4] "price_close"            "volume"                 "price_adjusted"        
## [7] "ret_adjusted_prices"    "ret_closing_prices"     "cumret_adjusted_prices"
prices_wide <- l_wide$price_adjusted
head(prices_wide)
## # A tibble: 6 × 4
##   ref_date      GM   MMM  TSLA
##   <date>     <dbl> <dbl> <dbl>
## 1 2022-11-08  39.0  124.  191.
## 2 2022-11-09  38.0  122.  178.
## 3 2022-11-10  39.7  128.  191.
## 4 2022-11-11  41.0  131.  196.
## 5 2022-11-14  39.8  130.  191.
## 6 2022-11-15  40.2  130.  194.